Skip to main content

Part of the book series: Lecture Notes in Physics ((LNP,volume 704))

Abstract

Simulations are very versatile tools to study the relaxation and dynamics of polymer melts and networks. The fact that polymer chains cannot pass through each other poses special difficulties for analytic theories, while on the other hand many experiments are dominated by this fact. The contribution discusses some basic concepts and conditions and ways to study such problems by computer simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Doi and S. F. Edwards (1986) The Theory of Polymer Dynamics. Clarendon, Oxford

    Google Scholar 

  2. T. C. B. McLeish (2002) Tube Theory of Entangled Polymer Dynamics. Adv. Phys. 5, pp. 1379–1527

    Article  ADS  Google Scholar 

  3. K. Kremer and G. S. Grest (1995) In K. Binder, ed., Monte Carlo and Molecular Dynamics Simulations in Polymer Science, p. 194, Oxford University Press, New York

    Google Scholar 

  4. B. Dünweg (2006) Mesoscopic Simulations for Problems with Hydrodynamics, with Emphasis on Polymer Dynamics. Lect. Notes Phys. 704, pp. 313–342, Springer-Verlag

    Google Scholar 

  5. C. F. Abrams and K. Kremer (2002) Effects of excluded volume and bond length on the dynamics of dense bead-spring polymer melts. J. Chem. Phys. 116, p. 3162

    Article  ADS  Google Scholar 

  6. K. Kremer (2000) Soft and Fragile Matter, Nonequilibrium Dynamics, Metastability and Flow. NATO ASI Workshop, St. Andrews, M. E. Cates, M. R. Evans eds., Institute of Physics, London

    Google Scholar 

  7. P. G. de Gennes (1979) Scaling Concepts in Polymer Physics. Cornell University Press, Ithaca NY

    Google Scholar 

  8. M. Rubinstein and R. H. Colby (2003) Polymer Physics. Oxford University Press, Oxford

    Google Scholar 

  9. A. R. Khokhlov and A. Yu Grosberg (1994) Statistical Physics of Macromolecules. AIP Press, New York

    Google Scholar 

  10. K. Binder (1995) In K. Binder, ed., Monte Carlo and Molecular Dynamics Simulations in Polymer Science, p. 356. Oxford University Press, New York

    Google Scholar 

  11. P. E. Rouse (1953) A Theory of the Linear Viscoelastic Properties of Dilute Solutions of Coiling Polymers. J. Chem. Phys. 21, p. 1272

    Article  ADS  Google Scholar 

  12. F. Bueche (1954) The Viscoelastic Properties of Plastics. J. Chem. Phys. 22, p. 603

    Article  ADS  Google Scholar 

  13. W. Paul, G. D. Smith, D. Y. Yoon, B. Farago, S. Rathgeber, A. Zirkel, L. Willner, and D. Richter (1998) Chain motion in an unentangled polyethylene melt: A critical test of the rouse model by md simulations and neutron spin echo spectroscopy. Phys. Rev. Lett. 80, p. 2346

    Article  ADS  Google Scholar 

  14. H. Tao, T. P. Lodge, and E. D. von Meerwall (2000) Diffusivity and Viscosity of Concentrated Hydrogenated Polybutadiene Solutions. Macromolecules 33, p. 1747

    Article  ADS  Google Scholar 

  15. J. D. Ferry (1994) Viscoelastic Properties of Polymers. Wiley, New York

    Google Scholar 

  16. S. F. Edwards (1967) The statistical mechanics of polymerized material. Proc. Phys. Soc. 92, pp. 9-16

    Article  ADS  Google Scholar 

  17. P. G. de Gennes (1971) Reptation of a Polymer Chain in the Presence of Fixed Obstacles. J. Chem. Phys. 55, p. 572

    Article  ADS  Google Scholar 

  18. L. J. Fetters, D. J. Lohse, S. T. Milner, and W. W. Graessley (1999) Packing Length Influence in Linear Polymer Melts on the Entanglement, Critical, and Reptation Molecular Weights. Macromolecules 32, p. 6847

    Article  ADS  Google Scholar 

  19. L. J. Fetters, D. J. Lohse, and W. W. Graessley (1999) Chain dimensions and entanglement spacings in dense macromolecular systems. J. Poly. Sci. B: Pol. Phys. 37, p. 1023

    Article  ADS  Google Scholar 

  20. R. Everaers, S. K. Sukumaran, G. S. Grest, C. Svaneborg, A. Sivasubramanian, and K. Kremer (2004) Rheology and Microscopic Topology of Entangled Polymeric Liquids. Science 303, p. 823

    Article  ADS  Google Scholar 

  21. T. P. Lodge (1999) Reconciliation of molecular weight dependence of diffusion and viscosity in entangled polymer. Phys. Rev. Lett. 83, p. 3218

    Article  ADS  Google Scholar 

  22. S. T. Milner and T. C. B. McLeish (1998) Star polymers and failure of timetemperature superposition. Macromolecules 31, p. 8623

    Article  ADS  Google Scholar 

  23. M. Appel and G. Fleischer (1993) Investigation of the chain length dependence of self-diffusion of poly(dimethylsiloxane) and poly(ethylene oxide) in the melt with pulsed field gradient NMR. Macromolecules 26, p. 5520

    Article  ADS  Google Scholar 

  24. P. T. Callaghan and A. Coy (1992) Evidence for reptational motion and the entanglement tube in semidilute polymer solutions Paul T. Callaghan and Andrew Coy. Phys. Rev. Lett. 68, p. 3176

    Article  ADS  Google Scholar 

  25. B. Ewen and D. Richter (1997) Neutron Spin Echo Investigations on the Segmental Dynamics of Polymers in Melts, Networks and Solutions. Adv. Pol. Sci. 134, pp. 1-129

    Article  Google Scholar 

  26. D. S. Pearson (1987) Recent Advances in the Molecular Aspects of Polymer Viscoelasticity. Rubber Chem. Tech. 60, p. 439

    Google Scholar 

  27. D. S. Pearson, L. J. Fetters, W. W. Graessley, G. ver Strate, and E. von Meerwall (1994) Viscosity and self-diffusion coefficient of hydrogenated polybutadiene. Macromolecules 27, p. 711

    Article  ADS  Google Scholar 

  28. M. Appel, G. Fleischer, J. Kärger, F. Fujara, and I. Chang (1994) Anomalous Segment Diffusion in Polymer Melts. Macromolecules 27, p. 4274

    Article  ADS  Google Scholar 

  29. T. P. Russell, V. R. Deline, W. D. Dozier, G. P. Felcher, G. Agrawal, R. P.Wool, and J. W. Mays (1993) Direct observation of reptation at polymer interfaces. Nature 365, p. 235

    Article  ADS  Google Scholar 

  30. A. Wischnewski, M. Monkenbusch, L. Willner, D. Richter, and G. Kali (2003) Direct observation of the transition from free to constrained single-segment motion in entangled polymer melts. Phys. Rev. Lett. 90, p. 058302

    Article  ADS  Google Scholar 

  31. S. F. Edwards and T. A. Vilgis (1988) The tube model theory of rubber elasticity. Rep. Prog. Phys. 51, p. 243

    Article  ADS  MathSciNet  Google Scholar 

  32. K. Kremer (1996) Computer simulation methods for polymer physics. Ital. Phys. Soc. Bologna

    Google Scholar 

  33. R. S. Hoy and M. O. Robbins (2005) Effect of equilibration on primitive path analyses of entangled polymers. Phys. Rev. E 72, p. 061802

    Article  ADS  Google Scholar 

  34. R. Auhl, R. Everaers, G. S. Grest, K. Kremer, and S. J. Plimpton (2003) Equilibration of long chain polymer melts in computer simulations. J. Chem. Phys. 119, p. 12718

    Article  ADS  Google Scholar 

  35. M. Pütz (1999) Dynamik von Polymerschmelzen und Quellverhalten ungeordneter Netzwerke. Ph.D. Thesis, University of Mainz

    Google Scholar 

  36. V. G. Mavrantzas, T. D. Boone, E. Zervopoulou, and D. N. Theodorou (1999) End-Bridging Monte Carlo: A Fast Algorithm for Atomistic Simulation of Condensed Phases of Long Polymer Chains. Macromolecules 32, p. 5072

    Article  ADS  Google Scholar 

  37. A. Uhlherr, S. J. Leak, N. E. Adam, P. E. Nyberg, M. Doastakis, V. G. Mavrantzas, and D. N. Theordorou (2002) Large scale atomistic polymer simulations using Monte Carlo methods for parallel vector processors. Comp. Phys. Comm. 144, p. 1

    Article  MATH  ADS  Google Scholar 

  38. G. S. Grest and K. Kremer (1986) Molecular dynamics simulation for polymers in the presence of a heat bath. Phys. Rev. A 33, p. 3628

    Article  ADS  Google Scholar 

  39. K. Kremer and G. S. Grest (1990) Dynamics of entangled linear polymer melts: A molecular-dynamics simulation. J. Chem. Phys. 92, p. 5057

    Article  ADS  Google Scholar 

  40. T. Soddemann, B. Dünweg, and K. Kremer (2003) Dissipative particle dynamics: A useful thermostat for equilibrium and nonequilibrium molecular dynamics simulations. Phys. Rev. E 68, p. 046702

    Article  ADS  Google Scholar 

  41. E. R. Duering, K. Kremer, and G. S. Grest (1991) Relaxation of randomly cross-linked polymer melts. Phys. Rev. Lett. 67, p. 3531

    Article  ADS  Google Scholar 

  42. E. R. Duering, K. Kremer, and G. S. Grest (1994) Structure and relaxation of end-linked polymer networks J. Chem. Phys. 101, p. 8169

    Article  ADS  Google Scholar 

  43. M. Pütz, R. Everaers, and K. Kremer (2000) Self-similar chain conformations in polymer gels. Phys. Rev. Lett. 84, p. 298

    Article  ADS  Google Scholar 

  44. R. Everaers and K. Kremer (1996) Topological interactions in model polymer networks. Phys. Rev. E 53, p.

    Article  ADS  Google Scholar 

  45. R. Everaers (1999) Entanglement effects in defect-free model polymer networks New J. Phys. 1, pp. 12–1

    Article  ADS  Google Scholar 

  46. W. Paul, K. Binder, D. W. Heermann, and K. Kremer (1991) Dynamics of polymer solutions and melts. Reptation predictions and scaling of relaxation times. J. Chem. Phys. 95, p. 7726

    Article  ADS  Google Scholar 

  47. W. Paul, K. Binder, K. Kremer, and D. W. Heermann (1991) Structure Property Correlation of Polymers, a Monte-Carlo Approach. Macromolecules 24, p. 6323

    Article  ADS  Google Scholar 

  48. S. W. Smith, C. K. Hall, and B. D. Freeman (1996) Molecular dynamics study of entangled hard-chain fluids. J. Chem. Phys. 104, p. 5616

    Article  ADS  Google Scholar 

  49. M. Kröger and H. Voigt (1994) On a quantity describing the degree of entanglement in linear polymer systems. Macromol. Theory Simul. 3, p. 639

    Article  Google Scholar 

  50. K. Kremer, G. S. Grest, and I. Carmesin (1988) Crossover from Rouse to Reptation Dynamics: A Molecular-Dynamics Simulation. Phys. Rev. Lett. 61, p. 566

    Article  ADS  Google Scholar 

  51. M. Pütz, K. Kremer, and G. S. Grest (2000) What is the entanglement length in a polymer melt? Europhys. Lett. 49, p. 735

    Article  ADS  Google Scholar 

  52. R. Faller, F. Müller-Plathe, and A. Heuer (2000) Local Reorientation Dynamics of Semiflexible Polymers in the Melt. Macromolecules 33, p. 6602

    Article  ADS  Google Scholar 

  53. R. Faller and F. Müller-Plathe (2001) Chain stiffiness intensiffes the reptation characteristics of polymer dynamics in the melt. Chem. Phys. Chem. 2, p. 180

    Google Scholar 

  54. S. Leon, L. D. Site, N. van der Vegt, and K. Kremer (2005) Bisphenol A Polycarbonate: Entanglement Analysis from Coarse-Grained MD Simulations. Macromolecules 38, p. 8078

    Article  ADS  Google Scholar 

  55. P. G. de Gennes (1981) Coherent Scattering by One Reptating Chain. J. Phys. (Paris) 42, p. 735

    Google Scholar 

  56. K. Kremer and K. Binder (1984) Dynamics of polymer chains confined into tubes: Scaling theory and Monte Carlo simulations. J. Chem. Phys. 81, p. 6381

    Article  ADS  Google Scholar 

  57. M. Doi (1988) An estimation of the tube radius in the entanglement effect of concentrated polymer solutions. J. Phys. A 8, p. 959

    Article  ADS  Google Scholar 

  58. M. Pütz, K. Kremer, and G. S. Grest (2000) Reply to the Comment by A. Wischnewski and D. Richter on “What is the entanglement length in a polymer melt? Europhys. Lett. 52, p. 721

    Article  ADS  Google Scholar 

  59. L. R. G. Treloar (1986) The Physics of Rubber Elasticity. Clarendon Press, Oxford

    Google Scholar 

  60. M. Mooney (1940) A theory of large elastic deformation. J. Appl. Phys. 11, p. 582

    Article  ADS  Google Scholar 

  61. M. Kröger and S. Hess (2000) Rheological evidence for a dynamical crossover in polymer melts via nonequilibrium molecular dynamics. Phys. Rev. Lett. 85, p. 1128

    Article  ADS  Google Scholar 

  62. K. Sommer, J. Batoulis, W. Jilge, L. Morbitzer, B. Pittel, R. Plaetschke, K. Reuter, R. Timmermann, K. Binder, W. Paul, F. T. Gentile, D. W. Heermann, K. Kremer, M. Laso, U. W. Suter, and P. J. Ludivice (1991) Correlation between primary chemical structure and property phenomena in polycondensates. Adv. Mat. 3, p. 590

    Article  Google Scholar 

  63. J. Baschnagel, K. Binder, P. Doruker, A. A. Gusev, O. Hahn, K. Kremer, W. L. Mattice, F. Müller-Plathe, M. Murat, W. Paul, S. Santos, U. W. Suter, and V. Tries, Advances in Polymer Science: Viscoelasticity, Atomistic Models, Statistical Chemistry. Springer-Verlag, Heidelberg

    Google Scholar 

  64. C. F. Abrams and K. Kremer (2003) Combined Coarse-Grained and Atomistic Simulation of Liquid Bisphenol A-Polycarbonate: Liquid Packing and Intramolecular Structure. Macromolecules 36, p. 260

    Article  ADS  Google Scholar 

  65. B. Hess. S. Leon, N. van der Vegt, and K. Kremer (2006) Long time atomistic polymer trajectories from coarse grained simulations. Bisphenol-A polycarbonate. Softmatter 2, p. 409

    Google Scholar 

  66. W. Michalke, M. Lang, S. Kreitmeier, and D. Göritz (2001) Simulations on the number of entanglements of a polymer network using knot theory. Phys. Rev. E 64, p. 012801

    Article  ADS  Google Scholar 

  67. K. Iwata and S. F. Edwards (1989) New model of polymer entanglement: Localized Gauss integral model. Plateau modulus GN, topological second virial coe.cient A and physical foundation of the tube model. J. Chem. Phys. 90, p. 4567

    Article  ADS  Google Scholar 

  68. K. Iwata (1991) Topological origin of reptation: a collective motion of local knots. Macromolecules 24, p. 1107

    Article  ADS  Google Scholar 

  69. T. A. Kavassalis and J. Noolandi (1987) New View of Entanglements in Dense Polymer Systems. Phys. Rev. Lett. 59, p. 2674

    Article  ADS  Google Scholar 

  70. T. A. Kavassalis and J. Noolandi (1989) Entanglement scaling in polymer melts and solutions. Macromolecules 22, p. 2709

    Article  ADS  Google Scholar 

  71. S. K. Sukumaran, G. S. Grest, K. Kremer, and R. Everaers (2004) Identifying the primitive path mesh in entangled polymer liquids. J. Polym. Sci. Part B: Polym. Phys. Ed. 41, p. 917

    Google Scholar 

  72. M. Rubinstein and E. Helfand (1985) Statistics of the entanglement of polymers: Concentration effects. J. Chem. Phys. 82, p. 2477

    Article  ADS  Google Scholar 

  73. P. Ahlrichs, R. Everaers, and B. Dünweg (2001) Screening of hydrodynamic interactions in semidilute polymer solutions: A computer simulation study. Phys. Rev. E 64, p. 040501

    Article  ADS  Google Scholar 

  74. D. Theodorou (2005) Comp. Phys. Comm. 169, p. 82

    Article  ADS  Google Scholar 

  75. Q. Zhou and R. G. Larson (2005) Primitive path identi.cation and statistics in molecular dynamics simulations of entangled polymer melts. Macromolecules 38, p. 5761

    Article  ADS  Google Scholar 

  76. M. Kröger (2005) Shortest multiple disconnected path for the analysis of entanglements in two- and three-dimensional polymeric systems. Comp. Phys. Comm. 168, p. 209

    Article  ADS  Google Scholar 

  77. W. W. Graessley and S. F. Edwards (1981) Entanglement interactions in polymers and the chain contour concentration. Polymer 22, p. 1329

    Article  Google Scholar 

  78. L. J. Fetters, D. J. Lohse, D. Richter, T. A. Witten, and A. Zirkel (1994) Connection between Polymer Molecular Weight, Density, Chain Dimensions, and Melt Viscoelastic Properties. Macromolecules 27, p. 4639

    Article  ADS  Google Scholar 

  79. K. Kremer (1992) In H. Grubmüller, K. Kremer, N. Attig, and K. Binder, eds., Computational Soft Matter: From Synthetic Polymers to Proteins, Lecture Notes, p. 400, NIC, FZ Jülich, Jülich

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Kremer, K. (2006). Polymer Dynamics: Long Time Simulations and Topological Constraints. In: Ferrario, M., Ciccotti, G., Binder, K. (eds) Computer Simulations in Condensed Matter Systems: From Materials to Chemical Biology Volume 2. Lecture Notes in Physics, vol 704. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-35284-8_14

Download citation

Publish with us

Policies and ethics