Skip to main content

On the Eigenvalue Power Law

  • Conference paper
  • First Online:
Randomization and Approximation Techniques in Computer Science (RANDOM 2002)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2483))

Abstract

We show that the largest eigenvalues of graphs whose highest degrees are Zipf-like distributed with slope a are distributed according to a power law with slope α/2. This follows as a direct and almost certain corollary of the degree power law. Our result has implications for the singular value decomposition method in information retrieval.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Achlioptas, D., Fiat, A., Karlin, A. and McSherry, F., “Web Search via Hub Synthesis”, Proceedings of the 42nd Annual IEEE Symposium on Foundations of Computer Science, (FOCS 2001), pp 500–509.

    Google Scholar 

  2. Aiello, W., Chung, F.R.K. and Lu, L., “A random graph model for power law graphs”, Proceedings of the Thirtysecond Annual ACM Symposium on Theory of Computing (STOC 2000), pp 171–180.

    Google Scholar 

  3. Aiello, W., Chung, F.R.K. and Lu, L., “Random Evolution in Massive Graphs”, Proceedings of the Fourty-Second Annual IEEE Symposium on Foundations of Computer Science, (FOCS 2001), pp. 510–519.

    Google Scholar 

  4. Azar, Y., Fiat, A., Karlin, A., McSherry, F. and J. Saia, “Spectral Analysis for Data Mining”, Proceedings of the Thirty-Third Annual ACM Symposium on Theory of Computing, (STOC 2001), pp 619–626.

    Google Scholar 

  5. Barabási, A.-L. and Albert, R., “Emergence of scaling in random graphs”, Science 286 (1999), pp 509–512.

    Google Scholar 

  6. Bollobás, B., Riordan, O., Spencer, J. and Tusnády, G., “The degree sequence of a scale-free random graph process”, Random Structures and Algorithms,Volume 18, Issue 3, 2001, pp 279–290.

    Article  MATH  MathSciNet  Google Scholar 

  7. Broder, A., Kumar, R., Maghoul, F., Raghavan, P., Rajagopalan, S., Stata, R., Tomikns, A. and Wiener, J., “Graph structure in the Web”, Proc. 9th International World Wide Web Conference (WWW9)/Computer Networks, 33(1-6), 2000, pp. 309–320.

    Google Scholar 

  8. Chung, F.R.K. and Lu, L., “Connected components in random graphs with given degree sequences”, Available at http://www.math.ucsd.edu/fan.

  9. Cooper, C. and Frieze, A., A general model for web graphs, Proceedings of ESA, 2001, pp 500–511.

    Google Scholar 

  10. Dill, S., Kumar, R., McCurley, K., Rajagopalan, S., Sivakumar, D. and Tomkins, A., “Self-similarity in the Web”, In Proceedings of International Conference on Very Large Data Bases, Rome, 2001, pp. 69–78.

    Google Scholar 

  11. Dorogovtsev, S.N. and Mendes, J.F.F., “Evolution of Networks”, Advances in Physics, to appear (2002). Available at http://www.fc.up.pt/fis/sdorogov.

  12. Erdös. P. and Rényi, A., “On the Evolution of Random Graphs”, Publications of the Mathematical Institute of the Hungarian Academy of Science 5, (1960), pp17–61.

    MATH  Google Scholar 

  13. Fabrikant, A., Koutsoupias, E. and Papadimitriou, C.H. “Heuristically Optimized Tradeoffs”, Available at http://www.cs.berkeley.edu/christos.

  14. Faloutsos, M., Faloutsos, P. and Faloutsos, C., “On Power-law Relationships of the Internet Topology”, In Proceedings Sigcomm 1999, pp 251–262.

    Google Scholar 

  15. Farkas, I.J., Derényi, I., Barabási, A.L. and Vicsek, T., “Spectra of Real-World Graphs: Beyond the Semi-Circle Law”, e-print cond-mat/0102335.

    Google Scholar 

  16. Goh, K.I., Kahng, B. and Kim, D., “Spectra and eigenvectors of scale-free networks”, Physical Review E., Vol 64, 2001.

    Google Scholar 

  17. Husbands, P., Simon, H. and Ding, C., “On the use of the Singular Value Decomposition for Text Retrieval”, 1st SIAM Computational Information Retrieval Workshop, October 2000, Raleigh, NC.

    Google Scholar 

  18. Jin, C., Chen, Q. and Jamin, S., “Inet: Internet Topology Generator”, University of Michigan technical Report, CSE-TR-433-00. Available at http://irl.eecs.umich.edu/jamin.

  19. Kleinberg, J., “Authoritative sources in a hyperlinked environment”, Proc. 9th ACM-SIAM Symposium on Discrete Algorithms, 1998. Extended version in Journal of the ACM 46 (1999).

    Google Scholar 

  20. Kumar, R., Rajagopalan, S., Sivakumar, D. and Tomkins, A., “Trawling the web for emerging cyber-communities”, WWW8/Computer Networks, Vol. 31, No 11-16, 1999, pp. 1481–1493.

    Article  Google Scholar 

  21. Kumar, R., Raghavan, P., Rajagopalan, S., Sivakumar, D., Tomkins, A. and Upfal, E., “Stochastic models for the Web graph”, Proceedings of the 41st IEEE Symposium on Foundations of Computer Science, (FOCS 2000), pp 57–65.

    Google Scholar 

  22. Lovász, L., Combinatorial Problems and Exercises, North-Holland Publishing Co., Amsterdam-New York, 1979.

    MATH  Google Scholar 

  23. Medina, A., Lakhina, A., Matta, I. and Byers, J., BRITE: Universal Topology Generation from a User’s Perspective. Technical Report BUCS-TR2001-003, Boston University, 2001. Available at http://www.cs.bu.edu/brite/publications.

  24. Medina, A., Matta, I. and Byers, J., “On the origin of power laws in Internet topologies”, ACM Computer Communication Review, vol. 30, no. 2, pp. 18–28, Apr. 2000.

    Article  Google Scholar 

  25. Gkantsidis, C., Mihail, M. and Zegura, E., “Spectral Analysis of Internet Topologies”, Georgia Institute of Technology, Technical Report GIT-CC-0710.

    Google Scholar 

  26. Palmer, C. and Steffan, J., “Generating network topologies that obey power laws”, In Proceedings of Globecom 2000.

    Google Scholar 

  27. Papadimitriou, C.H., Raghavan, P., Tamaki, H. and Vempala, S., “Latent Semantic Indexing: A Probabilistic Analysis”, Journal of Computer and System Sciences, 61, 2000, pp. 217–235.

    Article  MATH  MathSciNet  Google Scholar 

  28. Spencer, J., Ten Lecture Notes on the Probabilistic Method, SIAM Lecture Notes, Philadelphia, 1987.

    Google Scholar 

  29. Stewart, G. W. and Sun, J., Matrix Perturbation Theory, Academic Press, 1990.

    Google Scholar 

  30. Wilkinson, J. H., The Algebraic Eigenvalue Problem, Numerical Mathematics and Scientific Computation, Oxford University Press, 1965.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mihail, M., Papadimitriou, C. (2002). On the Eigenvalue Power Law. In: Rolim, J.D.P., Vadhan, S. (eds) Randomization and Approximation Techniques in Computer Science. RANDOM 2002. Lecture Notes in Computer Science, vol 2483. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45726-7_20

Download citation

  • DOI: https://doi.org/10.1007/3-540-45726-7_20

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-44147-2

  • Online ISBN: 978-3-540-45726-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics