Skip to main content

A combined probabilistic framework for learning gestures and actions

  • 4 Applied Artificial Intelligence and Knowledge-Based Systems in Specific Domains
  • Conference paper
  • First Online:
Tasks and Methods in Applied Artificial Intelligence (IEA/AIE 1998)

Abstract

In this paper we introduce a probabilistic approach to support visual supervision and gesture recognition. Task knowledge is both of geometric and visual nature and it is encoded in parametric eigenspaces. Learning processes for compute modal subspaces (eigenspaces) are the core of tracking and recognition of gestures and tasks. We describe the overall architecture of the system and detail learning processes and gesture design. Finally we show experimental results of tracking and recognition in block-world like assembling tasks and in general human gestures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Baumberg, A., Hogg, D.: Learning Flexible Models in Image Sequences. European Conference on Computer Vision. (1994).

    Google Scholar 

  2. Black, M.J., Jepson, A.D.: EigenTracking: Robust Matching and Tracking of Articulated Objects Using a View-Based Representation. In Proc. ECCV-96, Cambridge 329–342.(1996).

    Google Scholar 

  3. Cédras, C., Shah, M.:Motion Based Recognition: A Survey. Tech-Rep. Department of Computer Science. Univ. of Central Florida. (1995).

    Google Scholar 

  4. Cootes, T.F., Taylor, C.J., Cooper, D.H., Graham J.: Trainable Method of Parametric Shape. Image and Vision Computing. 10 289–294. (1992).

    Google Scholar 

  5. Cootes, T.F., Taylor, C.J.: Active Shape Models. Smart Snakes. Proc. British Machine Vision Conference. 266–275. (1992).

    Google Scholar 

  6. Cootes, T.F., Taylor, C.J., Lanitis, A., Cooper, D.H., Graham, J.: Building and Using Flexible Models Incorporating Grey-Level Information. In Proc. International Conference of Computer Vision. (1993).

    Google Scholar 

  7. Davis, J.W.: Appearance-Based Motion Recognition of Human Action. MIT Media Lab Tech Rep. 387. (1996).

    Google Scholar 

  8. Darrell, T.J., Essa, I.A., Pentland, A.P.: Task Specific Gesture Analysis in Real Time Using Interpolated Views. IEEE Trans. PAMI. 18 1236–1242. (1996).

    Google Scholar 

  9. Escolano, F.: Plantillas Deformables Extendidas: Modelización Local Robusta y Caracterización Basada en Auto-Modelos para el Reconocimiento y Tracking de Estructuras Geométricas Activas. Tesis Doctoral. Universidad de Alicante (1997).

    Google Scholar 

  10. Escolano, F., Cazorla, M., Gallardo, D., Rizo, R.: Deformable Templates for Tracking and Analysis of Intravascular Ultrasound Sequences. EMMCVPR-97: International Workshop on Energy Minimization Methods for Computer Vision and Pattern Recognition. Lecture Notes in Computer Science N.1223. Springer Verlag 521–534.(1997).

    Google Scholar 

  11. Escolano, F., Cazorla, M., Gallardo, D., Llorens, F., Satorre R., Rizo, R.: Spatio-Temporal Deformable Templates for Gesture Tracking and Recognition. VII Conference of the Spanish Association of Artificial Intelligence (1997).

    Google Scholar 

  12. Fukunaga, K.: Introduction to Statistical Pattern Recognition. New York: Academic (1972).

    Google Scholar 

  13. Kirby, M., Weisser, F., Dangelmayr, G.: A model problem in the representation of digital image sequences. Patter Recognition. 26 63–73. (1993).

    Google Scholar 

  14. Lanitis, A., Taylor, C.J., Cootes, T.F., Ahmed, T.: Automatic Interpretation of Human Faces and Hand Gestures Using Flexible Models. Tech-Rep. Department of Medical Biophysics. University of Manchester. (1994).

    Google Scholar 

  15. Moghaddam, B., Pentland, A.: Face Recognition using View-Based and Modular Eigenspaces. M.I.T. Technical Report No. 301. (1994)

    Google Scholar 

  16. Murase, H., Sakai, R.: Moving object recognition in eigenspace representation: gait analysis and lip reading. Patter Recognition Letters. 17. 155–162. (1996).

    Google Scholar 

  17. Nastar, C., Ayache, N.: A New Physically Based Model for Efficient Tracking and Analysis of Deformations. In Proc. Geometric Reasoning for Perception and Action. Springer-Verlag (1993).

    Google Scholar 

  18. Turk, M., Pentland, A.: Eigenfaces for Recognition. Journal of Cognitive Neuroscience. 3 71–89. (1991).

    Google Scholar 

  19. Zhu, S.C., Yuille, A.L.: FORMS: A Flexible Object Recognition and Modeling System. Int. Journal of Computer Vision. (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Angel Pasqual del Pobil José Mira Moonis Ali

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Escolano, F., Cazorla, M., Gallardo, D., Llorens, F., Satorre, R., Rizo, R. (1998). A combined probabilistic framework for learning gestures and actions. In: Pasqual del Pobil, A., Mira, J., Ali, M. (eds) Tasks and Methods in Applied Artificial Intelligence. IEA/AIE 1998. Lecture Notes in Computer Science, vol 1416. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-64574-8_452

Download citation

  • DOI: https://doi.org/10.1007/3-540-64574-8_452

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-64574-0

  • Online ISBN: 978-3-540-69350-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics