Skip to main content

Threshold Fail-Stop Signature Schemes Based on Discrete Logarithm and Factorization

  • Conference paper
  • First Online:
Information Security (ISW 2000)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1975))

Included in the following conference series:

Abstract

Security of ordinary digital signature schemes relies on a computational assumption. Fail-Stop Signature (FSS) schemes provide security for a sender against a forger with unlimited computational power by enabling the sender to provide a proof of forgery, if it occurs. In this paper, first we propose a new FSS scheme whose security is based on discrete logarithm modulo a composite number, and integer factorization. We provide a security proof of the scheme, and show that it is as efficient as the most efficient previously known FSS scheme. Next, we construct a Threshold FSS that requires collaboration of t out of n participants to generate a signature and to prove forgery if it occurs. The scheme is equipped with cheater detection (incorrect partial signature) which is essential for an effective proof of forgery in Threshold FSS and only requires trusted authority during pre-key generation.

This work is in part supported by Australian Research Council Grant Number A49703076

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N. Barić and B. Pfitzmann. Collision-Free Accumulators and Fail-Stop Signature Schemes without Trees. Advances in Cryptology-Eurocrypt’ 97, Lecture Notes in Computer Science 1233, pages 480–494, 1997.

    Google Scholar 

  2. D. Boneh and M. Franklin. Efficient generation of shared RSA keys. Advances in Cryptology-Crypto’ 97, Lecture Notes in Computer Science 1294, pages 425–439, 1997.

    Chapter  Google Scholar 

  3. C. Boyd. Digital multisignatures. Cryptography and Coding, ed. H. Beker and F. Piper, Clarendon Press, Oxford, pages 241–246, 1989.

    Google Scholar 

  4. D. Chaum, E. van Heijst, and B. Pfitzmann. Cryptographically strong undeniable signatures, unconditionally secure for the signer. Interner Bericht, Fakultät für Informatik, 1/91, 1990.

    Google Scholar 

  5. R. Croft and S. Harris. Public-key cryptography and reusable shared secrets. Cryptography and Coding, pages 189–201, 1989.

    Google Scholar 

  6. Y. Desmedt. Society and group oriented cryptography: A new concept. Advances in Cryptology-Crypto’ 87, Lecture Notes in Computer Science 293, pages 120–127, 1987.

    Google Scholar 

  7. W. Diffie and M. Hellman. New directions in cryptography. IEEE IT, 22:644–654, 1976.

    Article  MATH  MathSciNet  Google Scholar 

  8. N. Gilboa. Two party RSA key generation. Advances in Cryptology-Crypto’ 99, Lecture Notes in Computer Science, pages 116–129, 1999.

    Google Scholar 

  9. M. Girault. An Identity-based Identification Scheme based on Discrete Logarithms modulo a Composite Number. Advances in Cryptology-Eurocrypt’ 90, Lecture Notes in Computer Science 437, pages 63–71, 1991.

    Google Scholar 

  10. S. Goldwasser, S. Micali, and R. L. Rivest. A digital signature scheme secure against adaptive chosen-message attacks. SIAM Journal of Computing, 17:281–308, 1998.

    Article  MathSciNet  Google Scholar 

  11. L. Harn. Group-oriented (t, n) threshold digital signature scheme and digital multisignature. IEE Proc.-Comput. Digit. Tech., 141(5):307–313, September 1994.

    Article  MATH  Google Scholar 

  12. L. Lamport. Constructing digital signatures from a one-way function. PSRI International CSL-98, 1979.

    Google Scholar 

  13. A. Lenstra and E. Verheul. Selecting cryptographic key sizes. online: http://www.cryptosavvy.com/ . Extended abstract appeared in Commercial Applications, Price Waterhouse Coopers, CCE Quarterly Journals, 3:3–9, 1999.

    Google Scholar 

  14. T. P. Pedersen and B. Pfitzmann. Fail-stop signatures. SIAM Journal on Computing, 26/2:291–330, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  15. B. Pfitzmann. Fail-stop signatures: Principles and applications. Proc. Compsec’ 91, 8th world conference on computer security, audit and control, pages 125–134, 1991.

    Google Scholar 

  16. B. Pfitzmann. Fail-stop signatures without trees. Hildesheimer Informatik-Berichte, Institut für Informatik, 16/94, 1994.

    Google Scholar 

  17. B. Pfitzmann. Digital Signature Schemes-General Framework and Fail-Stop Signatures. Lecture Notes in Computer Science 1100, Springer-Verlag, 1996.

    MATH  Google Scholar 

  18. B. Pfitzmann and M. Waidner. Formal aspects of fail-stop signatures. Interner Bericht, Fakultät für Informatik, 22/90, 1990.

    Google Scholar 

  19. W. Susilo, R. Safavi-Naini, and J. Pieprzyk. Fail-stop threshold signature schemes based on elliptic curve. Information Security and Privacy, ACISP’ 99, Lecture Notes in Computer Science 1587, pages 103–116, 1999.

    Chapter  Google Scholar 

  20. E. van Heijst and T. Pedersen. How to make efficient fail-stop signatures. Advances in Cryptology-Eurocrypt’ 92, pages 337–346, 1992.

    Google Scholar 

  21. E. van Heijst, T. Pedersen, and B. Pfitzmann. New constructions of fail-stop signatures and lower bounds. Advances in Cryptology-Crypto’ 92, Lecture Notes in Computer Science 740, pages 15–30, 1993.

    Google Scholar 

  22. M. Waidner and B. Pfitzmann. The dining cryptographers in the disco: Unconditional sender and recipient untraceability with computationally secure serviceability. Advances in Cryptology-Eurocrypt’ 89, Lecture Notes in Computer Science 434, 1990.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Safavi-Naini, R., Susilo, W. (2000). Threshold Fail-Stop Signature Schemes Based on Discrete Logarithm and Factorization. In: Goos, G., Hartmanis, J., van Leeuwen, J., Pieprzyk, J., Seberry, J., Okamoto, E. (eds) Information Security. ISW 2000. Lecture Notes in Computer Science, vol 1975. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44456-4_22

Download citation

  • DOI: https://doi.org/10.1007/3-540-44456-4_22

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-41416-2

  • Online ISBN: 978-3-540-44456-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics