Skip to main content

Average State Complexity of Operations on Unary Automata

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1672))

Abstract

Define the complexity of a regular language as the number of states of its minimal automaton. Let \( \mathcal{A} \) (respectively \( \mathcal{A}' \)) be an n-state (resp. n’-state) deterministic and connected unary automaton. Our main results can be summarized as follows:

  1. 1.

    The probability that \( \mathcal{A} \) is minimal tends toward 1/2 when n tends toward infinity

  2. 2.

    The average complexity of \( L{\text{(}}\mathcal{A}{\text{)}} \) is equivalent to n

  3. 3.

    The average complexity of \( L{\text{(}}\mathcal{A}{\text{)}} \cap L{\text{(}}\mathcal{A}'{\text{)}} \) is equivalent to \( \frac{{3\zeta (3)}} {{2\pi ^2 }}nn' \), where ζ is the Riemann “zeta”-function.

  4. 4.

    The average complexity of \( L{\text{(}}\mathcal{A}{\text{)}}^ * \) is bounded by a constant

  5. 5.

    If nn’P(n), for some polynomial P, the average complexity of \( L{\text{(}}\mathcal{A}{\text{)}}L{\text{(}}\mathcal{A}'{\text{)}} \) is bounded by a constant (depending on P).

Remark that results 3, 4 and 5 differ perceptibly from the corresponding worst case complexities, which are nn’ for intersection, (n − 1)2 + 1 for star and nn’ for concatenation product.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.P. Allouche. Transcendence of formal power series with rational coefficients. Th. Comp. Sc., 1999. to appear.

    Google Scholar 

  2. R.C. Baker and G. Harman. The difference between consecutive primes. Proc. Lond. Math. Soc., III ser. 72:261–280, 1996.

    Article  MathSciNet  Google Scholar 

  3. H. Davenport. Multiplicative number theory. Second edition. Graduate Texts in Mathematics. Springer Verlag, 1974.

    Google Scholar 

  4. A. Delobelle. Primitive circular words and irreducible polynomials. 1999. to appear.

    Google Scholar 

  5. S. Eilenberg. Automata, Languages and Machines, volume A. Academic Press, 1974.

    Google Scholar 

  6. J. Hopcroft and J.D. Ullman. Introduction to Automata Theory, Language and Computation. Addison Wesley, 1979.

    Google Scholar 

  7. M.N. Huxley. The distribution of prime numbers, large sieves and zero-density theorems. Clarendon press, 1972.

    Google Scholar 

  8. D. E. Knuth. The Art of Computer Programming, volume 1: fundamental algorithms. Addison-Wesley, Reading, MA, 1968.

    MATH  Google Scholar 

  9. D. E. Knuth. The Art of Computer Programming, volume 2: seminumerical algorithms. Addison-Wesley, Reading, MA, 1969.

    MATH  Google Scholar 

  10. D. E. Knuth. The Art of Computer Programming, volume 3: sorting and searching. Addison-Wesley, Reading, MA, 1973.

    Google Scholar 

  11. R. Sedgewick and P. Flajolet. An Introduction to the Analysis of Algorithms. Addison-Wesley Publishing Company, 1996.

    Google Scholar 

  12. G. Tenenbaum. Introduction à la théorie analytique et probabiliste des nombres, Cours spécialisés 1. Société Mathématique de France, 1996.

    Google Scholar 

  13. G. Tenenbaum. Private communication, may 1997.

    Google Scholar 

  14. S. Yu. Regular languages. In G. Rozenberg and A. Salomaa, editors, Handbook of language theory, volume 1, chapter 2, pages 96–105. Springer Verlag, 1997.

    Google Scholar 

  15. S. Yu, Q. Zhuang, and K. Salomaa. The state complexities of some basic operations on regular languages. Th. Comp. Sc., 125:315–328, 1994.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nicaud, C. (1999). Average State Complexity of Operations on Unary Automata. In: Kutyłowski, M., Pacholski, L., Wierzbicki, T. (eds) Mathematical Foundations of Computer Science 1999. MFCS 1999. Lecture Notes in Computer Science, vol 1672. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-48340-3_21

Download citation

  • DOI: https://doi.org/10.1007/3-540-48340-3_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66408-6

  • Online ISBN: 978-3-540-48340-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics