Skip to main content

Antitonic Logic Programs

  • Conference paper
  • First Online:
Logic Programming and Nonmotonic Reasoning (LPNMR 2001)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 2173))

Abstract

In a previous work we have defined Monotonic Logic Programs which extend definite logic programming to arbitrary complete lattices of truth-values with an appropriate notion of implication. We have shown elsewhere that this framework is general enough to capture Generalized Annotated Logic Programs, Probabilistic Deductive Databases, Possibilistic Logic Programming, Hybrid Probabilistic Logic Programs and Fuzzy Logic Programming [3],[4]. However, none of these semantics define a form of non-monotonic negation, which is fundamental for several knowledge representation applications. In the spirit of our previous work, we generalise our framework of Monotonic Logic Programs to allow for rules with arbitrary antitonic bodies over general complete lattices, of which normal programs are a special case. We then show that all the standard logic programming theoretical results carry over to Antitonic Logic Programs, defining Stable Model and Well-founded Model alike semantics. We also apply and illustrate our theory to logic programs with costs, extending the original presentation of [17] with a class of negations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. Baral and V. S. Subrahmanian. Duality between alternative semantics of logic programs and nonmonotonic formalisms. Journal of Automated Reasoning, 10:399–420, 1993. 389

    Article  MATH  MathSciNet  Google Scholar 

  2. L. Bolc and P. Borowik. Many-Valued Logics. Theoretical Foundations. Springer-Verlag, 1992. 391

    Google Scholar 

  3. C. V. Damásio and L. M. Pereira. Hybrid probabilistic logic programs as residuated logic programs. In M. O. Aciego, I. P. de Guzmán, G. Brewka, and L. M. Pereira, editors, Proc. of JELIA’00, pages 57–72. LNAI 1919, Springer-Verlag, 2000. 379

    Google Scholar 

  4. C. V. Damásio and L. M. Pereira. Monotonic and residuated logic programs, 2001. Accepted in ECSQARU-2001. 379, 381

    Google Scholar 

  5. A. Dekhtyar and V. S. Subrahmanian. Hybrid probabilistic programs. In International Conference on Logic Programming 1997, pages 391–495. MIT Press, 1997. 379

    Google Scholar 

  6. M. Denecker, V. Marek, and M. Truszczyński. Approximations, stable operators, well-founded fixpoints and applications in nonmonotonic reasoning. In J. Minker, editor, Logic-Based Artifical Intelligence, pages 127–144. Kluwer Academic Publishers, 2000. 380, 391

    Google Scholar 

  7. D. Dubois, J. Lang, and H. Prade. Towards possibilistic logic programming. In International Conference on Logic Programming 1991, pages 581–598. MIT Press, 1991. 379

    Google Scholar 

  8. M. Fitting. Bilattices and the semantics of logic programs. Journal of Logic Programming, 11:91–116, 1991. 379, 391

    Article  MATH  MathSciNet  Google Scholar 

  9. M. Fitting. The family of stable models. Journal of Logic Programming, 17:197–225, 1993. 379, 391

    Article  MATH  MathSciNet  Google Scholar 

  10. J. H. Gallier. Logic for Computer Science. John Wiley & Sons, 1987. 381, 382

    Google Scholar 

  11. A. Van Gelder, K. A. Ross, and J. S. Schlipf. The well-founded semantics for general logic programs. Journal of the ACM, 38(3):620–650, 1991. 385

    Article  MATH  Google Scholar 

  12. M. Gelfond and V. Lifschitz. The stable model semantics for logic programming. In R. Kowalski and K. A. Bowen, editors, 5th International Conference on Logic Programming, pages 1070–1080. MIT Press, 1988. 385, 386

    Google Scholar 

  13. P. Hájek. Metamathematics of Fuzzy Logic. Trends in Logic. Studia Logica Library. Kluwer Academic Publishers, 1998. 391

    Google Scholar 

  14. M. Kifer and V. S. Subrahmanian. Theory of generalized annotated logic programming and its applications. J. of Logic Programming, 12:335–367, 1992. 379, 391

    Article  MathSciNet  Google Scholar 

  15. R. Kowalski. Predicate logic as a programming language. In Proceedings of IFIP’74, pages 569–574. North Holland Publishing Company, 1974. 380

    Google Scholar 

  16. J. W. Lloyd. Foundations of Logic Programming. Springer-Verlag, 1987. 380

    Google Scholar 

  17. V. W. Marek and M. Truszczyński. Logic programming with costs. Technical report, 2000. Available at ftp://al.cs.engr.uky.edu/cs/manuscripts/lp-costs.ps. 379, 380, 383, 385, 390, 391

  18. J. Medina, M. Ojeda-Aciego, and P. Vojtas. Multi-adjoint logic programming with continuous semantics. In Proc. of LPNMR’01, September 2001. This issue. 384

    Google Scholar 

  19. H. Przymusinska and T. C. Przymusinski. Semantic issues in deductive databases and logic programs. In R. Banerji, editor, Formal Techniques in Artificial Intelligence, a Sourcebook, pages 321–367. North Holland, 1990. 387

    Google Scholar 

  20. V. S. Subrahmanian. Algebraic properties of the space of multivalued and paraconsistent logic programs. In 9th Int. Conf. on Foundations of Software Technology and Theoretical Computer Science, pages 56–67. LNCS 405, Springer-Verlag, 1989. 379, 391

    Google Scholar 

  21. M. van Emden and R. Kowalski. The semantics of predicate logic as a programming language. Journal of ACM, 4(23):733–742, 1976. 380, 383

    Article  Google Scholar 

  22. M. H. van Emden. Quantitative deduction and its fixpoint theory. Journal of Logic Programming, 4:37–53, 1986. 380, 391

    Article  Google Scholar 

  23. P. Vojtás. Fuzzy logic programming. Fuzzy Sets and Systems, 2001. Accepted. 379

    Google Scholar 

  24. P. Vojtás and L. Paulík. Soundness and completeness of non-classical extended SLD-resolution. InProc. of theWs. on Extensions of Logic Programming (ELP’96), pages 289–301. LNCS 1050, Springer-Verlag., 1996. 379

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Damásio, C.V., Pereira, L.M. (2001). Antitonic Logic Programs. In: Eiter, T., Faber, W., Truszczyński, M.l. (eds) Logic Programming and Nonmotonic Reasoning. LPNMR 2001. Lecture Notes in Computer Science(), vol 2173. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45402-0_28

Download citation

  • DOI: https://doi.org/10.1007/3-540-45402-0_28

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42593-9

  • Online ISBN: 978-3-540-45402-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics