Skip to main content

Global Magnetohydrodynamics — A Tutorial

  • Chapter
  • First Online:
Space Plasma Simulation

Part of the book series: Lecture Notes in Physics ((LNP,volume 615))

Abstract

Global modeling and simulation of the complex Earth’s space environment requires thorough understanding of the physical processes, the application of robust and sophisticated numerical techniques, an efficient implementation of the numerical algorithms, including parallelization, and comprehensive evaluation against data. This tutorial and review article introduces and discusses the very foundation of global modeling: the choice of numerical grids, the governing equations, numerical algorithms, error estimates, boundary conditions, magnetosphere-ionosphere coupling, and coupling with a thermosphere-ionosphere model. Two examples, simulations of a magnetospheric substorm and of a magnetic storm, show the utility as well as the limitations of the model and exemplify the current state-of-the-art and the lessons learned during the past decade. This article should help non-specialists to understand what goes into such models, what their main use is, and where global models have limitations. Those who are more familiar with global and large-scale models will find a review of latest results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. V. Angelopoulos, W. Baumjohann, C. F. Kennel, F. V. Coroniti, M. G. Kivelson, R. Pellat, R. J. Walker, H. Lühr, and G. Paschmann. Bursty bulk flows in the inner plasma sheet. J. Geophys. Res., 97:4027, 1992.

    Article  ADS  Google Scholar 

  2. V. Angelopoulos, C. W. Carlson, D. W. Curtis, P. Harvey, R. P. Lin, F. S. Mozer, D. H. Pankow, J. Raeder, and C. T. Russell. On the necessity and feasability of a equatorial magnetospheric constellation. In V. Angelopoulos and P. V. Panetta, editors, Science Closure and Enabling Technologies for Constellation Class Missions, page 14. University of California, Berkeley, and NASA Goddard Space Flight Center, 1998.

    Google Scholar 

  3. V. Angelopoulos, C. F. Kennel, F. V. Coroniti, R. Pellat, M. G. Kivelson, R. J. Walker, C. T. Russell, W. Baumjohann, W. C. Feldman, and J. T. Gosling. Statistical chracteristics of bursty bulk flow events. J. Geophys. Res., 99:21257, 1994.

    Article  ADS  Google Scholar 

  4. V. Angelopoulos, Baumjohann W, C. F. Kennel, F. V. Coroniti, M. G. Kivelson, R. Pellat, R. J. Walker, H. Luhr, and G. Paschmann. Bursty bulk flows in the inner central plasma sheet. J. Geophys. Res., 97:4027, 1992.

    Article  ADS  Google Scholar 

  5. D. N. Baker, A. J. Klimas, D. Vassiliadis, T. I. Pulkkinen, and R. L. McPherron. Reexamination of driven and unloading aspects of magnetospheric substorms. J. Geophys. Res., 102:7169, 1997.

    Article  ADS  Google Scholar 

  6. D. N. Baker, T. I. Pulkkinen, V. Angelopoulos, W. Baumjohann, and R. L. McPherron. Neutral line model of substorms: Past results and present view. J. Geophys. Res., 101:12975, 1996.

    Article  ADS  Google Scholar 

  7. D. S. Balsara and D. Spicer. Maintaining pressure positivity in magnetohydrodynamic simulations. J. Comp. Phys., 148:133, 1999.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  8. A. R. Barakat and R. W. Schunk. Transport equations for multicomponent anisotropic space plasmas: A review. Plasma Phys., 24:389, 1982.

    Article  ADS  MathSciNet  Google Scholar 

  9. M. J. Berger and P. Colella. Local adaptive mesh refinement for shock hydrodynamics. J. Comp. Phys., 82:64, 1989.

    Article  MATH  ADS  Google Scholar 

  10. M. J. Berger and J. Olinger. Adaptive mesh refinement for hyperbolic partial differential equations. J. Comp. Phys., 53:484, 1984.

    Article  MATH  ADS  Google Scholar 

  11. J. Birn, J. F. Drake, M. A. Shay, B. N. Rogers, R. E. Denton, M. Hesse, M. Kuznetsova, Z. W. Ma, A. Bhattacharjee, A. Otto, and P. L. Pritchett. Geospace Environmental Modeling (GEM) magnetic reconnection challenge. J. Geophys. Res., 106:3715, 2001.

    Article  ADS  Google Scholar 

  12. J. Birn and M. Hesse. Geospace Environmnent Modeling (GEM) magnetic reconnection challenge: resistive tearing, anisotropic pressure and hall effects. J. Geophys. Res., 106:3737, 2001.

    Article  ADS  Google Scholar 

  13. J. P. Boris. A physically motivated soluton of the Alfvèn problem, nrl memorandum report 2167, Naval Research Laboratory, Washington, D.C., 1970.

    Google Scholar 

  14. J. P. Boris and D. L. Book. Flux corrected transport: I. SHASTA, a fluid transport algorithm that works. J. Comp. Phys., 11:38, 1973.

    Article  ADS  Google Scholar 

  15. C. B. Boyle, P. H. Reiff, and M. R. Hairston. Empirical polar cap potentials. J. Geophys. Res., 102:111, 1997.

    Article  ADS  Google Scholar 

  16. J. U. Brackbill and D. C. Barnes. The effect of nonzero div B on the numerical solution of the magnetohydrodynamic equations. J. Comp. Phys., 35:426, 1980.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  17. S. H. Brecht. Global simulations using MHD codes: A few points to consider before you try one. Space Sci. Rev., 42:169, 1985.

    Article  ADS  Google Scholar 

  18. S. H. Brecht, J. G. Lyon, J. A. Fedder, and K. Hain. A time dependent three dimensional simulation of the Earth’s magnetosphere: Reconnection events. J. Geophys. Res., 87:6098, 1982.

    Article  ADS  Google Scholar 

  19. M. Brio and C. C. Wu. An upwind differencing scheme for the equations of ideal magnetohydrodynamics. J. Comp. Phys., 75:400, 1988.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  20. W. Dai and P. R. Woodward. A high-order Godunov-type scheme for shock interactions in ideal magnetohydrodynamics. SIAM J. Sci. Comp., 18:957, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  21. C. R. DeVore. Flux-corrected transport techniques for multidimensional compressible magnetohydrodynamics. Journal of Computational Physics, 92:142, 1991.

    Article  ADS  Google Scholar 

  22. C. R. Evans and J. F. Hawley. Simulation of magnetohydrodynamic flows: A constrained transport method. Astrophys. J., 332:659, 1988.

    Article  ADS  Google Scholar 

  23. J. A. Fedder and J. G. Lyon. The solar wind— magnetosphere— ionosphere current— voltage relationship. Geophys Res. Lett., 14:880, 1987.

    Article  ADS  Google Scholar 

  24. J. A. Fedder, S. P. Slinker, and J. G. Lyon. A comparison of global numerical simulation results to data for the January 27-28, 1992, geospace environment modeling challenge event. J. Geophys. Res., 103:14799, 1998.

    Article  ADS  Google Scholar 

  25. J. A. Fedder, S. P. Slinker, J. G. Lyon, and R. D. Elphinstone. Global numerical simulation of the growth phase and the expansion onset for a substorm observed by Viking. J. Geophys. Res., 100:19083, 1995.

    Article  ADS  Google Scholar 

  26. L. A. Frank, M. Ashour-Abdalla, J. Berchem, J. Raeder, W. R. Paterson, S. Kokubun, T. Yamamoto, R. P. Lepping, F. V. Coroniti, D. H. Fairfield, and K. L. Ackerson. Observations of plasmas and magnetic fields in Earth’s distant magnetotail: Comparison with a global MHD model. J. Geophys. Res., 100:19177, 1995.

    Article  ADS  Google Scholar 

  27. L. A. Frank, W. R. Paterson, J. B. Sigwarth, and T. Mukai. Observations of plasma sheet dynamics earthward of the onset region with the Geotail spacecraft. J. Geophys. Res., 106:18823, 2001.

    Article  ADS  Google Scholar 

  28. T. J. Fuller-Rowell, D. Rees, S. Quegan, R. J. Moffett, M. V. Codrescu, and G. H. Millward. A coupled thermosphere-ionosphere model (CTIM). In R. W. Schunk, editor, STEPR eport, page 217, NOAA/NGDC, Boulder, Colorado, 1996. Scientific Committee on Solar Terrestrial Physics (SCOSTEP).

    Google Scholar 

  29. T. I. Gombosi. This book, 2003.

    Google Scholar 

  30. T. I. Gombosi, K. G. Powell, and B. van Leer. Comment on “Modeling the magnetosphere for northward interplanetary magnetic field: Effects of numerical resistivity” by Joachim Raeder. J. Geophys. Res., 105:13141, 2000.

    Article  ADS  Google Scholar 

  31. A. Harten. On a class of high resolution total variation stable finite difference schemes. SIAM J. Num. Anal., 21:1, 1984.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  32. A. Harten, A. Hyman, and P. D. Lax. On finite difference approximations and entropy conditions for shocks. Comm. Pure and Appl. Math., 29:297, 1976.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  33. A. Harten and G. Zwas. Self-adjusting hybrid schemes for shock computations. J. Comput. Phys., 9:568, 1972.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  34. M. Heinemann. Role of collisionless heat flux in magnetospheric convection. J. Geophys. Res., 104:28397, 1999.

    Article  ADS  Google Scholar 

  35. M. Heinemann and R. A. Wolf. Relationships of models of the inner magnetosphere to the Rice Convection Model. J. Geophys. Res., 106:15545, 2001.

    Article  ADS  Google Scholar 

  36. M. Hesse, J. Birn, and M. Kuznetsova. Collisionless magnetic reconnection: electron process and transport modeling. J. Geophys. Res., 106:3721, 2001.

    Article  ADS  Google Scholar 

  37. C. Hirsch. Numerical Computation of Internal and External Flow, volume II. John Wiley, New York, 1990.

    Google Scholar 

  38. P. Janhunen, T. I. Pulkkinen, and K. Kauristie. Auroral fading in ionospheremagnetosphere coupling model: Implications for possible mechanisms. Geophys Res. Lett., 22:2049, 1995.

    Article  ADS  Google Scholar 

  39. G.-S. Jiang and C. C. Wu. A high-order WENO finite difference scheme for the equations of idel magnetohydrodynamics. J. Comp. Phys., 150:561, 1999.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  40. S. Knight. Parallel electric fields. Planet. Space Sci., 21:741, 1972.

    Article  ADS  Google Scholar 

  41. P. D. Lax and B. Wendroff. Systems of conservation laws. Comm. Pure Appl. Math., 13:217, 1960.

    Article  MATH  MathSciNet  Google Scholar 

  42. J. N. Leboeuf, T. Tajima, C. F. Kennel, and J. M. Dawson. Global simulation of the time dependent magnetosphere. Geophys Res. Lett., 5:609, 1978.

    Article  ADS  Google Scholar 

  43. X. Liu, S. Osher, and T. Chan. Weighted essentially non-oscillatory schemes. J. Comp. Phys., 115:200, 1994.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  44. G. Lu, P. H. Reiff, M. R. Hairston, R. A. Heelis, and J. L. Karty. Distribution of convection potential around the polar cap boundary as a function of the interplanetary magnetic field. J. Geophys. Res., 94:13447, 1989.

    Article  ADS  Google Scholar 

  45. A. T. Y. Lui. Extended consideration of a synthesis model for magnetic substorms. In J. R. Kan, T. A. Potemra, S. Kokubun, and T. Ijima, editors, Magnetospheric Substorms, volume 64, page 43. AGU Monogr. Ser., American Geophysical Union, 1991.

    Google Scholar 

  46. A. T. Y. Lui, R. E. Lopez, B. J. Anderson, K. Takahashi, L. J. Zanetti, R. W. McEntire, T. A. Potemra, D. M. Klumpar, greene, and strangeway. Current disruptions in the near-Earth neutral sheet region. J. Geophys. Res., 97:1461, 1992.

    Article  ADS  Google Scholar 

  47. A. T. Y. Lui, R. E. Lopez, S. M. Krimigis, R. W. McEntire, L. J. Zanetti, and T. A. Potemra. A case study of magnetotail current sheet disruption and diversion. Geophys Res. Lett., 15:721, 1988.

    Article  ADS  Google Scholar 

  48. J. G. Lyon, S. H. Brecht, J. A. Fedder, and P. J. Palmadesso. Computer simulation of a geomagnetic substorm. Phys. Rev. Lett., 46:1038, 1981.

    Article  ADS  Google Scholar 

  49. J. G. Lyon, R. E. Lopez, C. C. Goodrich, M. Wiltberger, and K. Papadopoulos. Simulation of the March 9, 1995, substorm: Auroral brightening and the onset of lobe reconnection. Geophys Res. Lett., 25:3039, 1998.

    Article  ADS  Google Scholar 

  50. L. R. Lyons. The Geospace Environment Modeling Grand Challenge. J. Geophys. Res., 103:14781, 1998.

    Article  ADS  Google Scholar 

  51. L. R. Lyons, R. L. McPherron, E. Zesta, G. D. Reeves, J. B. Sigwarth, and L.A. Frank. Timing of substorm signatures during the November 24, 1996 geospace environment modeling event. J. Geophys. Res., submitted, 2000.

    Google Scholar 

  52. Z. W. Ma and A. Bhattacharjee. Hall magnetohydrodynamic reconnection: the geospace environment modeling challenge. J. Geophys. Res., 106:3773, 2001.

    Article  ADS  Google Scholar 

  53. R. L. McPherron. Physical processes producing magnetospheric substorms and magnetic storms. In J. Jacobs, editor, Geomagnetism, volume 4, page 593. Academic Press, 1991.

    Google Scholar 

  54. J. Moen and A. Brekke. The solar flux influence on quiet time conductances in the auroral ionosphere. Geophys Res. Lett., 20:971, 1993.

    Article  ADS  Google Scholar 

  55. T. Ogino. A three dimensional MHD simulation of the interaction of the solar wind with the Earth’s magnetosphere: The generation of field aligned currents. J. Geophys. Res., 91:6791, 1986.

    Article  ADS  Google Scholar 

  56. T. Ogino, R. J. Walker, and M. Ashour-Abdalla. A global magnetohydrodynamic simulation of the response of of the magnetosphere to a northward turning of the interplanetary magnetic field. J. Geophys. Res., 99:11027, 1994.

    Article  ADS  Google Scholar 

  57. A. Otto. Geospace environment modeling (GEM) magnetic reconnection challenge: MHD and Hall MHD— constant and current dependent resistivity models. J. Geophys. Res., 106:3751, 2001.

    Article  ADS  Google Scholar 

  58. E. N. Parker. The alternative paradigm for magnetospheric physics. J. Geophys. Res., 101:10587, 1996.

    Article  ADS  Google Scholar 

  59. K. G. Powell, P. L. Roe, T. J. Linde, T. I. Gombosi, and D. L. DeZeeuw. A solution-adaptive upwind scheme for ideal magnetohydrodynamics. J. Comp. Phys., 154:284, 1999.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  60. J. Raeder. Global MHD simulations of the dynamics of the magnetosphere: Weak and strong solar wind forcing. In J. R. Kan, J. D. Craven, and S.-I. Akasofu editors, Proceedings of the Second International Conference on Substorms, page 561. Geophysical Institute, Univ. of Alaska Fairbanks, 1995.

    Google Scholar 

  61. J. Raeder. Modeling the magnetosphere for northward interplanetary magnetic field: Effects of electrical resistivity. J. Geophys. Res., 104:17357, 1999.

    Article  ADS  Google Scholar 

  62. J Raeder. Reply. J. Geophys. Res., 105:13149, 2000.

    Article  ADS  Google Scholar 

  63. J. Raeder and V. Angelopoulos. Using global simulations of the magnetosphere for multi-satellite mission planning and analysis,. In V. Angelopoulos and P. V. Panetta, editors, Science Closure and Enabling Technologies for Constellation Class Missions, page 78. University of California, Berkeley, and NASA Goddard Space Flight Center, 1998.

    Google Scholar 

  64. J. Raeder, J. Berchem, and M. Ashour-Abdalla. The importance of small scale processes in global MHD simulations: Some numerical experiments. In T. Chang and J. R. Jasperse, editors, The Physics of Space Plasmas, volume 14, page 403, Cambridge, Mass., 1996. MIT Cent. for Theoret. Geo/Cosmo Plasma Phys.

    Google Scholar 

  65. J. Raeder, J. Berchem, M. Ashour-Abdalla, L. A. Frank, W. R. Paterson, K. L. Ackerson, R. P. Lepping, S. Kokubun, T. Yamamoto, and S. A. Slavin. Boundary layer formation in the magnetotail: Geotail observations and comparisons with a global MHD model. Geophys Res. Lett., 24:951, 1997.

    Article  ADS  Google Scholar 

  66. J. Raeder and N. Maynard. Foreword. J. Geophys. Res., 106:345, 2001.

    Article  ADS  Google Scholar 

  67. J. Raeder, R. L. McPherron, L. A. Frank, W. R. Paterson, J. B. Sigwarth, G. Lu, H. J. Singer, S. Kokubun, T. Mukai, and J. A. Slavin. Global simulation of the geospace environment modeling substorm challenge event. J. Geophys. Res., 106:381, 2001.

    Article  ADS  Google Scholar 

  68. J. Raeder, R. J. Walker, and M. Ashour-Abdalla. The structure of the distant geomagnetic tail during long periods of northward IMF. Geophys Res. Lett., 22:349, 1995.

    Article  ADS  Google Scholar 

  69. J. Raeder, Y. Wang, and T. Fuller-Rowell. Geomagnetic storm simulation with a coupled magnetosphere— ionosphere— thermosphere model. In P. Song, G. Siscoe, and H. J. Singer, editors, Space Weather, AGU Geophys. Monogr. Ser., volume 125, page 377. American Geophysical Union, 2001.

    Google Scholar 

  70. J. Raeder, Y. L. Wang, T. J. Fuller-Rowell, and H. J. Singer. Global simulation of space weather effects of the Bastille Day storm. Sol. Phys., 204:325, 2001.

    Article  ADS  Google Scholar 

  71. P. H. Reiff, R. W. Spiro, and T. W. Hill. Dependence of polar cap potential drop of interplanetary parameters. J. Geophys. Res., 86:7639, 1981.

    Article  ADS  Google Scholar 

  72. A. D. Richmond and R. G. Roble. Electrodynamic effects of thermospheric winds for the NCAR thermospheric general circulation model. J. Geophys. Res., 92:12365, 1987.

    Article  ADS  Google Scholar 

  73. R. M. Robinson, R. R. Vondrak, K. Miller, T. Dabbs, and D. Hardy. On calculating ionospheric conductances from the flux and energy of precipitating electrons. J. Geophys. Res., 92:2565, 1987.

    Article  ADS  Google Scholar 

  74. M. A. Shay, J. F. Drake, B. N. Rogers, and R. E. Denton. Alfvenic collisionless magnetic reconnection and the Hall term. J. Geophys. Res., 106:3759, 2001.

    Article  ADS  Google Scholar 

  75. G. A. Sod. Numerical Methods in Fluid Dynamics. Cambridge University Press, Cambridge, 1985.

    Book  MATH  Google Scholar 

  76. B. U. O. Sonnerup and L. J. Cahill. Magnetopause structure and attitude from Explorer 12 observations. J. Geophys. Res., 72:171, 1967.

    Article  ADS  Google Scholar 

  77. B. U. O. Sonnerup and L. J. Cahill. Explorer 12 observations of the magnetopause current layer. J. Geophys. Res., 73:1757, 1968.

    Article  ADS  Google Scholar 

  78. R. J. Strangeway, R. C. Elphic, W. J. Peria, and C. W. Carlson. FAST observations of electromagnetic stresses applied to the polar ionosphere. volume 118, page 21. AGU Monogr. Ser., American Geophysical Union, 1999.

    Google Scholar 

  79. R. J. Strangeway and J. Raeder. On the transition from collisionless to collisional magnetohydrodynamics. J. Geophys. Res., 106:1955, 2001.

    Article  ADS  Google Scholar 

  80. P. K. Sweby. High resolution schemes using flux limiters for hyperbolic conservation laws. SIAM J. Num. Anal., 21:995, 1984.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  81. T. Tanaka. Generation mechanisms for magnetosphere-ionosphere current systems deduced from a three-dimensional MHD simulation of the solar windmagnetosphere-ionosphere coupling processes. J. Geophys. Res., 100:12057, 1995.

    Article  ADS  Google Scholar 

  82. G. Toth. The Δ. B constraint in shock-capturing magnetohydrodynamics codes. J. Comp. Phys., 161:605, 2000.

    Article  MATH  ADS  Google Scholar 

  83. A. Usadi, A. Kageyama, K. Watanabe, and T. Sato. A global simulation of the magnetosphere with a long tail: Southward and northward interplantary magnetic field. J. Geophys. Res., 98:7503, 1993.

    Article  ADS  Google Scholar 

  84. B. Van Leer. Towards the ultimate conservative difference scheme. I. The quest for monotonicity. In Lecture Notes in Physics, volume 18, page 163. Springer Verlag, Berlin, 1973.

    Google Scholar 

  85. B. Van Leer. Towards the ultimate conservative difference scheme. II. Monotonicity and conservation combined in a second order scheme. J. Comp. Phys., 14:361, 1974.

    Article  ADS  Google Scholar 

  86. B. Van Leer. Towards the ultimate conservative difference scheme. III. Upstream centered finite difference schemes for ideal compressible flow. J. Comp. Phys., 23:263, 1977.

    Article  ADS  Google Scholar 

  87. V. M. Vasyliunas. Mathematical models of magnetospheric convection and its coupling to the ionosphere. In Particles and Fields in the Magnetosphere, page 61. Dordrecht, Netherlands: D. Reidel, 1970.

    Google Scholar 

  88. K. Watanabe and T. Sato. Global simulation of the solar wind-magnetosphere interaction: The importance of its numerical validity. J. Geophys. Res., 95:75, 1990.

    Article  ADS  Google Scholar 

  89. R. A. Wolf. The quasi-static (slow flow) region of the magnetosphere. In R. L. Carovillano and J. M. Forbes, editors, Solar Terrestrial Physics, page 303. D. Reidel, Hingham, MA, 1983.

    Google Scholar 

  90. H. C. Yee. On symmetric and upwind TVD schemes. In Proc. 6th GAMM Conference on Numerical Methods in Fluid Dynamics, page 399, Braunschweig, 1985. Vieweg.

    Google Scholar 

  91. H. C. Yee. Construction of explicit and implicit symmetric TVD schemes and their applications. J. Comput. Phys., 68:151, 1987.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  92. A. L. Zachary, A Malagoli, and P. Colella. A higher-order Godunov method for multi-dimensional ideal magnetohydrodynamics. SIAM J. Sci. Comp., 15:263, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  93. S. T. Zalesak. Fully multidimensional flux-corrected transport. J. Comp. Phys., 31:355, 1979.

    Article  ADS  MathSciNet  Google Scholar 

  94. S. T. Zalesak. Very high order pseudospectral flux-corrected transport (FCT) algorithms for conservation laws. In R. Vichnevetsky and R. S. Stepleman, editors, Proceedings of the Fourth IMACS International Symposium on Computer Methods for Partial Differential Equations, page 126, New Brunswick, 1981. IMACS, Rutgers University.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Raeder, J. (2003). Global Magnetohydrodynamics — A Tutorial. In: Büchner, J., Scholer, M., Dum, C.T. (eds) Space Plasma Simulation. Lecture Notes in Physics, vol 615. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-36530-3_11

Download citation

  • DOI: https://doi.org/10.1007/3-540-36530-3_11

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-00698-5

  • Online ISBN: 978-3-540-36530-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics