Skip to main content

Scattering Amplitudes

  • Chapter

Part of the book series: Lecture Notes in Physics ((LNP,volume 706))

Abstract

Electrons are constantly colliding with atoms and molecules: in chemical reactions, in our atmosphere, in stars, plasmas, in a molecular wire carrying a current, or when the tip of a scanning tunneling microscope injects electrons to probe a surface. When the collision occurs at low energies, the calculations become especially difficult due to correlation effects between the projectile electron and those of the target. These bound-free correlations are very important. For example, it is due to bound-free correlations that ultra-slow electrons can break up RNA molecules [Hanel 2003] causing serious genotoxic damage. The accurate description of correlation effects when the targets are so complex is a major challenge. Existing approaches based on wavefunction methods, developed from the birth of quantum mechanics and perfected since then to reach great sophistication [Morrison 1983, Burke 1994, Winstead 1996], cannot overcome the exponential barrier resulting from the many-body Schrödinger equation when the number of electrons in the target is large. Wavefunction-based methods can still provide invaluable insights in such complex cases, provided powerful computers and smart tricks are employed (see, e.g., [Grandi 2004] for low-energy electron scattering from uracil), but a truly ab-initio approach circumventing the exponential barrier would be most welcome. The purpose of this chapter is to describe several results relevant to this goal.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Wasserman, A., Burke, K. (2006). Scattering Amplitudes. In: Marques, M.A., Ullrich, C.A., Nogueira, F., Rubio, A., Burke, K., Gross, E.K. (eds) Time-Dependent Density Functional Theory. Lecture Notes in Physics, vol 706. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-35426-3_33

Download citation

Publish with us

Policies and ethics