Skip to main content

Polar climate and meteorology

  • Chapter
Polar Remote Sensing

Part of the book series: Springer Praxis Books ((GEOPHYS))

  • 1544 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

4.10 References

  • Aagaard, K., L. A. Barrie, E. C. Carmack, C. Garrity, E. P. Jones, D. Lubin, R. W. Macdonald, J. H. Swift, W. B. Tucker, P. A. Wheeler et al. (1996). U.S., Canadian researchers explore Arctic Ocean. EOS Transactions of the American Geophysical Union, 11, 209.

    Google Scholar 

  • Ackerman, A. S., O. B. Toon, D. E. Stevens, A. J. Heymsfield, V. Ramanathan, and E. J. Welton (2000). Reduction of tropical cloudiness by soot. Science, 288, 1042–1047.

    Google Scholar 

  • Ackerman, T. P. and G. M. Stokes (2003). The Atmospheric Radiation Measurement Program. Physics Today, 56, 38–44.

    Google Scholar 

  • Albrecht, B. A. (1989). Aerosols, cloud microphysics, and fractional cloudiness. Science, 245, 1227–1230.

    Google Scholar 

  • Allison, I., R. E. Brandt, and S. G. Warren (1993). East Antarctic sea ice: Albedo, thickness distribution, and snow cover. Journal of Geophysical Research, 98(C7), 12417–12429.

    Google Scholar 

  • Ball, F. K. (1956). The theory of strong katabatic winds. Australian Journal of Physics, 9, 373–386.

    Google Scholar 

  • Ball, F. K. (1960). Winds on the ice slopes of Antarctica. In: Antarctic Meteorology, Proceedings of the Symposium, Melbourne, 1959. Pergamon Press, New York, pp. 9–16.

    Google Scholar 

  • Berque, J., D. Lubin, and R. C. J. Somerville (2004). Infrared radiative properties of the Antarctic Plateau from AVHRR data. Part I: Effect of the snow surface. Journal of Applied Meteorology, 43, 350–362.

    Google Scholar 

  • Blanchet, J.-P. and R. List (1983). Estimation of optical properties of Arctic haze using a numerical model. Atmosphere-Ocean, 21, 444–465.

    Google Scholar 

  • Booth, C. R., T. B. Lucas, J. H. Morrow, C. S. Weiler, and P. A. Penhale (1994). The United States National Science Foundation’s polar network for monitoring ultraviolet radiation. American Geophysical Union Antarctic Research Series, 62, 17–37.

    Google Scholar 

  • Brandt, R. E., C. S. Roesler, and S. G. Warren (1999). Spectral albedo, absorptance, and transmittance of Antarctic sea ice. Proceedings of the 5th Conference on Polar Meteorology and Oceanography. American Meteorological Society, Boston, pp. 456–459.

    Google Scholar 

  • Breckenridge, C. J., U. Radok, C. R. Stearns, and D. H. Bromwich (1993). Katabatic winds along the Transantarctic Mountains. In: D. H. Bromwich and C. R. Stearns (eds.), Antarctic Meteorology and Climatology: Studies Based on Automatic Weather Stations (AGU Antarctic Research Series No. 61). American Geophysical Union, Washington, DC, pp. 69–92.

    Google Scholar 

  • Briegleb, B. P. (1992). Delta-Eddington approximation for solar radiation in the NCAR Community Climate Model. Journal of Geophysical Research, 97(D7), 7603–7612.

    Google Scholar 

  • Briegleb, B. P. and D. H. Bromwich (1998). Polar radiation budgets of the NCAR CCM3. Journal of Climate, 11, 1246–1269.

    Google Scholar 

  • Bromwich, D. H. (1989a). Satellite analyses of Antarctic katabatic wind behavior. Bulletin of the American Meteorological Society, 70, 738–749.

    Google Scholar 

  • Bromwich, D. H. (1989b). Satellite observations of katabatic winds blowing from Marie Byrd Land onto the Ross Ice Shelf. Antarctic Journal of the United States, 24(5), 218–221.

    Google Scholar 

  • Bromwich, D. H. and Z. Liu (1996). An observational study of the katabatic wind confluence zone near Siple Coast, West Anarctica. Monthly Weather Review, 124, 462–477.

    Google Scholar 

  • Bromwich, D. H. and C. R. Stearns (eds.) (1993). Antarctic Climatology and Meteorology: Studies Based on Automatic Weather Stations (AGU Antarctic Research Series No. 61). American Geophysical Union, Washington, DC, 207 pp.

    Google Scholar 

  • Bromwich, D. H., T. R. Parish, A. Pellegrini, C. R. Stearns, and G. A. Weidner (1993). Spatial and temporal characteristics of the intense katabatic winds at Terra Nova Bay, Antarctica. In: D. H. Bromwich and C. R. Stearns (eds.), Antarctic Meteorology and Climatology: Studies Based on Automatic Weather Stations (AGU Antarctic Research Series No. 61). American Geophysical Union, Washington, DC, pp. 47–68.

    Google Scholar 

  • Bromwich, D. H., J. F. Carrasco, and J. Turner (1996). A downward developing mesoscale cyclone over the Ross Ice Shelf during winter. The Global Atmosphere and Ocean System, 4, 125–147.

    Google Scholar 

  • Bromwich, D., Z. Liu, A. Rogers, and M. L. Van Woert (1998). Winter atmosphere forcing of the Ross Sea Polynya. In: Ocean, Ice and Atmosphere: Interactions at the Antarctic Continental Margin (AGU Antarctic Research Series No. 75). American Geophysical Union, Washington, DC, pp. 101–133.

    Google Scholar 

  • Bromwich, D. H., R. I. Cullather, and R. W. Grumbine (1999). An assessment of the NCEP operational global spectral model forecasts and analyses for Antarctica during FROST. Weather and Forecasting, 14, 835–850.

    Google Scholar 

  • Bromwich, D. H., J. J. Cassano, T. Klein, G. Heinemann, K. M. Hines, K. Steffen, and J. E. Box (2001). Mesoscale modeling of katabatic winds over Greenland with the Polar MM5. Monthly Weather Review, 129, 2290–2309.

    Google Scholar 

  • Bromwich, D. H., A. J. Monaghan, J. G. Powers, J. J. Cassano, H.-L. Wei, Y.-H. Kuo, and A. Pellegrini (2003). Antarctic mesoscale prediction system (AMPS): A case study from the 2000–01 field season. Monthly Weather Review, 131, 412–434.

    Google Scholar 

  • Carleton, A. M. (1991). Satellite Remote Sensing in Climatology. CRC Press, Boca Raton, FL, 291 pp.

    Google Scholar 

  • Carleton, A. M. and D. A. Carpenter (1989). Intermediate-scale sea ice-atmosphere interactions over high southern latitudes in winter. Geo, 18, 87–101.

    Google Scholar 

  • Carleton, A. M. and D. A. Carpenter (1990). Satellite climatology of “polar lows” and broadscale climatic associations for the Southern Hemisphere. International Journal of Climatology, 10, 219–246.

    Google Scholar 

  • Carleton, A. M. and Y. Song (1997). Synoptic climatology, and interhemispherical associations, of cold air mesocyclones in the Australasian sector. Journal of Geophysical Research, 102(D12), 13873–13887.

    Google Scholar 

  • Carrasco, J. F. and D. H. Bromwich (1993). Satellite and automatic weather station analyses of katabatic surges across the Ross Ice Shelf. In: D. H. Bromwich and C. R. Stearns (eds.), Antarctic Meteorology and Climatology: Studies Based on Automatic Weather Stations (AGU Antarctic Research Series No. 61). American Geophysical Union, Washington, DC, pp. 93–180.

    Google Scholar 

  • Carrasco, J. F. and D. H. Bromwich (1996a). Mesoscale cyclone activity near Terra Nova Bay and Byrd Glacier, Antarctica, during 1991. The Global Atmosphere and Ocean System, 5, 43–72.

    Google Scholar 

  • Carrasco, J. F. and D. H. Bromwich (1996b). A study of mesoscale cyclone activity near the Antarctic Peninsula. Serie Cientifica Instituto Antárctico Chileno, 46, 83–101.

    Google Scholar 

  • Carrasco, J. F. and D. H. Bromwich (1997). A survey of mesocyclones near the Antarctic Peninsula using digital satellite imagery collected near Palmer Station. Serie Cientifica Instituto Antárctico Chileno, 47, 39–57.

    Google Scholar 

  • Carrasco, J. F., D. H. Bromwich, and Z. Liu (1997a). Mesoscale cyclone activity over Antarctica during 1991, 1: Marie Byrd Land. Journal of Geophysical Research, 102(D12), 13923–13937.

    Google Scholar 

  • Carrasco, J. F., D. H. Bromwich, and Z. Liu (1997b). Mesoscale cyclone activity during 1991, 2: Near the Antarctic peninsula. Journal of Geophysical Research, 102(D12), 13939–13954.

    Google Scholar 

  • Carrasco, J. F., D. H. Bromwich, and A. J. Monaghan (2003). Distribution and characteristics of mesoscale cyclones in the Antarctic: Ross Sea eastward to the Weddell Sea. Monthly Weather Review, 131, 289–301.

    Google Scholar 

  • Carsey, F. and H. Zwally (1986). Remote sensing as a research tool. In: N. Untersteiner (ed.), The Geophysics of Sea Ice. Plenum Press, New York, pp. 1021–1098.

    Google Scholar 

  • Cassano, J. J., J. E. Box, D. H. Bromwich, L. Li, and K. Steffen (2001). Verification of Polar MM5 simulations of Greenland’s atmospheric circulation. Journal of Geophysical Research, 106(D24), 33867–33890.

    Google Scholar 

  • Cavalieri, D. J., P. Gloersen, C. L. Parkinson, J. C. Comiso, and H. J. Zwally (1997). Observed hemispheric asymmetry in global sea ice changes, Science, 278, 1104–1106.

    Google Scholar 

  • CEAREX Drift Group (1990). CEAREX drift experiment (Coordinated Eastern ARctic Experiment). EOS Transactions of the American Geophysical Union, 71, 1115–1118.

    Google Scholar 

  • Cess, R. D., M. H. Zhang, P. Minnis, L. Corsetti, E. G. Dutton, B. W. Forgan, D. P. Garber, W. L. Gates, J. J. Hack, E. F. Harrison et al. (1995). Absorption of solar radiation by clouds: Observations versus models. Science, 267, 496–499.

    Google Scholar 

  • Charlson, R. J., J. E. Lovelock, M. O. Andreae, and S. G. Warren (1987). Ocean phytoplankton, atmospheric sulfur, cloud albedo and climate. Nature, 326, 655–661.

    Google Scholar 

  • Chédin, A., N. A. Scott, C. Wahiche, and P. Moulinier (1985). The improved initialization inversion method: A high resolution physical method for temperature retrievals from satellites of the TIROS-N series. Journal of Climate and Applied Meteorology, 24, 128–143.

    Google Scholar 

  • Coakley, J. and C. Bretherton (1982). Cloud cover from high-resolution scanner data: Detecting and allowing from partially filled fields of view. Journal of Geophysical Research, 87(C7), 4917–4932.

    Google Scholar 

  • Collins, W. D., P. J. Rasch, B. E. Eaton, B. Khattatov, J.-F. Lamarque, and C. S. Zender (2001). Simulating aerosols using a chemical transport model with assimilation of satellite aerosol retrievals: Methodology for INDOEX. Journal of Geophysical Research, 106(D7), 7313–7336.

    Google Scholar 

  • Connors, R. W. and C. A. Harlow (1980). A theoretical comparison of texture algorithms. IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-2, 204–222.

    Google Scholar 

  • Crane, R. G. and R. G. Barry (1984). The influence of clouds on climate with a focus on high latitude interactions. Journal of Climatololgy, 4, 71–93.

    Google Scholar 

  • Curry, J. A. and P. J. Webster (1999). Thermodynamics of Atmospheres and Oceans. Academic Press, San Diego, 471 pp.

    Google Scholar 

  • Curry, J. A., J. L. Schramm, M. C. Serreze, and E. E. Ebert (1995). Water vapor feedback over the Arctic Ocean. Journal of Geophysical Research, 100(D7), 14223–14229.

    Google Scholar 

  • Curry, J. A., P. V. Hobbs, M. D. King, D. A. Randall, P. Minnis, G. A. Isaac, J. O. Pinto, T. Uttal, A. Bucholtz, D. G. Cripe et al. (2000). FIRE Arctic Clouds Experiment. Bulletin of the American Meteorological Society, 81, 5–29.

    Google Scholar 

  • D’Aguanno, J. (1986). Use of AVHRR data for studying katabatic winds in Antarctica. International Journal of Remote Sensing, 7, 703–713.

    Google Scholar 

  • D’Almeida, G. A., P. Koepke, and E. P. Shettle (1991). Atmospheric Aerosols: Global Climatology and Radiative Characteristics. A Deepak, Hampton, VA, 559 pp.

    Google Scholar 

  • Dong, X., G. G. Mace, P. Minnis, and D. F. Young (2001). Arctic stratus cloud properties and their impact on the surface radiation budget; Selected cases from FIRE ACE. Journal of Geophysical Research, 106(D14), 15297–15312.

    Google Scholar 

  • Dozier, J. and S. G. Warren (1982). Effect of viewing angle on the infrared brightness temperature of snow. Water Resources Research, 18, 1424–1434.

    Google Scholar 

  • Draine, B. T. and P. J. Flatau (1994). Discrete dipole approximation for scattering calculations. Journal of the Optical Society of America, A11, 1491–1499.

    Google Scholar 

  • Dutton, E. G., R. S. Stone, D. W. Nelson, and B. G. Mendonca (1991). Recent interannual variations in solar radiation, cloudiness, and surface temperature at the South Pole. Journal of Climate, 4, 848–858.

    Google Scholar 

  • Ebert, E. (1987). A pattern recognition technique for distinguishing surface and cloud types in the polar regions, Journal of Climate and Applied Meteorology, 26, 1412–1427.

    Google Scholar 

  • Francis, J. A. (1994). Improvements to TOVS retrievals over sea ice and applications to estimating Arctic energy fluxes. Journal of Geophysical Research, 99(D5), 10395–10408.

    Google Scholar 

  • Francis, J. A. (1997). A method to derive downwelling longwave fluxes at the Arctic surface from TIROS operational vertical sounder data. Journal of Geophysical Research, 102(D2), 1795–1806.

    Google Scholar 

  • Francis, J. A. and A. J. Schweiger (2000). A new window opens to the Arctic. EOS Transactions of the American Geophysical Union, 81, 77–83.

    Google Scholar 

  • Garrett, T. J., L. F. Radke, and P. V. Hobbs (2002). Aerosol effects on cloud emissivity and surface longwave heating in the Arctic. Journal of the Atmospheric Sciences, 59, 769–778.

    Google Scholar 

  • Godin, R. H. (1977). An investigation of synoptic and associated mesoscale patterns leading to significant weather days at McMurdo Station, Antarctica. M.S. thesis, Naval Postgraduate School, Monterey, CA, 114 pp.

    Google Scholar 

  • Grenfell, T. C. and D. K. Perovich (1984). Spectral albedos of sea ice and incident solar irradiance in the Southern Beaufort Sea. Journal of Geophysical Research, 89(C3), 3573–3580.

    Google Scholar 

  • Grenfell, T. C, S. G. Warren, and P. C. Mullen (1994). Reflection of solar radiation by the Antarctic snow surface at ultraviolet, visible, and near-infrared wavelengths. Journal of Geophysical Research, 99(D9), 18669–18684.

    Google Scholar 

  • Grenfell, T. C. and S. G. Warren (1999). Representation of a nonspherical ice particle by a collection of independent spheres for scattering and absorption of radiation. Journal of Geophysical Research, 104(D24), 31697–31709.

    Google Scholar 

  • Groves, D. G. and J. A. Francis (2002). Moisture budget of the Arctic atmosphere from TOVS satellite data. Journal of Geophysical Research, 107(D19), DOI: 10.1029/2001JD001191-ACL11-1-21.

    Google Scholar 

  • Guo, Z., D. H. Bromwich, and J. J. Cassano (2003). Evaluation of Polar MM5 simulations of Antarctic atmospheric circulation. Monthly Weather Review, 131, 384–411.

    Google Scholar 

  • Han, Q., W. B. Rossow, and A. A. Lacis (1994). Near-global survey of effective droplet radius in liquid water clouds using ISCCP data. Journal of Climate, 7, 465–497.

    Google Scholar 

  • Han, W., K. Stamnes, and D. Lubin (1999). Remote sensing of surface and cloud properties in the Arctic from AVHRR measurements. Journal of Applied Meteorology, 38, 989–1012.

    Google Scholar 

  • Haralick, R. M. (1979). Statistical and structural approaches to texture. Proceedings of the IEEE, 67, 786–804.

    Google Scholar 

  • Haralick, R. M., K. S. Shanmugan, and I. Dinstein (1973). Textural features for image classification. IEEE Transactions on Systems, Man and Cybernetics, SMC-3, 610–621.

    Google Scholar 

  • Harrington, J. Y., T. Reisin, W. R. Cotton, and S. M. Kreidenweis (1999). Cloud resolving simulations of Arctic stratus. Part II: Transition-season clouds. Atmospheric Research, 51, 45–75.

    Google Scholar 

  • Haywood, J. M. and V. Ramaswamy (1998). Global sensitivity studies of the direct radiative forcing due to anthropogenic sulfate and black carbon aerosols. Journal of Geophysical Research, 103(D6), 6043–6058.

    Google Scholar 

  • Haywood, J. M. and K. P. Shine (1995). The effect of anthropogenic sulfate and soot aerosol on the clear sky planetary radiation budget. Geophysical Research Letters, 22, 603–606.

    Google Scholar 

  • Hecht-Nielsen, R. (1990). Neuro computing. Addison-Wesley, 430 pp.

    Google Scholar 

  • Herman, G. F. and J. A. Curry (1984). Observational and theoretical studies of solar radiation in Arctic stratus clouds. Journal of Climate and Applied Meteorology, 23, 5–24.

    Google Scholar 

  • Herman, L. D. (1983). High frequency satellite cloud motion at high latitudes. Proceedings of the 8th Symposium on Meteorological Observations and Instrumentation, American Meteorological Society, Anaheim, CA, 17–22 January, pp. 465–468.

    Google Scholar 

  • Herman, L. D. and F. W. Nagle (1994). A comparison of POES satellite derived winds techniques in the Arctic at CIMSS. Proceedings of the 7th Conference on Satellite Meteorology and Oceanography, American Meteorological Society, Monterey, CA, 6–10 June, pp. 444–447.

    Google Scholar 

  • Hobbs, P. V. and A. L. Rangno (1998). Microstructures of low and middle-level clouds over the Beaufort Sea. Quarterly Journal of the Royal Meteorological Society, 124, 2035–2071.

    Google Scholar 

  • Hobbs, P. V., J. S. Reid, J. D. Herring, J. D. Nance, R. E. Weiss, J. L. Ross, D. A Hegg, R. D. Ottmar, and C. A. Liousse (1997). Particle and trace-gas measurements in the smoke from prescribed burns of forest products in the Pacific Northwest. In: J. S. Levine (ed.), Biomass Burning and Global Change. MIT Press, Cambridge, MA, pp. 697–715.

    Google Scholar 

  • Hu, Y. X. and K. Stamnes (1993). An accurate parameterization of the radiative properties of water clouds suitable for use in climate models. Journal of Climate, 6, 728–742.

    Google Scholar 

  • Intrieri, J. M., C. W. Fairall, M. D. Shupe, P. O. G. Persson, E. L. Andreas, P. S. Guest, and R. E. Moritz (2002). An annual cycle of Arctic surface cloud forcing at SHEBA. Journal of Geophysical Research, 107(C10), DOI: 10.1029/2000JC000439—SHE13-1-14.

    Google Scholar 

  • IPCC (2001). Climate Change 2001: The Scientific Basis (International Panel on Climate Change). Cambridge University Press, New York, 881 pp.

    Google Scholar 

  • Irvine, W. M. and J. B. Pollack (1968). Infrared optical properties of water and ice spheres. Icarus, 8, 324–360.

    Google Scholar 

  • Johannessen, O. M., E. V. Shalina, and M. W. Miles (1999). Satellite evidence for Arctic sea ice cover in transformation. Science, 286, 1937–1939.

    Google Scholar 

  • Kaufmann, Y. J., L. P. V. Hobbs, V. W. J. H. Kirchhoff, P. Artaxo, L. A. Remer, B. N. Holben, M. D. King, D. E. Ward, E. M. Prins, K. M. Longo et al. (1998). Smoke, clouds, and radiation-Brazil (SCAR-B) experiment. Journal of Geophysical Research, 103(D24), 31783–31808.

    Google Scholar 

  • Key, J. R. (1990). Cloud cover analysis with Arctic Advanced Very High Resolution Radiometer data, 2: Classification with spectral and textural measures. Journal of Geophysical Research, 95(D6), 7661–7675.

    Google Scholar 

  • Key, J. R. (1994). The area coverage of geophysical fields as a function of sensor field-of-view. Remote Sensing of Environment, 48, 339–346.

    Google Scholar 

  • Key, J. R. (1999). The Cloud and Surface Parameter Retrieval (CASPR) System for Polar AVHRR. Cooperative Institute for Meteorological Satellite Studies, University of Wisconsin, Madison, WI, 59 pp.

    Google Scholar 

  • Key, J. R. and R. G. Barry (1989). Cloud cover analysis with Arctic AVHRR data, 1: Cloud detection. Journal of Geophysical Research, 94(D15), 18521–18535.

    Google Scholar 

  • Key, J.R. and M. Haefliger (1992). Arctic ice surface temperature retrieval from AVHRR thermal channels. Journal of Geophysical Research, 97(D5), 5885–5893.

    Google Scholar 

  • Key, J. R. and J. M. Intrieri (2000). Cloud particle phase determination with the AVHRR. Journal of Applied Meteorology, 39, 1797–1804.

    Google Scholar 

  • Key, J., J. A. Maslanik, and A. J. Schweiger (1989). Classification of merged AVHRR and SMMR Arctic data with neural networks. Photogrammetric Engineering and Remote Sensing, 55, 1331–1338.

    Google Scholar 

  • Key, J. and A. J. Schweiger (1998). Tools for atmospheric radiative transfer: Streamer and FluxNet. Computers & Geoscience, 24, 443–451.

    Google Scholar 

  • Key, J. R., A. J. Schweiger, and R. S. Stone (1997). Expected uncertainty in satellite-derived estimates of the surface radiation budget at high latitudes. Journal of Geophysical Research, 102(C7), 15837–15847.

    Google Scholar 

  • Key, J. R., C. S. Velden, and D. Santek (2001). High-latitude cloud-drift and water vapor winds from MODIS. American Meteorological Society 6th Conference on Polar Meteorology and Oceanography, 5B.7.

    Google Scholar 

  • Kidder, S. Q. and T. H. Vonder Haar (1995). Satellite Meteorology. Academic Press, San Diego, 466 pp.

    Google Scholar 

  • Kidwell, K. B. (1991). NOAA Polar Orbiter Data User’s Guide. NOAA/NESDIS/NCDC (availiable from NOAA/NESDIS, 4401 Suitland Road, rm. 2069, Suitland, Maryland 20233).

    Google Scholar 

  • Kiehl, J. T. and B. P. Briegleb, (1993). The relative roles of sulfate aerosols and greenhouse gases in climate forcing, Science, 260, 311–314.

    Google Scholar 

  • Keihl, J. T., T. L. Schneider, P. J. Rasch, M. C. Barth, and J. Wong (2000). Radiative forcing due to sulfate aerosols from simulations with the National Center for Atmospheric Research climate model, version 3. Journal of Geophysical Research, 105(D1), 1441–1457.

    Google Scholar 

  • King, J. C. and J. Turner (1997). Antarctic Meteorology and Climatology. Cambridge University Press, Cambridge, 409 pp.

    Google Scholar 

  • King, M. D. (1987). Determination of the scaled optical thickness of clouds from reflected solar radiation measurements. Journal of the Atmospheric Sciences, 44, 1734–1751.

    Google Scholar 

  • Kneizys, F. X., E. P. Shettle, L. W. Abreu, J. H. Chetwynd, G. P. Anderson, W. O. Gallery, J. E. A. Selby, and S. A. Clough (1988). User’s Guide to LOWTRAN 7 (Rep. AFGL-TR-88-0177, Environmental Research Paper No. 1010). Air Force Geophysics Laboratory, Bedford, MA, 137 pp.

    Google Scholar 

  • Koepke, P. (1989). Removal of atmospheric effects from AVHRR albedos. Journal of Applied Meteorology, 28, 1341–1348.

    Google Scholar 

  • Kondratyev, K. Ya., O. M. Johannessen, and V. V. Melentyev (1996). High Latitude Climate and Remote Sensing. Wiley/Praxis, Chichester, UK, 200 pp.

    Google Scholar 

  • Ledley, T. S. (1993). Variations in snow on sea ice: A mechanism for producing climate variations. Journal of Geophysical Research, 98(D6), 10401–10410.

    Google Scholar 

  • Leese, J. A., C. S. Novak, and B. P. Clark (1971). An automated technique for obtaining cloud motion from geosynchronous satellite data using cross correlation. Journal of Applied Meteorology, 10, 118–132.

    Google Scholar 

  • Leontyeva, E. and K. Stamnes (1994). Estimations of cloud optical thickness from ground-based measurements of incoming solar radiation in the Arctic. Journal of Climate., 7, 566–578.

    Google Scholar 

  • Li, Z. and H. G. Leighton (1992). Narrowband to broadband conversion with spatially autocorrelated reflectance measurement. Journal of Applied Meteorology, 31, 421–433.

    Google Scholar 

  • Li, Z., H. G. Leighton, and R. D. Cess (1993a). Surface net solar radiation estimated from satellite measurements: Comparisons with tower observations. Journal of Climate, 6, 1764–1772.

    Google Scholar 

  • Li, Z., H. G. Leighton, K. Masuda, and T. Takashima (1993b). Estimation of SW flux absorbed at the surface from TOA reflected flux. Journal of Climate, 6, 317–330.

    Google Scholar 

  • Light, B., H. Eicken, G. A. Maykut, and T. C. Grenfell (1998). The effect of included particulates on the spectral albedo of sea ice. Journal of Geophysical Research, 103(C12), 27739–27752.

    Google Scholar 

  • Liljequist, G. H. (1956). Energy Exchange of an Antarctic Snow Field: Short-wave Radiation (Maudheim 71°03′S, 10°56′W), Volume 2, Part 1A: Norwegian-British-Swedish Antarctic Expedition, 1949–52, Scientific Results. Norsk Polarinstitutt, Tromsø, Norway, 304 pp.

    Google Scholar 

  • Lindsay, R. W. and D. A. Rothrock (1994a). Arctic sea ice albedo from AVHRR. Journal of Climate, 7, 566–578.

    Google Scholar 

  • Lindsay, R. W. and D. A. Rothrock (1994b). Arctic sea ice surface temperature from AVHRR. Journal of Climate, 7, 174–183.

    Google Scholar 

  • Liou, K. N. (1992). Radiation and Cloud Processes in the Atmosphere. Oxford University Press, New York, 487 pp.

    Google Scholar 

  • Liu, Z. and D. H. Bromwich (1997). Dynamics of the katabatic wind confluence zone near Siple Coast, West Antarctica. Journal of Applied Meteorology, 36, 97–118.

    Google Scholar 

  • Lubin, D. (1994). Infrared radiative properties of the maritime Antarctic atmosphere. Journal of Climate, 7, 121–140.

    Google Scholar 

  • Lubin, D. and J. E. Frederick (1991). The ultraviolet radiation environment of the Antarctic Peninsula: The roles of ozone and cloud cover. Journal of Applied Meteorology, 30, 478–493.

    Google Scholar 

  • Lubin, D., and E. Morrow (1998). Evaluation of an AVHRR cloud detection and classification method over the central Arctic Ocean. Journal of Applied Meteorology, 37, 166–183.

    Google Scholar 

  • Lubin, D. and A. S. Simpson (1994). The longwave emission signature of urban pollution: Radiometric FTIR measurement. Geophysical Research Letters, 21, 37–40.

    Google Scholar 

  • Lubin, D. and P. J. Weber (1995). The use of cloud reflectance functions with satellite data for surface radiation budget estimation. Journal of Applied Meteorology, 34, 1333–1347.

    Google Scholar 

  • Lubin, D., P. Ricchiazzi, A. Payton, and C. Gautier (2002a). The significance of multidimensional radiative transfer effects measured in surface fluxes at an Antarctic coastline. Journal of Geophysical Research, 107(D19), 4387, DOI: 10.1029/2001JD002030—AAC10-1-9.

    Google Scholar 

  • Lubin, D., S. K. Satheesh, G. McFarquar, and A. J. Heymsfield (2002b). The longwave radiative forcing of Indian Ocean tropospheric aerosol. Journal of Geophysical Research-Atmospheres, 107(D19), 4387, DOI: 10.1029/2001JD001183.

    Google Scholar 

  • Mahesh, A., V. P. Walden, and S. G. Warren (2001a). Ground-based infrared remote sensing of cloud properties over the Antarctic Plateau, Part I: Cloud-base heights. Journal of Applied Meteorology, 40, 1265–1278.

    Google Scholar 

  • Mahesh, A., V. P. Walden, and S. G. Warren (2001b). Ground-based infrared remote sensing of cloud properties over the Antarctic Plateau, Part II: Cloud optical depths and particle sizes. Journal of Applied Meteorology, 40, 1279–1294.

    Google Scholar 

  • Maykut, G. A. (1982). Large-scale heat exchange and ice production in the central Arctic. Journal of Geophysical Research, 87(C10), 7971–7984.

    Google Scholar 

  • McClain, E. P., W. G. Pichel, and C. C. Walton (1985). Comparative performance of AVHRR-based multichannel sea surface temperatures. Journal of Geophysical Research, 90(C6), 11587–11601.

    Google Scholar 

  • McFarquar, G. J. and A. J. Heymsfield (2001). Parameterizations of INDOEX microphysical measurements and calculations of cloud susceptibility: Applications for climate studies. Journal of Geophysical Research, 106, 28675–28698.

    Google Scholar 

  • Menzel, W. P. (2001). Cloud tracking with satellite imagery: From the pioneering work of Ted Fujita to the present. Bulletin of the American Meteorological Society, 82, 33–47.

    Google Scholar 

  • Menzel, W. P., W. L. Smith, and T. R. Stewart (1983). Improved cloud motion wind vector and altitude assignment using VAS. Journal of Climate and Applied Meteorology, 22, 377–384.

    Google Scholar 

  • Meywerk, J. and V. Ramanathan (1999). Observations of the spectral clear-sky aerosol forcing over the tropical Indian Ocean. Journal of Geophysical Research, 104(D20), 24359–24370.

    Google Scholar 

  • Minnis, P., V. Chakrapani, D. R. Doelling, L. Nguyen, R. Palikonda, D. A. Spangenberg, T. Uttal, R. F. Arduini, and M. Shupe (2001). Cloud coverage during FIRE ACE derived from AVHRR Data. Journal of Geophysical Research, 106(D14), 15215–15233.

    Google Scholar 

  • Mischenko, M. I., I. V. Geogdzhayev, B. Cairns, W. B. Rossow, and A. A. Lacis (1999). Aerosol retrievals over the ocean by use of channels 1 and 2 AVHRR data: Sensitivity analysis and preliminary results. Applied Optics, 38, 7325–7341.

    Google Scholar 

  • Mo, K. C, J. Pfaendtner, and E. Kalnay (1987). A GCM study on the maintenance of the June 1982 blocking in the Southern Hemisphere. Journal of the Atmospheric Sciences, 44, 1123–1142.

    Google Scholar 

  • Morel, P., M. Desbois, and G. Szewach (1978). A new insight into the troposphere with the water vapor channel of Meteosat. Bulletin of the American Meteorological Society, 59, 711–714.

    Google Scholar 

  • Moritz, R. E., C. M. Bitz, and E. J. Stieg (2002). Dynamics of recent climate change in the Arctic. Science, 297, 1497–1502.

    Google Scholar 

  • Morley, B. M., E. E. Uthe, and W. Viezee (1989). Airborne lidar observations of clouds in the Antarctic troposphere. Geophysical Research Letters, 16, 491–4194.

    Google Scholar 

  • Nakajima, T. and M. D. King (1990). Determination of the optical thickness and effective particle radius of clouds from reflected solar radiation measurements, Part I: Theory. Journal of the Atmospheric Sciences, 47, 1878–1893.

    Google Scholar 

  • Nakajima, T., M. D. King, J. D. Spinhirne, and L. F. Radke (1991). Determination of the optical thickness and effective particle radius of clouds from reflected solar radiation measurements, Part II: Marine stratocumulus observations. Journal of the Atmospheric Sciences, 48, 728–750.

    Google Scholar 

  • Nemesure, S., R. D. Cess, E. G. Dutton, J. J. DeLuisi, Z. Li, and H. G. Leighton (1994). Impact of clouds on the shortwave radiation budget of the surface-atmosphere system for snow-covered surfaces. Journal of Climate, 7, 579–585.

    Google Scholar 

  • Nieman, S. J., W. P. Menzel, C. M. Hayden, D. Gray, S. T. Wanzong, C. S. Velden, and J. Daniels (1997). Fully automated cloud-drift winds in NESDIS operations. Bulletin of the American Meteorological Society, 78, 1121–1133.

    Google Scholar 

  • Nilsson, B. (1979). Meteorological influence on aerosol extinction in the 0.2-40-µm wavelength range. Applied Optics, 18, 3457–3473.

    Google Scholar 

  • O’Dowd, C. D. and M. H. Smith (1993). Physico-chemical properties of aerosols over the Northeast Atlantic: Evidence for wind-speed-related sub-micron sea salt aerosol production. Journal of Geophysical Research, 98(D1), 1137–1149.

    Google Scholar 

  • Olsson, P. Q., J. Y. Harrington, G. Feingold, W. R. Cotton, and S. M. Kreidenweis (1998). Exploratory cloud-resolving simulations of boundary-layer Arctic stratus clouds, Part I: Warm-season clouds. Atmospheric Research, 48, 573–597.

    Google Scholar 

  • Overland, J. E. and P. S. Guest (1991). The Arctic snow and air temperature budget over sea ice during winter. Journal of Geophysical Research, 96(C3), 4651–4662.

    Google Scholar 

  • Overland, J. E., M. Wang, and N. A. Bond (2002). Recent temperature changes in the Western Arctic during spring. Journal of Climate, 15, 1702–1716.

    Google Scholar 

  • Parish, T. R. and D. H. Bromwich (1987). The surface windfield over the Antarctic ice sheets. Nature, 328, 51–54.

    Google Scholar 

  • Parish, T. R. and D. H. Bromwich (1989). Instrumented aircraft observations of the katabatic wind regime near Terra Nova Bay. Monthly Weather Review, 117, 1570–1585.

    Google Scholar 

  • Perovich, D. K., E. L. Andrews, J. A. Curry, H. Eiken, C. W. Fairall, T. C. Grenfell, P. S. Guest, J. Intrieri, D. Kadko, R. W. Lindsay et al. (1999). Year on ice gives climate insights. EOS Transactions of the American Geophysical Union, 80, 481–486.

    Google Scholar 

  • Pilewskie, P. and F. P. J. Valero (1993). Optical depths and haze particle sizes during AGASP III. Atmospheric Environment, 27A, 2895–2899.

    Google Scholar 

  • Pinto, J. O. (1998). Autumnal mixed-phase cloudy boundary layers in the Arctic. Journal of the Atmospheric Sciences, 55, 2016–2038.

    Google Scholar 

  • Platnick, S. and S. Twomey (1994). Determining the susceptibility of cloud albedo to changes in droplet concentration with the AVHRR. Journal of Applied Meteorology, 33, 334–347.

    Google Scholar 

  • Platnick, S., J. Y. Li, M. D. King, H. Gerber, and P. Hobbs (2001). A solar reflectance method for retrieving the optical thickness and droplet size for liquid water clouds over snow and ice surfaces. Journal of Geophysical Research, 106(D14), 15185–15199.

    Google Scholar 

  • Polissar, A. V., P. K. Hopke, W. C. Malm, and J. F. Sisler (1998). Atmospheric aerosol over Alaska, I: Spatial and seasonal variability. Journal of Geophysical Research, 103(D15), 19035–19044.

    Google Scholar 

  • Rajeev, K. and V. Ramanathan (2001). Direct observations of clear-sky aerosol radiative forcing from space during the Indian Ocean Experiment. Journal of Geophysical Research, 106(D15), 17221–17235.

    Google Scholar 

  • Ramanathan, V., R. D. Cess, E. F. Harrison, P. Minnis, B. R. Barkstrom, E. Ahmad, and D. Hartmann (1989). Cloud-radiative forcing and climate: Results from the Earth Radiation Budget Experiment. Science, 243, 57–63.

    Google Scholar 

  • Ramanathan, V., B. Subasilar, G. J. Zhang, W. Conant, R. D. Cess, J. T. Kiehl, H. Grassl, and L. Shi (1995). Warm pool head budget and short-wave cloud forcing: A missing physics? Science, 267, 499–503.

    Google Scholar 

  • Ramanathan, V., P. J. Crutzen, J. Lelieveld, A. P. Mitra, D. Althausen, J. Anderson, M. O. Andreae, W. Cantrell, G. R. Cass, C. E. Chung et al. (2001). Indian Ocean experiment: An integrated analysis of the climate forcing and effects of the great Indo-Asian haze. Journal of Geophysical Research, 106(D22), 28371–28398.

    Google Scholar 

  • Rigor, I. G., R. L. Colony, and S. Martin (2000). Variations in surface air temperature observations in the Arctic, 1979–97. Journal of Climate, 13, 896–914.

    Google Scholar 

  • Rosenfeld, D. (2000). Suppression of rain and snow by urban and industrial air pollution. Science, 287, 1793–1796.

    Google Scholar 

  • Rossow, W. B., A. W. Walker, D. E. Beuschel, and M. D. Roiter (1996). International Satellite Cloud Climatology Project (ISCCP) Documentation of New Cloud Datasets. World Meteorological Organization, Geneva, 115 pp.

    Google Scholar 

  • Saxena, V. K. and F. H. Ruggiero (1990). Antarctic Coastal Stratus Clouds: Microstructure and Acidity (AGU Antarctic Research Series No. 50). American Geophysical Union, Washington, DC, pp. 7–18.

    Google Scholar 

  • Schwalb, A. (1978). The TIROS-N/NOAA A-G Satellite Series (NOAA Tech. Memo. NESS-95). U.S. Department of Commerce, Washington, DC, 95 pp.

    Google Scholar 

  • Schweiger, A. J. and J. R. Key (1994). Arctic Ocean radiative fluxes and cloud forcing estimated from the ISCCP C2 cloud dataset, 1983–1990. Journal of Applied Meteorology, 33, 948–963.

    Google Scholar 

  • Schweiger, A. J., R. W. Lindsay, J. R. Key, and J. A. Francis (1999). Arctic clouds in multiyear satellite data sets. Geophysical Research Letters, 26, 1845–1848.

    Google Scholar 

  • Schweiger, A. J., R. W. Lindsay, J. A. Francis, J. Key, J. M. Intrieri, and M. D. Shupe (2002). Validation of TOVS Path-P data during SHEBA. Journal of Geophysical Research, 107(C10), DOI: 10.1029/2000JC000453-SHE17-1-20.

    Google Scholar 

  • Schwerdtfeger, W. (1984). Weather and Climate of the Antarctic. Elsevier, Amsterdam, 261 pp.

    Google Scholar 

  • Scott, N. A. and A. Chédin (1981). A fast line-by-line method for atmospheric absorption computations: The “4A” Automatized Atmospheric Absorption Atlas. Journal of Applied Meteorology, 20, 801–812.

    Google Scholar 

  • Scott, N. A., A. Chédin, R. Armante, J. Francis, C. Stubenrauch, J.-P. Charboneau, F. Chevalier, C. Claud, and F. Cheruy (1999). Characteristics of the TOVS Pathfinder Path-B Dataset. Bulletin of the American Meteorological Society, 80, 2679–2701.

    Google Scholar 

  • Shaw, G. E. (1982). Atmospheric turbidity in the polar regions. Journal of Applied Meteorology, 21, 1080–1088.

    Google Scholar 

  • Shindell, D. T., R. L. Miller, G. A. Schmidt, and L. Pandolfo (1999). Simulation of recent northern winter climate trends by greenhouse-gas forcing. Nature, 399, 452–455.

    Google Scholar 

  • Slingo, A., S. Nicholls, and J. Schmetz (1982). Aircraft observations of marine stratocumulus during JASIN. Quarterly Journal of the Royal Meteorological Society, 108, 833–856.

    Google Scholar 

  • Smith, S. R. and C. R. Stearns (1993). Antarctic climate anomalies surrounding the minimum in the Southern Oscillation Index. In: D. H. Bromwich and C. R. Stearns (eds.), Antarctic Climatology and Meteorology: Studies Based on Automatic Weather Stations (AGU Antarctic Research Series No. 61). American Geophysical Union, Washington, DC, pp. 149–174.

    Google Scholar 

  • Smith, W. L., H. M. Woolf, and W. L. Jacob (1970). A regression method for obtaining realtime temperature and geopotential height profiles from satellite spectrometer measurements and its application to Nimbus-3SIRS observations. Monthly Weather Review, 98, 604–611.

    Google Scholar 

  • Smith, W. L., H. M. Woolf, C. M. Hayden, D. Q. Wark, and L. M. McMillin (1979). The TIROS-N operational vertical sounder. Bulletin of the American Meteorological Society, 60, 1177–1187.

    Google Scholar 

  • Sokolik, I. N. and O. B. Toon (1999). Incorporation of mineralogical composition into models of the radiative properties of mineral aerosol from UV to IR wavelengths. Journal of Geophysical Research, 104(D8), 9423–9444.

    Google Scholar 

  • Somerville, R. C. J. and L. A. Remer (1984). Cloud optical depth feedbacks in the CO2 climate problem. Journal of Geophysical Research, 89(D6), 9668–9672.

    Google Scholar 

  • Spinhirne, J. D. (1993). Micro pulse lidar. IEEE Transactions on Geoscience and Remote Sensing, 31, 48–55.

    Google Scholar 

  • Stamnes, K., J. Slusser, M. Bowen, C. R. Booth, and T. Lucas (1990). Biologically effective ultraviolet radiation, total ozone abundance, and cloud optical depth at McMurdo Station, Antarctica, September 15, 1988 through April 15, 1989. Geophysical Research Letters, 17, 2181–2184.

    Google Scholar 

  • Stamnes, K., R. G. Ellingson, J. A. Curry, J. E. Walsh, and B. D. Zak (1999). Review of science issues, deployment strategy, and status for the ARM North Slope of Alaska—Adjacent Arctic Ocean Climate Research Site. Journal of Climate, 12, 46–63.

    Google Scholar 

  • Stearns, C. R. and M. A. Lazzara (1999). Six years of composite infra-red images south of Forty South at three hourly intervals. Abstracts, IUGG 99 Conference, Birmingham, UK. International Union of Geodesy and Geophysics, Boulder, CO, p. B119.

    Google Scholar 

  • Stearns, C. R., L. M. Keller, G. A. Weidner, and M. Sievers (1993). Monthly mean climatic data for Antarctic automatic weather stations. In: D. H. Bromwich and C. R. Stearns (eds.), Antarctic Climatology and Meteorology: Studies Based on Automatic Weather Stations (AGU Antarctic Research Series No. 61). American Geophysical Union, Washington, DC, pp. 1–21.

    Google Scholar 

  • Stephens, G. L. (1978). Radiation profiles in extended water clouds, II: Parameterization schemes. Journal of the Atmospheric Sciences, 35, 2123–2132.

    Google Scholar 

  • Stephens, G. L. and C. M. R. Platt (1987). Aircraft observations of the radiative and microphysical properties of stratocumulus and cumulus cloud field. Journal of Applied Meteorology, 26, 1243–1269.

    Google Scholar 

  • Stone, R., T. Mefford, E. Dutton, E. Longenecker, B. Halter, and D. Endres (1996). Barrow Surface Radiation Balance Measurements, January 1992 to December 1994 (NOAA Data Report ERL CMDL-11). U.S. Department of Commerce, Washington, DC, 81 pp.

    Google Scholar 

  • Stone, R. S. (1993). Properties of austral winter clouds derived from radiometric profiles at the South Pole. Journal of Geophysical Research, 98(C7), 12961–12971.

    Google Scholar 

  • Stroeve, J., A. Nolin, and K. Steffen (1997). Comparison of AVHRR-derived and in situ surface albedo over the Greenland ice sheet. Remote Sensing of Environment, 62, 262–276.

    Google Scholar 

  • Stubenrauch, C. J., W. B. Rossow, F. Cheruy, N. A. Scott, and A. Chédin (1999). Clouds as seen by satellite sounders (3I) and imagers (ISCCP), Part I: Evaluation of cloud parameters. Journal of Climate, 12, 2189–2213.

    Google Scholar 

  • Suttles, J. T., R. N. Green, P. Minnis, G. L. Smith, W. F. Staylor, B. A. Wielicki, I. J. Walker, D. F. Young, V. R. Taylor, and L. L. Stowe (1988). Angular Radiation Models for Earth-Atmosphere System, Vol. I: Shortwave Radiation (NASA Reference Publication No. 1184). National Aeronautics and Space Administration, Washington, DC, 144 pp.

    Google Scholar 

  • Swithinbank, C. (1973). Higher resolution satellite pictures. Polar Record, 16, 739–751.

    Google Scholar 

  • Taylor, J. R. (1982). An Introduction to Error Analysis. University Science Books, Mill Valley, CA, 270 pp.

    Google Scholar 

  • Taylor, V. R. and L. L. Stowe (1984). Atlas of Reflectance Patterns for Uniform Earth and Cloud Surfaces (Nimbus-7 ERB-61 days) (NOAA Tech. Rep. NESDIS No. 10). National Oceanic and Atmospheric Administration, Silver Spring, MD, 66 pp.

    Google Scholar 

  • Tegen, I., A. A. Lacis, and I. Fung (1996). The influence on climate forcing of mineral aerosols from disturbed soils. Nature, 380, 419–422.

    Google Scholar 

  • Thomason, L. W., A. B. Herber, T. Yamanouchi, and K. Sato (2003). Arctic study on tropospheric aerosol and radiation: Comparison of tropospheric aerosol extinction profiles measured by airborne photometer and SAGE II. Geophysical Research Letters, 30, 1328–1331.

    Google Scholar 

  • Thompson, D. W. J. and S. Solomon (2002). Interpretation of recent Southern Hemisphere climate change. Science, 296, 895–899.

    Google Scholar 

  • Thompson, D. W. J. and J. M. Wallace (1998). The Arctic Oscillation signature in the wintertime geopotential height and temperature fields. Geophysical Research Letters, 25, 1297–1300.

    Google Scholar 

  • Thompson, D. W. J. and J. M. Wallace (2000). Annular modes in the extratropical circulation, Part I: Month-to-month variability. Journal of Climate, 13, 1000–1016.

    Google Scholar 

  • Thompson, D. W. J. and J. M. Wallace (2001). Regional climate impacts of the Northern Hemisphere annular mode. Science, 293, 85–89.

    Google Scholar 

  • Trenberth, K. E. (1980). Planetary waves at 500 mb in the Southern Hemisphere. Monthly Weather Review, 108, 1378–1389.

    Google Scholar 

  • Tsay, S.-C. and K. Jayaweera (1984). Physical characteristics of Arctic stratus clouds. Journal of Applied Meteorology, 23, 584–596.

    Google Scholar 

  • Tsay, S.-C, K. Stamnes, and K. Jayaweera (1989). Radiative energy budget in the cloudy and hazy Arctic. Journal of the Atmospheric Sciences, 46, 1002–1018.

    Google Scholar 

  • Turner, J. and D. E. Warren (1989). Cloud track winds in the polar regions from sequences of AVHRR images. International Journal of Remote Sensing, 10, 695–703.

    Google Scholar 

  • Twomey, S. (1977). The influence of pollution on the short wave albedo of clouds. Journal of the Atmospheric Sciences, 34, 1149–1152.

    Google Scholar 

  • Uttal, T., J. A. Curry, M. G. McPhee, D. K. Perovich, R. E. Moritz, J. A. Maslanik, P. S. Guest, H. L. Stern, J. A. Moore, R. Turenne et al. (2002). Surface heat budget of the Arctic Ocean. Bulletin of the American Meteorological Society, 83, 255–275.

    Google Scholar 

  • Valero, F. P. J., T. P. Ackerman, and W. J. Y. Gore (1984). The absorption of solar radiation by the Arctic atmosphere during the haze season and its effects on the radiation balance. Geophysical Research Letters, 11, 465–468.

    Google Scholar 

  • Valero, F. P. J., T. P. Ackerman, W. J. Y. Gore, and M. L. Weil (1988). Radiation studies in the Arctic. In: Aerosols and Climate. A. Deepak, Hampton, VA.

    Google Scholar 

  • Valero, F. P. J., P. Minnis, S. K. Pope, A. Bucholtz, B. C. Bush, D. R. Doelling, W. L. Smith Jr., and X. Dong (2000). Absorption of solar radiation by the atmosphere as determined using satellite, aircraft, and surface data during the Atmospheric Radiation Measurement Enhanced Shortwave Experiment (ARESE). Journal of Geophysical Research, 105(D4), 4743–4758.

    Google Scholar 

  • van de Hulst, H. C. (1957). Light Scattering by Small Particles. Dover, New York, 470 pp.

    Google Scholar 

  • Velden, C. S., C. M. Hayden, S. J. Nieman, W. P. Menzel, S. Wanzong, and J. S. Goerss (1997). Upper-tropospheric winds derived from geostationary satellite water vapor observations. Bulletin of the American Meteorological Society, 78, 173–195.

    Google Scholar 

  • Wahiche, C, N. A. Scott, and A. Chédin (1986). Cloud detection and cloud parameters retrieval from satellites of the TIROS-N series. Ann. Geophys., 4, 207–222.

    Google Scholar 

  • Walden, V. P., S. G. Warren, and F. J. Murcray (1998). Measurements of the downward longwave radiation spectrum over the Antarctic Plateau and comparisons with a line-by-line radiative transfer model for clear skies. Journal of Geophysical Research, 103(D4), 3825–3846.

    Google Scholar 

  • Walden, V. P., S. G. Warren, and E. Tuttle (2003). Atmospheric ice crystals over the Antarctic Plateau in winter. Journal of Applied Meteorology, 42, 1391–1405.

    Google Scholar 

  • Wang, X. and J. R. Key (2003). Recent trends in Arctic surface, cloud, and radiation properties from space. Science, 299, 1725–1728.

    Google Scholar 

  • Warren, S. G. (1982). Optical properties of snow. Reviews of Geophysics and Space Physics, 20, 67–89.

    Google Scholar 

  • Warren, S. G. (1984a). Optical constants of ice from the ultraviolet to the microwave. Applied Optics, 23, 1206–1223.

    Google Scholar 

  • Warren, S. G. (1984b). Impurities in snow: Effects on albedo and snowmelt. Annals of Glaciology, 5, 177–179.

    Google Scholar 

  • Warren, S. G. and A. D. Clarke (1990). Soot in the atmosphere and snow surface of Antarctica. Journal of Geophysical Research, 95(D2), 1811–1816.

    Google Scholar 

  • Warren, S. G. and W. J. Wiscombe (1980). A model for the spectral albedo of snow, Part II: Snow containing atmospheric aerosols. Journal of the Atmospheric Sciences, 37, 2734–2745.

    Google Scholar 

  • Warren, S. G., S. C. Roesler, and R. E. Brandt (1997). Solar radiation processes in the East Antarctic sea ice zone. Antarctic Journal of the United States (Annual Review), 32, 185–187.

    Google Scholar 

  • Warren, S. G., C. J. Hahn, J. London, R. M. Chervin, and R. L. Jenne (1988). Global Distributions of Total Cloud Cover and Cloud Type Amounts over the Ocean (NCAR TN-317+STR). National Center for Atmospheric Research, Boulder, CO, 288 pp.

    Google Scholar 

  • Weinreb, M. P., G. Hamilton, and S. Brown (1990). Nonlinearity corrections in calibration of Advanced Very High Resolution Radiometer infrared channels. Journal of Geophysical Research, 95(C5), 7381–7388.

    Google Scholar 

  • Welch, R. M., S. K. Sengupta, A. K. Goroch, P. Rabindra, N. Rangaraj, and M. S. Navar (1992). Polar cloud and surface classification using AVHRR imagery: An inter-comparison of methods. Journal of Applied Meteorology, 31, 405–420.

    Google Scholar 

  • Wendler, G., J. C. André, P. Pettré, J. Gosnik, and T. Parish (1993). Katabatic winds in Adélie Coast. In: D. H. Bromwich and C. R. Stearns (eds.), Antarctic Meteorology and Climatology: Studies Based on Automatic Weather Stations (AGU Antarctic Research Series No. 61). American Geophysical Union, Washington, DC, pp. 23–46.

    Google Scholar 

  • Weszka, J. S., C. R. Dyer, and A. Rosenfeld (1976). A comparative study of texture measures for terrain classification. IEEE Transactions on Systems, Man and Cybernetics, SMC-6, 2269–2285.

    Google Scholar 

  • Wiscombe, W. J. and S. G. Warren (1980). A model for the spectral albedo of snow, Part I: Pure snow, Journal of the Atmospheric Sciences, 37, 2712–2733.

    Google Scholar 

  • Xiong, X., W. Li, D. Lubin, and K. Stamnes (2002a). Evaluating the principles of cloud remote sensing with AVHRR and MAS imagery over SHEBA. Journal of Geophysical Research, 107(C10), 8036, DOI: 10.1029/2000JC000424-SHE10-1-13.

    Google Scholar 

  • Xiong, X., D. Lubin, W. Li, and K. Stamnes (2002b). A critical examination of satellite cloud retrieval from AVHRR in the Arctic using SHEBA data. Journal of Applied Meteorology, 41, 1195–1209.

    Google Scholar 

  • Xiong, X., K. Stamnes, and D. Lubin (2002c). Surface albedo over the Arctic Ocean derived from AVHRR and its validation with SHEBA data. Journal of Applied Meteorology, 41, 413–425.

    Google Scholar 

  • Yamanouchi, T. and T. P. Charlock (1995). Comparison of radiation budget at the TOA and surface in the Antarctic from ERBE and ground surface measurements. Journal of Climate, 8, 3109–3120.

    Google Scholar 

  • Yamanouchi, T. and S. Kawaguchi (1992). Cloud distribution in the Antarctic from AVHRR data and radiation measurements at the surface. International Journal of Remote Sensing, 13, 111–127.

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Praxis Publishing Ltd, Chichester, UK

About this chapter

Cite this chapter

(2006). Polar climate and meteorology. In: Polar Remote Sensing. Springer Praxis Books. Springer, Berlin, Heidelberg . https://doi.org/10.1007/3-540-30785-0_4

Download citation

Publish with us

Policies and ethics