Skip to main content

Implicit Solvent Electrostatics in Biomolecular Simulation

  • Chapter

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 49))

Abstract

We give an overview of how implicit solvent models are currently used in protein simulations. The emphasis is on numerical algorithms and approximations: since even folded proteins sample many distinct configurations, it is of considerable importance to be both accurate and efficient in estimating the energetic consequences of this dynamical behavior. Particular attention is paid to calculations of pH-dependent behavior, as a paradigm for the analysis of electrostatic interactions in complex systems.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N. A. Baker and J. A. McCammon. Electrostatic interactions. In P. Bourne and H. Weissig, editors, Structural Bioinformatics, pages 427–440. John Wiley and Sons, Inc., New York, 2003.

    Google Scholar 

  2. M. Gilson. Introduction to continuum electrostatics. In D. A. Beard, editor, Biophysics Textbook Online, volume Computational Biology. Biophysical Society, Bethesda, MD, 2000.

    Google Scholar 

  3. B. Roux. Implicit solvent models. In O. M. Becker, Jr. MacKerell, A. D., B. Roux, and M. Watanabe, editors, Computational Biochemistry and Biophysics, pages 133–152. Marcel Dekker, New York, 2001.

    Google Scholar 

  4. M. E. Davis and J. A. McCammon. Electrostatics in biomolecular structure and dynamics. Chem. Rev., 94:7684–7692, 1990.

    Article  Google Scholar 

  5. B. Honig and A. Nicholls. Classical electrostatics in biology and chemistry. Science, 268(5214):1144–9, 1995.

    Google Scholar 

  6. N. A. Baker. Poisson-boltzmann methods for biomolecular electrostatics. Meth. Enzymol., 383:94–118, 2004.

    Google Scholar 

  7. Christian Holm, Patrick Kekicheff, and Rudolf Podgornik, editors. Electrostatic effects in soft matter and biophysics, volume 46 of NATO Science Series. Kluwer Academic Publishers, Boston, 2001.

    Google Scholar 

  8. L. Onsager. Electric moments of molecules in liquids. J. Amer. Chem. Soc., 58:1486–1493, 1936.

    Article  Google Scholar 

  9. S. Miertus, E. Scrocco, and J. Tomasi. Electrostatic interaction of a solute with a continuum. A direct utilization of ab initio molecular potentials for the prevision of solvent effects. Chem. Phys., 55:117–129, 1981.

    Article  Google Scholar 

  10. J. Tomasi and M. Persico. Molecular interactions in solution: an overview of methods based on continuous distributions of solvent. Chem. Rev., 94:2027–2094, 1994.

    Article  Google Scholar 

  11. J. Tomasi. Thirty years of continuum solvation chemistry: a review, and prospects for the near future. Theor. Chem. Acc., 112:184–203, 2004.

    Article  Google Scholar 

  12. C. Lim, D. Bashford, and M. Karplus. Absolute pKa calculations with continuum dielectric methods. J. Phys. Chem., 95:5610–5620, 1991.

    Article  Google Scholar 

  13. W.H. Richardson, C. Peng, D. Bashford, L. Noodleman, and D.A. Case. Incorporating solvation effects into density functional theory: Calculation of absolute acidities. Int. J. Quantum Chem., 61:207–217, 1997.

    Article  Google Scholar 

  14. J.J. Klicic, R.A. Friesner, S.Y. Liu, and W.C. Guida. Accurate prediction of acidity constants in aqueous solution via density functional theory and self-consistent reaction field methods. J. Phys. Chem. A, 106:1327–1335, 2002.

    Article  Google Scholar 

  15. D.M. Chipman. Computation of pKa from Dielectric Continuum Theory. J. Phys. Chem. A, 106:7413–7422, 2002.

    Article  Google Scholar 

  16. M.S. Busch and E.W. Knapp. Accurate pKa Determination for a Heterogeneous Group of Organic Molecules. Chemphyschem, 5:1513–1522, 2004.

    Article  Google Scholar 

  17. D. Sitkoff, K.A. Sharp, and B. Honig. Accurate calculation of hydration free energies using macroscopic solvent models. J. Phys. Chem., 98:1978–1988, 1994.

    Article  Google Scholar 

  18. M. Nina, D. Beglov, and B. Roux. Atomic radii for continuum electrostatics calculations based on molecular dynamics free energy simulations. J. Phys. Chem. B, 101:5239–5248, 1997.

    Article  Google Scholar 

  19. E. Gallicchio, L.Y. Zhang, and R.M. Levy. The SGB/NP Hydration Free Energy Model Based on the Surface Generalized Born Solvent Reaction Field and Novel Nonpolar Hydration Free Energy Estimators. J. Comput. Chem., 23:517–529, 2002.

    Article  Google Scholar 

  20. E. Gallicchio and R.M. Levy. AGBNP: An Analytic Implicit Solvent Model Suitable for Molecular Dynamics Simulations and High-Resolution Modeling. J. Comput. Chem., 25:479–499, 2004.

    Article  Google Scholar 

  21. M. Born. Volumen und hydratationswärme der ionen. Z. Phys., 1:45–48, 1920.

    Article  Google Scholar 

  22. K. Linderstrøm-Lang. On the ionisation of proteins. Comptes-rend Lab. Carlsberg, 15(7):1–29, 1924.

    Google Scholar 

  23. C. Tanford and J. G. Kirkwood. Theory of protein titration curves. I. General equations for impenetrable spheres. J. Am. Chem. Soc., 79:5333–5339, 1957.

    Article  Google Scholar 

  24. M. A. Flanagan, G. K. Ackers, J. B. Matthew, G. I. H. Hanania, and F. R. N. Gurd. Electrostatic contributions to the energetics of dimer-tetramer assembly in human hemoglobin: pH dependence and effect of specifically bound chloride ions. Biochemistry, 20:7439–7449, 1981.

    Article  Google Scholar 

  25. J. Warwicker and H. C. Watson. Calculation of the electric potential in the active site cleft due to alpha-helix dipoles. J. Mol. Biol., 157(4):671–9, 1982.

    Article  Google Scholar 

  26. E. Demchuk, D. Bashford, G. Gippert, and D.A. Case. Thermodynamics of a reverse turn motif. Solvent effects and side-chain packing. J. Mol. Biol., 270:305–317, 1997.

    Article  Google Scholar 

  27. J. Srinivasan, T.E. Cheatham, III, P. Kollman, and D.A. Case. Continuum Solvent Studies of the Stability of DNA, RNA, and Phosphoramidate-DNA Helices. J. Am. Chem. Soc., 120:9401–9409, 1998.

    Article  Google Scholar 

  28. P.A. Kollman, I. Massova, C. Reyes, B. Kuhn, S. Huo, L. Chong, M. Lee, T. Lee, Y. Duan, W. Wang, O. Donini, P. Cieplak, J. Srinivasan, D.A. Case, and T.E. Cheatham, III. Calculating Structures and Free Energies of Complex Molecules: Combining Molecular Mechanics and Continuum Models. Accts. Chem. Res., 33:889–897, 2000.

    Article  Google Scholar 

  29. J. O. Bockris and A. K. N. Reddy. Modern Electrochemistry: Ionics. Plenum Press, New York, 1998.

    Google Scholar 

  30. John David Jackson. Classical Electrodynamics. John Wiley and Sons, New York, 2nd edition, 1975.

    MATH  Google Scholar 

  31. C. J. Bötcher. Theory of Electric Polarization. Elsevier Science, New York, 1973.

    Google Scholar 

  32. B. Lee and F. M. Richards. The interpretation of protein structures: estimation of static accessibility. J. Mol. Biol., 55(3):379–400, 1971.

    Article  Google Scholar 

  33. M. L. Connolly. The molecular surface package. J. Mol. Graph., 11(2):139–41, 1993.

    Article  Google Scholar 

  34. W. Im, D. Beglov, and B. Roux. Continuum solvation model: electrostatic forces from numerical solutions to the Poisson-Boltzmann equation. Comp. Phys. Commun., 111(1–3):59–75, 1998.

    Article  MATH  Google Scholar 

  35. J. Andrew Grant, Barry T. Pickup, and Anthony Nicholls. A smooth permittivity function for Poisson-Boltzmann solvation methods. J. Comput. Chem., 22(6):608–640, 2001.

    Article  Google Scholar 

  36. M. Nina, W. Im, and B. Roux. Optimized atomic radii for protein continuum electrostatics solvation forces. Biophys. Chem., 78(1–2):89–96, 1999.

    Article  Google Scholar 

  37. F. Dong, M. Vijaykumar, and H. X. Zhou. Comparison of calculation and experiment implicates significant electrostatic contributions to the binding stability of barnase and barstar. Biophys. J., 85(1):49–60, 2003.

    Google Scholar 

  38. J. Wagoner and N. A. Baker. Solvation forces on biomolecular structures: A comparison of explicit solvent and Poisson-Boltzmann models. J. Comput. Chem., 25(13):1623–9, 2004.

    Article  Google Scholar 

  39. K. A. Sharp and B. Honig. Calculating total electrostatic energies with the nonlinear Poisson-Boltzmann equation. J. Phys. Chem., 94(19):7684–7692, 1990.

    Article  Google Scholar 

  40. F. Fogolari and J. M. Briggs. On the variational approach to Poisson-Boltzmann free energies. Chemical Physics Letters, 281(1–3):135–139, 1997.

    Article  Google Scholar 

  41. A. M. Micu, B. Bagheri, A. V. Ilin, L. R. Scott, and B. M. Pettitt. Numerical considerations in the computation of the electrostatic free energy of interaction within the Poisson-Boltzmann theory. J. Comput. Phys., 136(2):263–271, 1997.

    Article  MATH  Google Scholar 

  42. M. K. Gilson, M. E. Davis, B. A. Luty, and J. A. McCammon. Computation of electrostatic forces on solvated molecules using the Poisson-Boltzmann equation. J. Phys. Chem., 97(14):3591–3600, 1993.

    Article  Google Scholar 

  43. D. Beglov and B. Roux. Solvation of complex molecules in a polar liquid: an integral equation theory. J. Chem. Phys., 104(21):8678–8689, 1996.

    Article  Google Scholar 

  44. B. Egwolf and P. Tavan. Continuum description of solvent dielectrics in molecular-dynamics simulations of proteins. J. Chem. Phys., 118(5):2039–56, 2003.

    Article  Google Scholar 

  45. B. Egwolf and P. Tavan. Continuum description of ionic and dielectric shielding for molecular-dynamics simulations of proteins in solution. J. Chem. Phys., 120(4):2056–2068, 2004.

    Article  Google Scholar 

  46. M. Holst and F. Saied. Multigrid solution of the Poisson-Boltzmann equation. J. Comput. Chem., 14(1):105–13, 1993.

    Article  Google Scholar 

  47. M. J. Holst and F. Saied. Numerical solution of the nonlinear Poisson-Boltzmann equation: developing more robust and efficient methods. J. Comput. Chem., 16(3):337–64, 1995.

    Article  Google Scholar 

  48. Dietrich Braess. Finite Elements. Theory, Fast Solvers, and Applications in Solid Mechanics. Cambridge University Press, Cambridge, 1997.

    MATH  Google Scholar 

  49. O. Axelsson and V. A. Barker. Finite Element Solution of Boundary Value Problems. Theory and Computation. Academic Press, Inc., San Diego, 1984.

    MATH  Google Scholar 

  50. M. Holst. Adaptive numerical treatment of elliptic systems on manifolds. Advances in Computational Mathematics, 15(1–4):139–191, 2001.

    Article  MATH  MathSciNet  Google Scholar 

  51. M. Holst, N. Baker, and F. Wang. Adaptive multilevel finite element solution of the Poisson-Boltzmann equation. I. Algorithms and examples. J. Comput. Chem., 21(15):1319–1342, 2000.

    Article  Google Scholar 

  52. N. Baker, M. Holst, and F. Wang. Adaptive multilevel finite element solution of the Poisson-Boltzmann equation II. Refinement at solvent-accessible surfaces in biomolecular systems. J. Comput. Chem., 21(15):1343–1352, 2000.

    Article  Google Scholar 

  53. C. M. Cortis and R. A. Friesner. An automatic three-dimensional finite element mesh generation system for the Poisson-Boltzmann equation. J. Comput. Chem., 18:1570–1590, 1997.

    Article  Google Scholar 

  54. C. M. Cortis and R. A. Friesner. Numerical solution of the Poisson-Boltzmann equation using tetrahedral finite-element meshes. J. Comput. Chem., 18:1591–1608, 1997.

    Article  Google Scholar 

  55. P E Dyshlovenko. Adaptive numerical method for Poisson-Boltzmann equation and its application. Comp. Phys. Commun., 147:335–338, 2002.

    Article  MATH  Google Scholar 

  56. R. E. Bank and M. Holst. A new paradigm for parallel adaptive meshing algorithms. SIAM Journal on Scientific Computing, 22(4):1411–1443, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  57. N. A. Baker, D. Sept, M. J. Holst, and J. A. McCammon. The adaptive multilevel finite element solution of the Poisson-Boltzmann equation on massively parallel computers. IBM Journal of Research and Development, 45(3–4):427–438, 2001.

    Article  Google Scholar 

  58. R. J. Zauhar and R. S. Morgan. The rigorous computation of the molecular electric potential. J. Comput. Chem., 9(2):171–187, 1988.

    Article  Google Scholar 

  59. A. H. Juffer, E. F. F. Botta, B. A. M. van Keulen, A. van der Ploeg, and H. J. C. Berendsen. The electric potential of a macromolecule in a solvent: a fundamental approach. J. Comput. Phys., 97:144–171, 1991.

    Article  MATH  Google Scholar 

  60. S. A. Allison and V. T. Tran. Modeling the electrophoresis of rigid polyions: application to lysozyme. Biophys. J., 68(6):2261–70, 1995.

    Google Scholar 

  61. A. J. Bordner and G. A. Huber. Boundary element solution of the linear Poisson-Boltzmann equation and a multipole method for the rapid calculation of forces on macromolecules in solution. J. Comput. Chem., 24:353–367, 2003.

    Article  Google Scholar 

  62. A. H. Boschitsch and M. O. Fenley. Hybrid boundary element and finite difference method for solving the nonlinear Poisson-Boltzmann equation. J. Comput. Chem., 25(7):935–955, 2004.

    Article  Google Scholar 

  63. Z. Zhou, P. Payne, M. Vasquez, N. Kuhn, and M. Levitt. Finite-difference solution of the Poisson-Boltzmann equation: complete elimination of self-energy. J. Comput. Chem., 17:1344–1351, 1996.

    Article  Google Scholar 

  64. Y. N. Vorobjev and H. A. Scheraga. A fast adaptive multigrid boundary element method for macromolecular electrostatic computations in a solvent. J. Comput. Chem., 18(4):569–583, 1997.

    Article  Google Scholar 

  65. A. Nicholls and B. Honig. A rapid finite difference algorithm, utilizing successive over-relaxation to solve the Poisson-Boltzmann equation. J. Comput. Chem., 12(4):435–445, 1991.

    Article  Google Scholar 

  66. M. E. Davis and J. A. McCammon. Solving the finite difference linearized Poisson-Poltzmann equation: a comparison of relaxation and conjugate gradient methods. J. Comput. Chem., 10:386–391, 1989.

    Article  Google Scholar 

  67. N. A. Baker, D. Sept, S. Joseph, M. J. Holst, and J. A. McCammon. Electrostatics of nanosystems: Application to microtubules and the ribosome. Proc Natl. Acad. Sci. USA, 98(18):10037–10041, 2001.

    Article  Google Scholar 

  68. M. K. Gilson and B. H. Honig. Calculation of electrostatic potentials in an enzyme active site. Nature, 330(6143):84–6, 1987.

    Article  Google Scholar 

  69. K. A. Sharp and B. Honig. Electrostatic interactions in macromolecules-theory and applications. Annu. Rev. Biophys. Biophys. Chem., 19:301–332, 1990.

    Article  Google Scholar 

  70. G. T. Balls and P. Colella. A finite difference domain decomposition method using local corrections for the solution of Poisson’s equation. J. Comput. Phys., 180(1):25–53, 2002.

    Article  MathSciNet  MATH  Google Scholar 

  71. W. Rocchia, S. Sridharan, A. Nicholls, E. Alexov, A. Chiabrera, and B. Honig. Rapid grid-based construction of the molecular surface and the use of induced surface charge to calculate reaction field energies: applications to the molecular systems and geometric objects. J. Comput. Chem., 23(1):128–37, 2002.

    Article  Google Scholar 

  72. A. Nicholls, K. A. Sharp, and B. Honig. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins, 11(4):281–96, 1991.

    Article  Google Scholar 

  73. D. Bashford. An object-oriented programming suite for electrostatic effects in biological molecules. In Y. Ishikawa, R. R. Oldehoeft, J. V. W. Reynders, and M. Tholburn, editors, Scientific Computing in Object-Oriented Parallel Environments, volume 1343 of Lecture Notes in Computer Science, pages 233–240. Springer, Berlin, 1997.

    Google Scholar 

  74. J. D. Madura, J. M. Briggs, R. C. Wade, M. E. Davis, B. A. Luty, A. Ilin, J. Antosiewicz, M. K. Gilson, B. Bagheri, L. R. Scott, and J. A. McCammon. Electrostatics and diffusion of molecules in solution-simulations with the university of houston brownian dynamics program. Comp. Phys. Commun., 91(1–3):57–95, 1995.

    Article  Google Scholar 

  75. Jr. MacKerell, A. D., B. Brooks, III Brooks, C. L., L. Nilsson, B. Roux, Y. Won, and M. Karplus. Charmm: the energy function and its parameterization with an overview of the program. In P. v. R. Schleyer, editor, The Encyclopedia of Computational Chemistry, volume 1, pages 271–277. John Wiley and Sons, Chichester, 1998.

    Google Scholar 

  76. R. Luo, L. David, and M. K. Gilson. Accelerated Poisson-Boltzmann calculations for static and dynamic systems. J. Comput. Chem., 23(13):1244–53, 2002.

    Article  Google Scholar 

  77. W.C. Still, A. Tempczyk, R.C. Hawley, and T. Hendrickson. Semianalytical treatement of solvation for molecular mechanics and dynamics. J. Am. Chem. Soc., 112:6127–6129, 1990.

    Article  Google Scholar 

  78. A. Onufriev, D.A. Case, and D. Bashford. Effective Born radii in the generalized Born approximation: The importance of being perfect. J. Comput. Chem., 23:1297–1304, 2002.

    Article  Google Scholar 

  79. J.D. Jackson. Classical Electrodynamics. Wiley and Sons, New York, 1975.

    MATH  Google Scholar 

  80. M. Scarsi, J. Apostolakis, and A. Caflisch. Continuum Electrostatic Energies of Macromolecules in Aqueous Solutions. J. Phys. Chem. A, 101:8098–8106, 1997.

    Article  Google Scholar 

  81. M.S. Lee, F.R. Salsbury, Jr., and C.L. Brooks, III. Novel generalized Born methods. J. Chem. Phys., 116:10606–10614, 2002.

    Article  Google Scholar 

  82. M.S. Lee, M. Feig, F.R. Salsbury, and C.L. Brooks. New Analytic Approximation to the Standard Molecular Volume Definition and Its Application to Generalized Born Calculations. J. Comput. Chem., 24:1348–1356, 2003.

    Article  Google Scholar 

  83. M. Schaefer and C. Froemmel. A precise analytical method for calculating the electrostatic energy of macromolecules in aqueous solution. J. Mol. Biol., 216:1045–1066, 1990.

    Google Scholar 

  84. G.D. Hawkins, C.J. Cramer, and D.G. Truhlar. Pairwise solute descreening of solute charges from a dielectric medium. Chem. Phys. Lett., 246:122–129, 1995.

    Article  Google Scholar 

  85. G.D. Hawkins, C.J. Cramer, and D.G. Truhlar. Parametrized models of aqueous free energies of solvation based on pairwise descreening of solute atomic charges from a dielectric medium. J. Phys. Chem., 100:19824–19839, 1996.

    Article  Google Scholar 

  86. J. G. Kirkwood. Theory of solutions of molecules containing widely separated charges with special applications to zwitterions. J. Chem. Phys., 2:351–361, 1934.

    Article  MATH  Google Scholar 

  87. D. Bashford and D.A. Case. Generalized Born Models of Macromolecular Solvation Effects. Annu. Rev. Phys. Chem., 51:129–152, 2000.

    Article  Google Scholar 

  88. M. Feig and C.L. Brooks, III. Recent advances in the development and application of implicit solvent models in biomolecule simulations. Curr. Opin. Struct. Biol., 14:217–224, 2004.

    Article  Google Scholar 

  89. M. Feig, A. Onufriev, M.S. Lee, W. Im, D.A. Case, and C.L. Brooks. Performance Comparison of Generalized Born and Poisson Methods in the Calculation of Electrostatic Solvation Energies for Protein Structures. J. Comput. Chem., 25:265–284, 2004.

    Article  Google Scholar 

  90. M. Schaefer and M. Karplus. A comprehensive analytical treatment of continuum electrostatics. J. Phys. Chem., 100:1578–1599, 1996.

    Article  Google Scholar 

  91. A. Onufriev, D. Bashford, and D.A. Case. Modification of the Generalized Born Model Suitable for Macromolecules. J. Phys. Chem. B, 104:3712–3720, 2000.

    Article  Google Scholar 

  92. A. Onufriev, D. Bashford, and D.A. Case. Exploring Protein Native States and Large-Scale Conformational Changes With a Modified Generalized Born Model. Proteins, 55:383–394, 2004.

    Article  Google Scholar 

  93. M.L. Connolly. Solvent-accessible surfaces of proteins and nucleic acids. Science, 221:709–713, 1983.

    Google Scholar 

  94. A. Ghosh, C.S. Rapp, and R.A. Friesner. Generalized Born Model Based on a Surface Integral Formulation. J. Phys. Chem. B, 102:10983–10990, 1998.

    Article  Google Scholar 

  95. A. H. Elcock. Prediction of functionally important residues based solely on the computed energetics of protein structure. J. Mol. Biol., 312(4):885–896, 2001.

    Article  Google Scholar 

  96. M. J. Ondrechen, J. G. Clifton, and D. Ringe. Thematics: a simple computational predictor of enzyme function from structure. Proc. Natl. Acad. Sci. USA, 98(22):12473–8, 2001.

    Article  Google Scholar 

  97. Z. Y. Zhu and S. Karlin. Clusters of charged residues in protein three-dimensional structures. Proc. Natl. Acad. Sci. USA, 93(16):8350–5, 1996.

    Article  Google Scholar 

  98. A. M. Richard. Quantitative comparison of molecular electrostatic potentials for structure-activity studies. J. Comput. Chem., 12(8):959–69, 1991.

    Article  Google Scholar 

  99. R. Norel, F. Sheinerman, D. Petrey, and B. Honig. Electrostatic contributions to protein-protein interactions: Fast energetic filters for docking and their physical basis. Prot. Sci., 10(11):2147–2161, 2001.

    Article  Google Scholar 

  100. S. M. de Freitas, L. V. de Mello, M. C. da Silva, G. Vriend, G. Neshich, and M. M. Ventura. Analysis of the black-eyed pea trypsin and chymotrypsin inhibitor-alpha-chymotrypsin complex. FEBS Lett, 409(2):121–7, 1997.

    Article  Google Scholar 

  101. L. Lo Conte, C. Chothia, and J. Janin. The atomic structure of protein-protein recognition sites. J Mol Biol, 285(5):2177–98, 1999.

    Article  Google Scholar 

  102. J. Janin and C. Chothia. The structure of protein-protein recognition sites. J. Biol. Chem., 265(27):16027–30, 1990.

    Google Scholar 

  103. V. A. Roberts, H. C. Freeman, A. J. Olson, J. A. Tainer, and E. D. Getzoff. Electrostatic orientation of the electron-transfer complex between plastocyanin and cytochrome c. J. Biol. Chem., 266(20):13431–41, 1991.

    Google Scholar 

  104. R. C. Wade, R. R. Gabdoulline, and F. De Rienzo. Protein interaction property similarity analysis. International Journal of Quantum Chemistry, 83(3–4):122–127, 2001.

    Article  Google Scholar 

  105. J. Novotny and K. Sharp. Electrostatic fields in antibodies and antibody/antigen complexes. Prog. Biophys. Mol. Biol., 58(3):203–24, 1992.

    Article  Google Scholar 

  106. A. J. McCoy, V. Chandana Epa, and P. M. Colman. Electrostatic complementarity at protein/protein interfaces. J. Mol. Biol., 268(2):570–84, 1997.

    Article  Google Scholar 

  107. A. Arbuzova, L. B. Wang, J. Y. Wang, G. Hangyas-Mihalyne, D. Murray, B. Honig, and S. McLaughlin. Membrane binding of peptides containing both basic and aromatic residues. experimental studies with peptides corresponding to the scaffolding region of caveolin and the effector region of marcks. Biochemistry, 39(33):10330–10339, 2000.

    Article  Google Scholar 

  108. Jung-Hsin Lin, Nathan Andrew Baker, and J. Andrew McCammon. Bridging the implicit and explicit solvent approaches for membrane electrostatics. Biophys. J., 83(3):1374–1379, 2002.

    Google Scholar 

  109. D. Murray and B. Honig. Electrostatic control of the membrane targeting of C2 domains. Molecular Cell, 9(1):145–154, 2002.

    Article  Google Scholar 

  110. R. R. Gabdoulline and R. C. Wade. Simulation of the diffusional association of barnase and barstar. Biophys J, 72(5):1917–29, 1997.

    Google Scholar 

  111. S. H. Northrup, S. A. Allison, and J. A. McCammon. Brownian dynamics simulation of diffusion-influenced biomolecular reactions. J. Chem. Phys., 80:1517–1524, 1984.

    Article  Google Scholar 

  112. J. L. Smart, T. J. Marrone, and J. A. McCammon. Conformational sampling with Poisson-Boltzmann forces and a stochastic dynamics monte carlo method: Application to alanine dipeptide. J. Comput. Chem., 18(14):1750–1759, 1997.

    Article  Google Scholar 

  113. N. V. Prabhu, P. Zhu, and K. A. Sharp. Implementation and testing of stable, fast implicit solvation in molecular dynamics using the smooth-permittivity finite difference Poisson-Boltzmann method. J. Comput. Chem., 25(16):2049–2064, 2004.

    Article  Google Scholar 

  114. Q. Lu and R. Luo. A Poisson-Boltzmann dynamics method with nonperiodic boundary condition. J. Chem. Phys., 119(21):11035–11047, 2003.

    Article  Google Scholar 

  115. B.Z. Lu, W.Z. Chen, C.X. Wang, and X. Xu. Protein Molecular Dynamics With Electrostatic Force Entirely Determined by a Single Poisson-Boltzmann Calculation. Proteins, 48:497–504, 2002.

    Article  Google Scholar 

  116. F. Fogolari, A. Brigo, and H. Molinari. Protocol for MM/PBSA molecular dynamics simulations of proteins. Biophys. J., 85(1):159–166, 2003.

    Google Scholar 

  117. P. A. Kollman, I. Massova, C. Reyes, B. Kuhn, S. Huo, L. Chong, M. Lee, T. Lee, Y. Duan, W. Wang, O. Donini, P. Cieplak, J. Srinivasan, D. A. Case, and III Cheatham, T. E. Calculating structures and free energies of complex molecules: combining molecular mechanics and continuum models. Accounts of Chemical Research, 33(12):889–97, 2000.

    Article  Google Scholar 

  118. J. M. J. Swanson, R. H. Henchman, and J. A. McCammon. Revisiting free energy calculations: A theoretical connection to MM/PBSA and direct calculation of the association free energy. Biophys. J., 86(1):67–74, 2004.

    Article  Google Scholar 

  119. J. E. Nielsen and J. A. McCammon. On the evaluation and optimization of protein x-ray structures for pKa calculations. Prot. Sci., 12(2):313–26, 2003.

    Article  Google Scholar 

  120. R. E. Georgescu, E. G. Alexov, and M. R. Gunner. Combining conformational flexibility and continuum electrostatics for calculating pKas in proteins. Biophys. J., 83(4):1731–1748, 2002.

    Google Scholar 

  121. J. Warwicker. Improved pKa calculations through flexibility based sampling of a water-dominated interaction scheme. Prot. Sci., 13(10):2793–805, 2004.

    Article  Google Scholar 

  122. J. Wyman and S.J. Gill. Binding and linkage. University Science Books, Mill Valley, CA, 1990.

    Google Scholar 

  123. R.A. Alberty. Thermodynamics of Biochemical Reactions. John Wiley, New York, 2003.

    Google Scholar 

  124. J.B. Matthew, F.R.N. Gurd, B. Garcia-Moreno E., M.A. Flanagan, K.L. March, and S.J. Shire. pH-dependent processes in proteins. CRC Crit. Rev. Biochem., 18:91–197, 1985.

    Google Scholar 

  125. P. Beroza and D.A. Case. Calculations of proton-binding thermodynamics in proteins. Meth. Enzymol., 295:170–189, 1998.

    Google Scholar 

  126. D. Bashford. Macroscopic electrostatic models for protonation states in proteins. Frontiers Biosci., 9:1082–1099, 2004.

    Google Scholar 

  127. B. García-Moreno and C.A. Fitch. Structural interpretation of pH and salt-dependent processes in proteins with computaional methods. Meth. Enzymol., 380:20–51, 2004.

    Google Scholar 

  128. C. Tanford and J.G. Kirkwood. Theory of titration curves. I. General equations for impenetrable spheres. J. Am. Chem. Soc., 79:5333–5339, 1957.

    Article  Google Scholar 

  129. C. Tanford. Theory of protein titration curves. II. Calculations for simple models at low ionic strength. J. Am. Chem. Soc., 79:5340–5347, 1957.

    Article  Google Scholar 

  130. C. Tanford and R. Roxby. Interpretation of protein titration curves. Biochemistry, 11:2192–2198, 1972.

    Article  Google Scholar 

  131. S.J. Shire, G.I.H. Hanania, and F.R.N. Gurd. Electrostatic effects in myoglobin. Hydrogen ion equilibria in sperm whale ferrimyoglobin. Biochemistry, 13:2967–2974, 1974.

    Article  Google Scholar 

  132. J.B. Matthew and F.R.N. Gurd. Calculation of electrostatic interactions in proteins. Meth. Enzymol., 130:413–436, 1986.

    Article  Google Scholar 

  133. A. Onufriev, D.A. Case, and G.M. Ullmann. A novel view of pH titration in biomolecules. Biochemistry, 40:3413–3419, 2001.

    Article  Google Scholar 

  134. D. Poland. Free energy of proton binding in proteins. Biopolymers, 69:60–71, 2003.

    Article  Google Scholar 

  135. P. Beroza, D.R. Fredkin, M.Y. Okamura, and G. Feher. Protonation of interacting residues in a protein by Monte Carlo method: Application to lysozyme and the photosynthetic reaction center of Rhodobacter sphaeroides. Proc. Natl. Acad. Sci. USA, 88:5804–5808, 1991.

    Google Scholar 

  136. A.M. Baptista, P.J. Martel, and S.B. Petersen. Simulation of protein conformational freedom as a function of pH: Constant-pH molecular dynamics using implicit titration. Proteins, 27:523–544, 1997.

    Article  Google Scholar 

  137. U. Börjesson and P.H. Hünenberger. Explicit-solvent molecular dynamics simulation at constant pH: Methodology and application to small amines. J. Chem. Phys., 114:9706–9719, 2001.

    Article  Google Scholar 

  138. A.M. Baptista. Comment on “Explicit-solvent molecular dynamics simulation at constant pH: Methodology and application to small amines”. J. Chem. Phys., 116:7766–7768, 2002.

    Article  Google Scholar 

  139. U. Börjesson and P.H. Hünenberger. pH-dependent stability of a decalysine α-helix studied by explicit-solvent molecular dynamics simulations at constant pH. J. Phys. Chem. B, 108:13551–13559, 2004.

    Article  Google Scholar 

  140. M.S. Lee, F.R. Salsbury, and C.L. Brooks. Constant-pH molecular dynamics using continuous titration coordinates. Proteins, 56:738–752, 2004.

    Article  Google Scholar 

  141. X. Kong and C.L. Brooks, III. λ-dynamics: A new approach to free energy calculations. J. Chem. Phys., 105:2414–2423, 1996.

    Article  Google Scholar 

  142. A.M. Baptista, V.H. Teixeira, and C.M. Soares. Constant-pH molecular dynamics using stochastic titration. J. Chem. Phys., 117:4184–4200, 2002.

    Article  Google Scholar 

  143. M. Dlugosz and J.M. Antosiewicz. Constant-pH molecular dynamics simulations: a test case for succinic acid. Chem. Phys., 302:161–170, 2004.

    Article  Google Scholar 

  144. M. Dlugosz, J.M. Antosiewicz, and A.D. Robertson. Constant-pH molecular dynamics study of protonation-structure relationship in a hexapeptide derived from ovomucoid third domain. Phys. Rev. E, 69:021915, 2004.

    Article  Google Scholar 

  145. J. Mongan, D.A. Case, and J.A. McCammon. Constant pH molecular dynamics in generalized Born implicit solvent. J. Comput. Chem., 25:2038–2048, 2004.

    Article  Google Scholar 

  146. R. Zhou, G. Krilov, and B. J. Berne. Comment on “can a continuum solvent model reproduce the free energy landscape of a-hairpin folding in water?” the poisson-boltzmann equation. J. Phys. Chem. B, 108(22):7528–30, 2004.

    Article  Google Scholar 

  147. J. Wagoner and N.A. Baker. Solvation Forces on Biomolecular Structures: A Comparison of Explicit Solvent and Poisson-Boltzmann Models. J. Comput. Chem., 25:1623–1629, 2004.

    Article  Google Scholar 

  148. M. Nina, W. Im, and B. Roux. Optimized atomic radii for protein continuum electrostatics solvations forces. Biophys. Chem., 78:89–96, 1999.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Baker, N.A., Bashford, D., Case, D.A. (2006). Implicit Solvent Electrostatics in Biomolecular Simulation. In: Leimkuhler, B., et al. New Algorithms for Macromolecular Simulation. Lecture Notes in Computational Science and Engineering, vol 49. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-31618-3_15

Download citation

  • DOI: https://doi.org/10.1007/3-540-31618-3_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-25542-0

  • Online ISBN: 978-3-540-31618-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics