Skip to main content

The Full Steiner Tree Problem in Phylogeny

  • Conference paper
  • First Online:
Computing and Combinatorics (COCOON 2002)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2387))

Included in the following conference series:

Abstract

Motivated by the reconstruction of phylogenetic tree in biology, we study the full Steiner tree problem in this paper. Given a complete graph G = (V, E) with a length function on E and a proper subset RV, the problem is to find a full Steiner tree of minimum length in G, which is a kind of Steiner tree with all the vertices of R as its leaves. In this paper, we show that this problem is NP-complete and MAX SNP-hard, even when the lengths of the edges are restricted to either 1 or 2. For the instances with lengths either 1 or 2, we give a 5/3-approximation algorithm to find an approximate solution for the problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cheng, X., Du, D.: Steiner Trees in Industry. Kluwer Academic Publishers, Dordrecht, Netherlands (2001)

    Google Scholar 

  2. Du, D., Smith, J., Rubinstein, J.: Advances in Steiner Trees. Kluwer Academic Publishers, Dordrecht, Netherlands (2000)

    MATH  Google Scholar 

  3. Foulds, L., Graham, R.: The Steiner problem in phylogeny is NP-complete. Advances in Applied Mathematics 3 (1982) 43–49

    Article  MATH  MathSciNet  Google Scholar 

  4. Hwang, F., Richards, D., Winter, P.: The Steiner Tree Problem. Annals of Discrete Mathematics 53. Elsevier Science Publishers B. V., Amsterdam (1992)

    Google Scholar 

  5. Karp, R.: Reducibility among combinatorial problems. In Miller, R.E., Thatcher, J.W., eds.: Complexity of Computer Computations. Plenum Press, New York (1972) 85–103

    Google Scholar 

  6. Garey, M., Graham, R., Johnson, D.: The complexity of computing Steiner minimal trees. SIAM Journal on Applied Mathematics 32 (1977) 835–859

    Article  MATH  MathSciNet  Google Scholar 

  7. Garey, M., Johnson, D.: The rectilinear Steiner problem is NP-complete. SIAM Journal on Applied Mathematics 32 (1977) 826–834

    Article  MATH  MathSciNet  Google Scholar 

  8. Gröpl, C., Hougardy, S., Nierhoff, T., Prömel, H.: Approximation algorithms for the Steiner tree problem in graphs. In Cheng, X., Du, D., eds.: Steiner Trees in Industry. Kluwer Academic Publishers, Dordrecht, Netherlands (2001) 235–279

    Google Scholar 

  9. Graur, D., Li, W.: Fundamentals of Molecular Evolution. 2nd edition, Sinauer Publishers, Sunderland, Massachusetts (2000)

    Google Scholar 

  10. Kim, J., Warnow, T.: Tutorial on phylogenetic tree estimation. Manuscript, Department of Ecology and Evolutionary Biology, Yale University (1999)

    Google Scholar 

  11. Wareham, H.T.: On the computational complexity of inferring evolutionary trees. Technical Report 93-01, Department of Computer Science, Memorial University of Newfoundland (1993)

    Google Scholar 

  12. Hwang, F.: A linear time algorithm for full Steiner trees. Operations Research Letters 4 (1986) 235–237

    Article  MATH  MathSciNet  Google Scholar 

  13. Arora, S., Lund, C., Motwani, R., Sudan, M., Szegedy, M.: Proof verification and the hardness of approximation problems. Journal of the Association for Computing Machinery 45 (1998) 501–555

    MATH  MathSciNet  Google Scholar 

  14. Ausiello, G., Crescenzi, P., Gambosi, G., Kann, V., Marchetti-Spaccamelai, A., Protasi, M.: Complexity and Approximation—Combinatorial Optimization Problems and Their Approximability Properties. Springer Verlag, Berlin (1999)

    MATH  Google Scholar 

  15. Papadimitriou, C., Yannakakis, M.: Optimization, approximization and complexity classes. Journal of Computer and System Sciences 43 (1991) 425–440

    Article  MATH  MathSciNet  Google Scholar 

  16. Garey, M., Johnson, D.: Computers and Intractability—A Guide to the Theory of NP-Completeness. San Francisco, Freeman (1979)

    MATH  Google Scholar 

  17. Bern, M., Plassmann, P.: The Steiner problem with edge lengths 1 and 2. Information Processing Letters 32 (1989) 171–176

    Article  MATH  MathSciNet  Google Scholar 

  18. Rayward-Smith, V.: The computation of nearly minimum Steiner trees in graphs. International Journal of Mathematical Education in Science and Technology 14 (1983) 15–23

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lu, C.L., Tang, C.Y., Lee, R.CT. (2002). The Full Steiner Tree Problem in Phylogeny. In: Ibarra, O.H., Zhang, L. (eds) Computing and Combinatorics. COCOON 2002. Lecture Notes in Computer Science, vol 2387. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45655-4_13

Download citation

  • DOI: https://doi.org/10.1007/3-540-45655-4_13

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-43996-7

  • Online ISBN: 978-3-540-45655-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics