Skip to main content

Implementation of a Random Walk Method for Solving 3-SAT on Circular DNA Molecules

  • Conference paper
  • First Online:
DNA Computing (DNA 2002)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2568))

Included in the following conference series:

Abstract

In a DNA computation a select operation is used to separate DNA molecules with different sequences. The implementation of the select operation requires specialized hardware and non-standard modification of DNA molecules by adding e.g., magnetic beads to a primer sequence or using other methods to separate DNA in solution. In this paper we consider DNA computations which use enzymatic reactions and secondary structure formation to perform computations.We show that it is possible to implement an efficient (exponential-time) probabilistic algorithm to solve instances of the satisfiability problem on circular single stranded DNA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L.M. Adleman. Molecular computation of solutions to combinatorial problems. Science, 266:1021–1024, 1994.

    Article  Google Scholar 

  2. F.M. Ausubel, R. Brent, R.E. Kingston, D.D. Moore, J.G. Seidman, J.A. Smith, and K. Struhl, editors. Current Protocols in Molecular Biology. Wiley and Sons, 2001.

    Google Scholar 

  3. E. Bach, A. Condon, E. Glaser, and C. Tanguay. DNA models and algorithms for NP-complete problems. In Proc. of 11th Conference on Computational Complexity, pages 290–299. IEEE Computer Society Press, 1996.

    Google Scholar 

  4. R.S. Braich, N. Chelyapof, C. Johnson, P.W.K. Rothemund, and L.M. Adleman. Solution of a 20-variable 3-SAT problem on a DNA computer. Science, 96:478–479, 2002.

    Google Scholar 

  5. K. Chen and V. Ramachandran. A space-efficient randomized DNA algorithm for k-sat. In A. Condon, editor, Sixth International Workshop on DNA-based Computers, volume 2054 of LNCS. Springer-Verlag, 2001.

    Google Scholar 

  6. E. Dantsin, A. Goerdt, Hirsch E.A., R. Kannan, J. Kleinberg, C. Papadimitriu, P. Raghavan, and U. Schöning. Deterministic local search decides k-SAT in time (2-2/(k +1))n. TCS, in press, 2002.

    Google Scholar 

  7. S. Diaz, J. L. Esteban, and M. A Ogihara. A DNA-based random walk method for solving k-sat. In A. Condon, editor, Sixth International Workshop on DNA-based Computers, volume 2504 of LNCS. Springer-Verlag, 2001.

    Google Scholar 

  8. A. G. Frutos, Q. Liu, A. J. Thiel, A. M. Sanner, A. E. Condon., L. M. Smith, and R. M. Corn. Demonstration of a word design strategy for DNA computing on surfaces. Nucleic Acids Res, 25(23):4748–4757, 1997.

    Article  Google Scholar 

  9. T. Hofmeister, U. Schöning, R. Schuler, and O. Watanabe. A probabilistic 3-SAT algorithm further improved. In Proceedings 19th Symposium on Theoretical Aspects of Computer Science, volume 2285 of LNCS, pages 192–203. Springer-Verlag, 2002.

    Google Scholar 

  10. Q. Liu, L. Wang, A. G. Frutos, A. E. Condon, R. M. Corn, and L. M. Smith. DNA computing on surfaces. Nature, 403:175–179, 2000.

    Article  Google Scholar 

  11. J. S. McCaskill. Optically programming DNA computing in microflow reactors. Biosystems, 59:125–138, 2001.

    Article  Google Scholar 

  12. K. Sakamoto, H. Gouzu, K. Komiya, D. Kiga, S. Yokoyama, T. Yokomori, and M. Hagiya. Molecular computation by DNA hairpin formation. Science, 288:1223–1226, 2000.

    Article  Google Scholar 

  13. U. Schöning. A probabilistic algorithm for k-SAT and constraint satisfaction problems. In Porc. 40th FOCS, pages 410–414. ACM, 1999.

    Google Scholar 

  14. L. Wang, J. G. Hall, M. Lu, Q Liu, and L. M. Smith. A DNA computing readout operation based on structure-specific cleavage. Nature Biotech., 19:1053–1059, 2001.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hug, H., Schuler, R. (2003). Implementation of a Random Walk Method for Solving 3-SAT on Circular DNA Molecules. In: Hagiya, M., Ohuchi, A. (eds) DNA Computing. DNA 2002. Lecture Notes in Computer Science, vol 2568. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-36440-4_12

Download citation

  • DOI: https://doi.org/10.1007/3-540-36440-4_12

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-00531-5

  • Online ISBN: 978-3-540-36440-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics