Skip to main content

Molecular Networks Orchestrating GALT Development

  • Chapter
Gut-Associated Lymphoid Tissues

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 308))

Abstract

During evolution, the development of secondary lymphoid organs has evolved as a strategy to promote adaptive immune responses at sites of antigen sequestration. Mesenteric lymph nodes (LNs) and Peyer’s patches (PPs) are localized in proximity to mucosal surfaces, and their development is coordinated by a series of temporally and spatially regulated molecular events involving the collaboration between hematopoietic, mesenchymal, and, for PPs, epithelial cells. Transcriptional control of cellular differentiation, production of cytokines as well as adhesion molecules are mandatory for organogenesis, recruitment of mature leukocytes, and lymphoid tissue organization. Similar to fetal and neonatal organogenesis, lymphoid tissue neoformation can occur in adult individuals at sites of chronic stimulation via cytokines and TNF-family member molecules. These molecules represent new therapeutic targets to manipulate themicroenvironment during autoimmune diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Abtahian F, Guerriero A, Sebzda E, Lu MM, Zhou R, Mocsai A, Myers EE, Huang B, Jackson DG, Ferrari VA, Tybulewicz V, Lowell CA, Lepore JJ, Koretzky GA, Kahn ML (2003) Regulation of blood and lymphatic vascular separation by signaling proteins SLP-76 and Syk. Science 299:247–251

    PubMed  CAS  Google Scholar 

  • Adachi S, Yoshida H, Honda K, Maki K, Saijo K, Ikuta K, Saito T, Nishikawa S (1998) Essential role of IL-7 receptor αin the formation of Peyer’s patch anlage. Int Immunol 10:1–6

    PubMed  CAS  Google Scholar 

  • Adachi S, Yoshida H, Kataoka H, Nishikawa S (1997) Three distinctive steps in Peyer’s patch formation of murine embryo. Int Immunol 9:507–514

    PubMed  CAS  Google Scholar 

  • Alcamo E, Hacohen N, Schulte L, Rennert P, Hynes R, Baltimore D (2002) Requirement for the NF-кB family member RelA in the development of secondary lymphoid organs. J Exp Med 195:233–244

    PubMed  CAS  Google Scholar 

  • Alimzhanov MB, Kuprash DV, Kosco-Vilbois MH, Luz A, Turetskaya RL, Tarakhovsky A, Rajewsky K, Nedospasov SA, Pfeffer K (1997) Abnormal development of secondary lymphoid tissues in lymphotoxin β-deficient mice. Proc Natl Acad Sci USA 94:9302–9307

    PubMed  CAS  Google Scholar 

  • Ansel KM, Ngo VN, Hyman PL, Luther SA, Forster R, Sedgwick JD, Browning JL, Lipp M, Cyster JG (2000) A chemokine-driven positive feedback loop organizes lymphoid follicles. Nature 406:309–314

    PubMed  CAS  Google Scholar 

  • Azzali G (2003) Structure, lymphatic vascularization and lymphocyte migration in mucosa-associated lymphoid tissue. Immunol Rev 195:178–189

    PubMed  Google Scholar 

  • Balogh P, Aydar Y, Tew JG, Szakal AK (2002) Appearance and phenotype of murine follicular dendritic cells expressing VCAM-1. Anat Rec 268:160–168

    PubMed  CAS  Google Scholar 

  • Banks TA, Rouse BT, Kerley MK, Blair PJ, Godfrey VL, Kuklin NA, Bouley DM, Thomas J, Kanangat S, Mucenski ML (1995) Lymphotoxin-α-deficient mice. Effects on secondary lymphoid organ development and humoral immune responsiveness. J Immunol 155:1685–1693

    PubMed  CAS  Google Scholar 

  • Brandtzaeg P, Baekkevold ES, Morton HC (2001) From B to A the mucosal way. Nat Immunol 2:1093–1094

    PubMed  CAS  Google Scholar 

  • Brandtzaeg P, Pabst R (2004) Let’s go mucosal: communication on slippery ground. Trends Immunol 25:570–577

    PubMed  CAS  Google Scholar 

  • Braun M, Wunderlin M, Spieth K, Knochel W, Gierschik P, Moepps B (2002) Xenopus laevis stromal cell-derived factor 1: conservation of structure and function during vertebrate development. J Immunol 168:2340–2347

    PubMed  CAS  Google Scholar 

  • Breiteneder-Geleff S, Soleiman A, Kowalski H, Horvat R, Amann G, Kriehuber E, Diem K, Weninger W, Tschachler E, Alitalo K, Kerjaschki D (1999) Angiosarcomas express mixed endothelial phenotypes of blood and lymphatic capillaries: podoplanin as a specific marker for lymphatic endothelium. Am J Pathol 154:385–394

    PubMed  CAS  Google Scholar 

  • Browning JL, French LE (2002) Visualization of lymphotoxin-β and lymphotoxin-βreceptor expression in mouse embryos. J Immunol 168:5079–5087

    PubMed  CAS  Google Scholar 

  • Butcher EC, Picker LJ (1996) Lymphocyte homing and homeostasis. Science 272:60–66

    PubMed  CAS  Google Scholar 

  • Cao X, Shores EW, Hu-Li J, Anver MR, Kelsall BL, Russell SM, Drago J, Noguchi M, Grinberg A, Bloom ET, et al. (1995) Defective lymphoid development in mice lacking expression of the common cytokine receptor γchain. Immunity 2:223–238

    PubMed  CAS  Google Scholar 

  • Christian JL (2000) BMP, Wnt and Hedgehog signals: how far can they go? Curr Opin Cell Biol 12:244–249

    PubMed  CAS  Google Scholar 

  • Cook DN, Prosser DM, Forster R, Zhang J, Kuklin NA, Abbondanzo SJ, Niu XD, Chen SC, Manfra DJ, Wiekowski MT, Sullivan LM, Smith SR, Greenberg HB, Narula SK, Lipp M, Lira SA (2000) CCR6 mediates dendritic cell localization, lymphocyte homeostasis, and immune responses in mucosal tissue. Immunity 12:495–503

    PubMed  CAS  Google Scholar 

  • Cornes JS (1965) Peyer’s patches in the human gut. Proc R Soc Med 58:716

    PubMed  CAS  Google Scholar 

  • Csencsits KL, Jutila MA, Pascual DW (1999) Nasal-associated lymphoid tissue: phenotypic and functional evidence for the primary role of peripheral node addressin in naive lymphocyte adhesion to high endothelial venules in a mucosal site. J Immunol 163:1382–1389

    PubMed  CAS  Google Scholar 

  • Cupedo T, Kraal G, Mebius RE (2002) The role of CD45+CD4+CD3− cells in lymphoid organ development. Immunological Rev 189:41–50

    CAS  Google Scholar 

  • Cupedo T, Lund FE, Ngo VN, Randall TD, Jansen W, Greuter MJ, de Waal-Malefyt R, Kraal G, Cyster JG, Mebius RE (2004a) Initiation of cellular organization in lymph nodes is regulated by non-B cell-derived signals and is not dependent on CXC chemokine ligand 13. J Immunol 173:4889–4896

    PubMed  CAS  Google Scholar 

  • Cupedo T, Vondenhoff MF, Heeregrave EJ, De Weerd AE, Jansen W, Jackson DG, Kraal G, Mebius RE (2004b) Presumptive lymph node organizers are differentially represented in developingmesenteric and peripheral nodes. J Immunol 173:2968–2975

    PubMed  CAS  Google Scholar 

  • Cyster JG (2005) Chemokines, sphingosine-1-phosphate, and cell migration in secondary lymphoid organs. Annu Rev Immunol 23:127–159

    PubMed  CAS  Google Scholar 

  • De Togni P, Goellner J, Ruddle NH, Streeter PR, Fick A, Mariathasan S, Smith SC, Carlson R, Shornick LP, Strauss-Schoenberger J (1994) Abnormal development of peripheral lymphoid organs in mice deficient in lymphotoxin. Science 264:703–707

    PubMed  Google Scholar 

  • Dear TN, Colledge WH, Carlton MB, Lavenir I, Larson T, Smith AJ, Warren AJ, Evans MJ, Sofroniew MV, Rabbitts TH (1995) The Hox11 gene is essential for cell survival during spleen development. Development 121:2909–2915

    PubMed  CAS  Google Scholar 

  • Dejardin E, Droin NM, Delhase M, Haas E, Cao Y, Makris C, Li ZW, Karin M, Ware CF, Green DR (2002) The lymphotoxin-βreceptor induces different patterns of gene expression via two NF-кB pathways. Immunity 17:525–535

    PubMed  CAS  Google Scholar 

  • Dohi T, Fujihashi K, Rennert PD, Iwatani K, Kiyono H, McGhee JR (1999) Hapteninduced colitis is associated with colonic patch hypertrophy and T helper cell 2-type responses. J Exp Med 189:1169–1180

    PubMed  CAS  Google Scholar 

  • Dohi T, Rennert PD, Fujihashi K, Kiyono H, Shirai Y, Kawamura YI, Browning JL, McGhee JR (2001) Elimination of colonic patches with lymphotoxin βreceptor-Ig prevents Th2 cell-type colitis. J Immunol 167:2781–2790

    PubMed  CAS  Google Scholar 

  • Dooley H, Flajnik MF (2005) Shark immunity bites back: affinity maturation and memory response in the nurse shark, Ginglymostoma cirratum. Eur J Immunol 35:936–945

    PubMed  CAS  Google Scholar 

  • Dougall WC, Glaccum M, Charrier K, Rohrbach K, Brasel K, De Smedt T, Daro E, Smith J, Tometsko ME, Maliszewski CR, Armstrong A, Shen V, Bain S, Cosman D, Anderson D, Morrissey PJ, Peschon JJ, Schuh J (1999) RANK is essential for osteoclast and lymph node development. Genes Dev 13:2412–2424

    PubMed  CAS  Google Scholar 

  • Drayton DL, Ying X, Lee J, Lesslauer W, Ruddle NH (2003) Ectopic LT αβdirects lymphoid organ neogenesis with concomitant expression of peripheral node addressin and a HEV-restricted sulfotransferase. J Exp Med 197:1153–1163

    PubMed  CAS  Google Scholar 

  • Eberl G, Littman DR (2004) Thymic origin of intestinal αβ T cells revealed by fate mapping of RORγt+ cells. Science 305:248–251

    PubMed  CAS  Google Scholar 

  • Eberl G, Marmon S, Sunshine MJ, Rennert PD, Choi Y, Littman DR (2004) An essential function for the nuclear receptor RORγt in the generation of fetal lymphoid tissue inducer cells. Nat Immunol 5:64–73

    PubMed  CAS  Google Scholar 

  • Ebert LM, McColl SR (2002) Up-regulation of CCR5 and CCR6 on distinct subpopulations of antigen-activated CD4+ T lymphocytes. J Immunol 168:65–72

    PubMed  CAS  Google Scholar 

  • El Bahi S, Caliot E, Bens M, Bogdanova A, Kerneis S, Kahn A, Vandewalle A, Pringault E (2002) Lymphoepithelial interactions trigger specific regulation of gene expression in the M cell-containing follicle-associated epithelium of Peyer’s patches. J Immunol 168:3713–3720

    PubMed  Google Scholar 

  • Erickson SL, de Sauvage FJ, Kikly K, Carver-Moore K, Pitts-Meek S, Gillett N, Sheehan KC, Schreiber RD, Goeddel DV, Moore MW (1994) Decreased sensitivity to tumour-necrosis factor but normal T-cell development in TNF receptor-2-deficient mice. Nature 372:560–563

    PubMed  CAS  Google Scholar 

  • Fagarasan S, Muramatsu M, Suzuki H, Nagaoka H, Hiai H, Honjo T (2002) Critical roles of activation-induced cytidine deaminase in the homeostasis of gut flora. Science 298:1424

    PubMed  CAS  Google Scholar 

  • Fagarasan S, Shinkura R, Kamata T, Nogaki F, Ikuta K, Tashiro K, Honjo T (2000) Alymphoplasia (aly)-type nuclear factor кB-inducing kinase (NIK) causes defects in secondary lymphoid tissue chemokine receptor signaling and homing of peritoneal cells to the gut-associated lymphatic tissue system. J Exp Med 191:1477–1486

    PubMed  CAS  Google Scholar 

  • Feuerer M, Beckhove P, Garbi N, Mahnke Y, Limmer A, Hommel M, Hammerling GJ, Kyewski B, Hamann A, Umansky V, Schirrmacher V (2003) Bone marrow as a priming site for T-cell responses to blood-borne antigen. Nat Med 9:1151–1157

    PubMed  CAS  Google Scholar 

  • Finke D (2005) Fate and function of lymphoid tissue inducer cells. Curr Opin Immunol 17:144–150

    PubMed  CAS  Google Scholar 

  • Finke D, Acha-Orbea H, Mattis A, Lipp M, Kraehenbuhl J (2002) CD4+CD3− cells induce Peyer’s patch development: role of α4β1 integrin activation by CXCR5. Immunity 17:363–373

    PubMed  CAS  Google Scholar 

  • Finke D, Kraehenbuhl JP (2001) Formation of Peyer’s patches. Curr Opin Genet Dev 11:561–567

    PubMed  CAS  Google Scholar 

  • Flajnik M, Miller K, Du Pasquier L (2003) Evolution of the immune system. In Fundamental Immunology, edited by WE Paul, fifth edition: 519–570

    Google Scholar 

  • Forster R, Mattis AE, Kremmer E, Wolf E, Brem G, Lipp M (1996) Aputative chemokine receptor, BLR1, directs B cell migration to defined lymphoid organs and specific anatomic compartments of the spleen. Cell 87:1037–1047

    PubMed  CAS  Google Scholar 

  • Forster R, Schubel A, Breitfeld D, Kremmer E, Renner-Muller I, Wolf E, Lipp M(1999) CCR7 coordinates the primary immune response by establishing functional microenvironments in secondary lymphoid organs. Cell 99:23–33

    PubMed  CAS  Google Scholar 

  • Fry TJ, Mackall CL (2002) Interleukin-7: from bench to clinic. Blood 99:3892–3904

    PubMed  CAS  Google Scholar 

  • Fu YX, Chaplin DD (1999) Development and maturation of secondary lymphoid tissues. Annu Rev Immunol 17:399–433

    PubMed  CAS  Google Scholar 

  • Fu YX, Huang G, Matsumoto M, Molina H, Chaplin DD (1997a) Independent signals regulate development of primary and secondary follicle structure in spleen and mesenteric lymph node. Proc Natl Acad Sci USA 94:5739–5743

    PubMed  CAS  Google Scholar 

  • Fu YX, Molina H, Matsumoto M, Huang G, Min J, Chaplin DD (1997b) Lymphotoxin-α (LTα) supports development of splenic follicular structure that is required for IgG responses. J Exp Med 185:2111–2120

    PubMed  CAS  Google Scholar 

  • Fukuda K, Yoshida H, Sato T, Furumoto TA, Mizutani-Koseki Y, Suzuki Y, Saito Y, Takemori T, Kimura M, Sato H, Taniguchi M, Nishikawa S, Nakayama T, Koseki H (2003) Mesenchymal expression of Foxl1, a winged helix transcriptional factor, regulates generation and maintenance of gut-associated lymphoid organs. Dev Biol 255:278–289

    PubMed  CAS  Google Scholar 

  • Fukuyama S, Hiroi T, Yokota Y, Rennert PD, Yanagita M, Kinoshita N, Terawaki S, Shikina T, Yamamoto M, Kurono Y, Kiyono H (2002) Initiation of NALT organogenesis is independent of the IL-7R, LTβR, and NIK signaling pathways but requires the Id2 gene and CD3CD4+CD45+ cells. Immunity 17:31–40

    PubMed  CAS  Google Scholar 

  • Futterer A, Mink K, Luz A, Kosco-Vilbois MH, Pfeffer K (1998) The lymphotoxin β receptor controls organogenesis and affinity maturation in peripheral lymphoid tissues. Immunity 9:59–70

    PubMed  CAS  Google Scholar 

  • Gale NW, Thurston G, Hackett SF, Renard R, Wang Q, McClain J, Martin C, Witte C, Witte MH, Jackson D, Suri C, Campochiaro PA, Wiegand SJ, Yancopoulos GD (2002) Angiopoietin-2 is required for postnatal angiogenesis and lymphatic patterning, and only the latter role is rescued by Angiopoietin-1. Dev Cell 3:411–423

    PubMed  CAS  Google Scholar 

  • Georgopoulos K, Bigby K, Wang M, Molnar J-H, Wu A, Winandy S, Sharpe A (1994) The Ikaros gene is required for the development of all lymphoid lineages. Cell 79:143–156

    PubMed  CAS  Google Scholar 

  • Georgopoulos K, Winandy S, Avitahl N (1997) Theroleof the Ikaros gene in lymphocyte development and homeostasis. Annu Rev Immunol 15:155–176

    PubMed  CAS  Google Scholar 

  • Gommerman JL, Browning JL (2003) Lymphotoxin/light, lymphoid microenvironments and autoimmune disease. Nat Rev Immunol 3:642–655

    PubMed  CAS  Google Scholar 

  • Good RA, Finstad J, Pollara B, BGabrielsen AE (1966) Morphologic studies on the evolution of the lymphoid tissues among the lower vertebrates. In: Phylogeny of Immunity (RT Smith, RA Good, and PA Miescher, eds) 149–170

    Google Scholar 

  • Groger M, Loewe R, Holnthoner W, Embacher R, Pillinger M, Herron GS, Wolff K, Petzelbauer P (2004) IL-3 induces expression of lymphatic markers Prox-1 and podoplanin in human endothelial cells. J Immunol 173:7161–7169

    PubMed  Google Scholar 

  • Gunn MD, Tangemann K, Tam C, Cyster JG, Rosen SD, Williams LT (1998) A chemokine expressed in lymphoid high endothelial venules promotes the adhesion and chemotaxis of naive T lymphocytes. Proc Natl Acad Sci USA 95:258–263

    PubMed  CAS  Google Scholar 

  • Guy-Grand D, Azogui O, Celli S, Darche S, Nussenzweig MC, Kourilsky P, Vassalli P (2003) Extrathymic T cell lymphopoiesis: ontogeny and contribution to gut intraepithelial lymphocytes in athymic and euthymic mice. J Exp Med 197:333–341

    PubMed  CAS  Google Scholar 

  • Hamada H, Hiroi T, Nishiyama Y, Takahashi H, Masunaga Y, Hachimura S, Kaminogawa S, Takahashi-Iwanaga H, Iwanaga T, Kiyono H, Yamamoto H, Ishikawa H (2002) Identification of multiple isolated lymphoid follicles on the antimesenteric wall of the mouse small intestine. J Immunol 168:57–64

    PubMed  CAS  Google Scholar 

  • Harmsen A, Kusser K, Hartson L, Tighe M, Sunshine M, Sedgwick JD, Choi Y, Littman DR, Randall TD (2002) Cutting edge: Organogenesis of nasal-associated lymphoid tissue (NALT) occurs independently of lymphotoxin-(LT) and retinoic acid receptor-related orphan receptor, but the organization of NALT Is LT dependent. J Immunol 168:986–990

    PubMed  CAS  Google Scholar 

  • Hashi H, Yoshida H, Honda K, Fraser S, Kubo H, Awane M, Takabayashi A, Nakano H, Yamaoka Y, Nishikawa S (2001) Compartmentalization of Peyer’s patch anlagen before lymphocyte entry. J Immunol 166:3702–3709

    PubMed  CAS  Google Scholar 

  • Herzer U, Crocoll A, Barton D, Howells N, Englert C (1999) The Wilms tumor suppressor gene wt1 is required for development of the spleen. Curr Biol 9:837–840

    PubMed  CAS  Google Scholar 

  • Honda K, Nakano H, Yoshida H, Nishikawa S, Rennert P, Ikuta K, Tamechika M, Yamaguchi K, Fukumoto T, Chiba T, Nishikawa SI (2001) Molecular basis for hematopoietic/mesenchymal interaction during initiation of Peyer’s patch organogenesis. J Exp Med 193:621–630

    PubMed  CAS  Google Scholar 

  • Hong YK, Harvey N, Noh YH, Schacht V, Hirakawa S, Detmar M, Oliver G (2002) Prox1 is a master control gene in the program specifying lymphatic endothelial cell fate. Dev Dyn 225:351–357

    PubMed  CAS  Google Scholar 

  • Huising MO, Stet RJ, Kruiswijk CP, Savelkoul HF, Lidy Verburg-van Kemenade BM (2003) Molecular evolution of CXC chemokines: extant CXC chemokines originate from the CNS. Trends Immunol 24:307–313

    PubMed  CAS  Google Scholar 

  • Iwasaki A, Kelsall BL (2000) Localization of distinct Peyer’s patch dendritic cell subsets and their recruitment by chemokines macrophage inflammatory protein (MIP)-3α, MIP-3β, and secondary lymphoid organ chemokine. J Exp Med 191:1381–1394

    PubMed  CAS  Google Scholar 

  • Kaestner KH, Silberg DG, Traber PG, Schutz G (1997) The mesenchymal winged helix transcription factor Fkh6 is required for the control of gastrointestinal proliferation and differentiation. Genes Dev 11:1583–1595

    PubMed  CAS  Google Scholar 

  • Kaipainen A, Korhonen J, Mustonen T, van Hinsbergh VW, Fang GH, Dumont D, Breitman M, Alitalo K (1995) Expression of the fms-like tyrosine kinase 4 gene becomes restricted to lymphatic endothelium during development. Proc Natl Acad Sci USA 92:3566–3570

    PubMed  CAS  Google Scholar 

  • Kanamori Y, Ishimaru K, Nanno M, Maki K, Ikuta K, Nariuchi H, Ishikawa H (1996) Identification of novel lymphoid tissues in murine intestinal mucosa where clusters of c-kit+ IL-7R+ Thy1+ lympho-hemopoietic progenitors develop. J Exp Med 184:1449–1459

    PubMed  CAS  Google Scholar 

  • Kang J, Der SD (2004) Cytokine functions in the formative stages of a lymphocyte’s life. Curr Opin Immunol 16:180–190

    PubMed  CAS  Google Scholar 

  • Kang J, DiBenedetto B, Narayan K, Zhao H, Der SD, Chambers CA (2004) STAT5 is required for thymopoiesis in a development stage-specific manner. J Immunol 173:2307–2314

    PubMed  CAS  Google Scholar 

  • Kanzler B, Dear TN (2001) Hox11 acts cell autonomously in spleen development and its absence results in altered cell fate of mesenchymal spleen precursors. Dev Biol 234:231–243

    PubMed  CAS  Google Scholar 

  • Karrer U, Althage A, Odermatt B, Roberts CW, Korsmeyer SJ, Miyawaki S, Hengartner H, Zinkernagel RM (1997) On the key role of secondary lymphoid organs in antiviral immune responses studied in alymphoplastic (aly/aly) and spleenless (Hox11/ mutant mice. J Exp Med 185:2157–2170

    PubMed  CAS  Google Scholar 

  • Kerneis S, Bogdanova A, Kraehenbuhl JP, Pringault E (1997) Conversion by Peyer’s patch lymphocytes of human enterocytes into M cells that transport bacteria. Science 277:949–952

    PubMed  CAS  Google Scholar 

  • Kim D, Mebius RE, MacMicking JD, Jung S, Cupedo T, Castellanos Y, Rho J, Wong BR, Josien R, Kim N, Rennert PD, Choi Y (2000) Regulation of peripheral lymph node genesis by the tumor necrosis factor family member TRANCE. J Exp Med 192:1467–1478

    PubMed  CAS  Google Scholar 

  • Koike R, Watanabe T, Satoh H, Hee CS, Kitada K, Kuramoto T, Serikawa T, Miyawaki S, Miyasaka M (1997) Analysis of expression of lymphocyte homing-related adhesion molecules in ALY mice deficient in lymph nodes and Peyer’s patches. Cell Immunol 80:62–69

    Google Scholar 

  • Kong YY, Yoshida H, Sarosi I, Tan HL, Timms E, Capparelli C, Morony S, Oliveira-dos-Santos AJ, Van G, Itie A, Khoo W, Wakeham A, Dunstan CR, Lacey DL, Mak TW, Boyle WJ, Penninger JM (1999) OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis. Nature 397:315–323

    PubMed  CAS  Google Scholar 

  • Koni PA, Flavell RA (1998) A role for tumor necrosis factor receptor type 1 in gut-associated lymphoid tissue development: genetic evidence of synergism with lymphotoxin β. J Exp Med 187:1977–1983

    PubMed  CAS  Google Scholar 

  • Kriehuber E, Breiteneder-Geleff S, Groeger M, Soleiman A, Schoppmann SF, Stingl G, Kerjaschki D, Maurer D (2001) Isolation and characterization of dermal lymphatic and blood endothelial cells reveal stable and functionally specialized cell lineages. J Exp Med 194:797–808

    PubMed  CAS  Google Scholar 

  • Kuprash DV, Alimzhanov MB, Tumanov AV, Anderson AO, Pfeffer K, Nedospasov SA (1999) TNF and lymphotoxin β cooperate in the maintenance of secondary lymphoid tissue microarchitecture but not in the development of lymph nodes. J Immunol 163:6575–6580

    PubMed  CAS  Google Scholar 

  • Kurebayashi S, Ueda E, Sakaue M, Patel DD, Medvedev A, Zhang F, Jetten AM (2000) Retinoid-related orphan receptor γ (RORγ) is essential for lymphoid organogenesis and controls apoptosis during thymopoiesis. Proc Natl Acad Sci USA 97:10132–10137

    PubMed  CAS  Google Scholar 

  • Kuroda N, Uinuk-ool TS, Sato A, Samonte IE, Figueroa F, Mayer WE, Klein J (2003) Identification of chemokines and a chemokine receptor in cichlid fish, shark, and lamprey. Immunogenetics 54:884–895

    PubMed  CAS  Google Scholar 

  • Kweon MN, Yamamoto M, Rennert PD, Park EJ, Lee AY, Chang SY, Hiroi T, Nanno M, Kiyono H (2005) Prenatal Blockage of lymphotoxin β receptor and TNF receptor p55 signaling cascade resulted in the acceleration of tissue genesis for isolated lymphoid follicles in the large intestine. J Immunol 174:4365–4372

    PubMed  CAS  Google Scholar 

  • Lacey DL, Timms E, Tan HL, Kelley MJ, Dunstan CR, Burgess T, Elliott R, Colombero A, Elliott G, Scully S, Hsu H, Sullivan J, Hawkins N, Davy E, Capparelli C, Eli A, Qian YX, Kaufman S, Sarosi I, Shalhoub V, Senaldi G, Guo J, Delaney J, Boyle WJ (1998) Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell 93:165–176

    PubMed  CAS  Google Scholar 

  • Lakkis FG, Arakelov A, Konieczny BT, Inoue Y (2000) Immunologic ‘ignorance’ of vascularized organ transplants in the absence of secondary lymphoid tissue. Nat Med 6:686–688

    PubMed  CAS  Google Scholar 

  • Laky K, Lefrancois L, Lingenheld EG, Ishikawa H, Lewis JM, Olson S, Suzuki K, Tigelaar RE, Puddington L (2000) Enterocyte expression of interleukin 7 induces development of γδ T cells and Peyer’s patches. J Exp Med 191:1569–1580

    PubMed  CAS  Google Scholar 

  • Lettice LA, Purdie LA, Carlson GJ, Kilanowski F, Dorin J, Hill RE (1999) The mouse bagpipe gene controls development of axial skeleton, skull, and spleen. Proc Natl Acad Sci U A 96:9695–9700

    CAS  Google Scholar 

  • Lewis FT (1905) The development of the lymphatic system in rabbits. Am J Anat 5:95–111

    Google Scholar 

  • Liang TS, Hartt JK, Lu S, Martins-Green M, Gao JL, Murphy PM (2001) Cloning, mRNA distribution, and functional expression of an avian counterpart of the chemokine receptor/HIV coreceptor CXCR4. J Leukoc Biol 69:297–305

    PubMed  CAS  Google Scholar 

  • Liao F, Rabin RL, Smith CS, Sharma G, Nutman TB, Farber JM (1999) CC-chemokine receptor 6 is expressed on diverse memory subsets of T cells and determines responsiveness to macrophage inflammatory protein 3α. J Immunol 162:186–194

    PubMed  CAS  Google Scholar 

  • Locksley RM, Killeen N, Lenardo MJ (2001) The TNF and TNF receptor superfamilies: integrating mammalian biology. Cell 104:487–501

    PubMed  CAS  Google Scholar 

  • Lorenz RG, Chaplin DD, McDonald KG, McDonough JS, Newberry RD (2003) Isolated lymphoid follicle formation is inducible and dependent upon lymphotoxin-sufficient B lymphocytes, lymphotoxin β receptor, and TNF receptor I function. J Immunol 170:5475–5482

    PubMed  CAS  Google Scholar 

  • Lu J, Chang P, Richardson JA, Gan L, Weiler H, Olson EN (2000) The basic helix-loophelix transcription factor capsulin controls spleen organogenesis. Proc Natl Acad Sci USA 97:9525–9530

    PubMed  CAS  Google Scholar 

  • Luther SA, Ansel KM, Cyster JG (2003) Overlapping roles of CXCL13, interleukin 7 receptor α, and CCR7 ligands in lymph node development. J Exp Med 197:1191–1198

    PubMed  CAS  Google Scholar 

  • Luther SA, Bidgol A, Hargreaves DC, Schmidt A, Xu Y, Paniyadi J, Matloubian M, Cyster JG (2002) Differing activities of homeostatic chemokines CCL19, CCL21, and CXCL12 in lymphocyte and dendritic cell recruitment and lymphoid neogenesis. J Immunol 169:424–433

    PubMed  CAS  Google Scholar 

  • Luther SA, Lesneski MJ, Xu Y, Marquéz G, Cyster JG (2005) Chemokine response profiling of lymphoid tissue inducer cells reveals a role for CXCR4 in Peyer’s patch formation. Swiss Med Wkly 135: S3

    Google Scholar 

  • Luther SA, Lopez T, Bai W, Hanahan D, Cyster JG (2000a) BLC expression in pancreatic islets causes B cell recruitment and lymphotoxin-dependent lymphoid neogenesis. Immunity 12:471–481

    PubMed  CAS  Google Scholar 

  • Luther SA, Tang HL, Hyman PL, Farr AG, Cyster JG (2000b) Coexpression of the chemokines ELC and SLC by T zone stromal cells and deletion of the ELC gene in the plt/plt mouse. Proc Natl Acad Sci USA 97:12694–12699

    PubMed  CAS  Google Scholar 

  • Makala LH, Suzuki N, Nagasawa H (2002) Peyer’s patches: organized lymphoid structures for the induction of mucosal immune responses in the intestine. Pathobiology 70:55–68

    PubMed  CAS  Google Scholar 

  • Mangelsdorf DJ, Thummel C, Beato M, Herrlich P, Schutz G, Umesono K, Blumberg B, Kastner P, Mark M, Chambon P, et al. (1995) The nuclear receptor superfamily: the second decade. Cell 83:835–839

    PubMed  CAS  Google Scholar 

  • Manning MJ, Horton JD(1982) RES structure and function of the Amphibia. In: Cohen, N, Sigel, MM (eds) The Reticuloendothelial System. Plenum Press, New York and London, 423–459

    Google Scholar 

  • Matsumoto M, Iwamasa K, Rennert PD, Yamada T, Suzuki R, Matsushima A, Okabe M, Fujita S, Yokoyama M (1999) Involvement of distinct cellular compartments in the abnormal lymphoid organogenesis in lymphotoxin-α-deficient mice and alymphoplasia (aly) mice defined by the chimeric analysis. J Immunol 163:1584–1591

    PubMed  CAS  Google Scholar 

  • Matsushima A, Kaisho T, Rennert PD, Nakano H, Kurosawa K, Uchida D, Takeda K, Akira S, Matsumoto M (2001) Essential role of nuclear factor (NF)-κB-inducing kinase and inhibitor of κB (IκB) kinaseαinNF-κB activation through lymphotoxin β receptor, but not through tumor necrosis factor receptor I. J Exp Med 193:631–636

    PubMed  CAS  Google Scholar 

  • Mebius RE, Miyamoto T, Christensen J, Domen J, Cupedo T, Weissman IL, Akashi K (2001) The fetal liver counterpart of adult common lymphoid progenitors gives rise to all lymphoid lineages, CD45+CD4+CD3-cells, as well as macrophages. J Immunol 166:6593–6601

    PubMed  CAS  Google Scholar 

  • Mebius RE, Rennert P, Weissman IL (1997) Developing lymph nodes collect CD4+CD3-LTβ+ cells that can differentiate to APC, NK cells, and follicular cells but not T or B cells. Immunity 7:493–504

    PubMed  CAS  Google Scholar 

  • Mebius RE, Schadee-Eestermans IL, Weissman IL (1998) MAdCAM-1 dependent colonization of developing lymph nodes involves a unique subset of CD4+CD3-hematolymphoid cells. Cell Adhesion Commun 6:97–103

    CAS  Google Scholar 

  • Mebius RE, Streeter PR, Michie S, Butcher EC, Weissman IL (1996) A developmental switch in lymphocyte homing receptor and endothelial vascular addressin expression regulates lymphocyte homing and permits CD4+ CD3— cells to colonize lymph nodes. Proc Natl Acad Sci USA 93:11019–11024

    PubMed  CAS  Google Scholar 

  • Miyawaki S, Nakamura Y, Suzuka H, Koba M, Yasumizu R, Ikehara S, Shibata Y (1994) A new mutation, aly, that induces a generalized lack of lymph nodes accompanied by immunodeficiency in mice. Eur J Immunol 24:429–434

    PubMed  CAS  Google Scholar 

  • Mora JR, Bono MR, Manjunath N, Weninger W, Cavanagh LL, Rosemblatt M, Von Andrian UH (2003) Selective imprinting of gut-homing T cells by Peyer’s patch dendritic cells. Nature 424:88–93

    PubMed  CAS  Google Scholar 

  • Moyron-Quiroz JE, Rangel-Moreno J, Kusser K, Hartson L, Sprague F, Goodrich S, Woodland DL, Lund FE, Randall TD (2004) Role of inducible bronchus associated lymphoid tissue (iBALT) in respiratory immunity. Nat Med 10:927–934

    PubMed  CAS  Google Scholar 

  • Murray AM, Simm B, Beagley KW (1998) Cytokine gene expression in murine fetal intestine: potential for extrathymic T cell development. Cytokine 10:337–345

    PubMed  CAS  Google Scholar 

  • Nagasawa T, Hirota S, Tachibana K, Takakura N, Nishikawa S, Kitamura Y, Yoshida N, Kikutani H, Kishimoto T (1996) Defects of B-cell lymphopoiesis and bone-marrow myelopoiesis in mice lacking the CXC chemokine PBSF/SDF-1. Nature 382:635–638

    PubMed  CAS  Google Scholar 

  • Naito A, Azuma S, Tanaka S, Miyazaki T, Takaki S, Takatsu K, Nakao K, Nakamura K, Katsuki M, Yamamoto T, Inoue J (1999) Severe osteopetrosis, defective interleukin-1 signalling and lymph node organogenesis in TRAF6-deficient mice. Genes Cells 4:353–362

    PubMed  CAS  Google Scholar 

  • Nakano H, Mori S, Yonekawa H, Nariuchi H, Matsuzawa A, Kakiuchi T (1998) A novel mutant gene involved in T-lymphocyte-specific homing into peripheral lymphoid organs on mouse chromosome 4. Blood 91:2886–2895

    PubMed  CAS  Google Scholar 

  • Neumann B, Luz A, Pfeffer K, Holzmann B (1996) Defective Peyer’s patch organogenesis in mice lacking the 55-kD receptor for tumor necrosis factor. J Exp Med 184:259–264

    PubMed  CAS  Google Scholar 

  • Ngo VN, Korner H, Gunn MD, Schmidt KN, Riminton DS, Cooper MD, Browning JL, Sedgwick JD, Cyster JG (1999) Lymphotoxin α/β and tumor necrosis factor are required for stromal cell expression of homing chemokines in B and T cell areas of the spleen. J Exp Med 189:403–412

    PubMed  CAS  Google Scholar 

  • Niess JH, Brand S, Gu X, Landsman L, Jung S, McCormick BA, Vyas JM, Boes M, Ploegh HL, Fox JG, Littman DR, Reinecker HC (2005) CX3CR1-mediated dendritic cell access to the intestinal lumen and bacterial clearance. Science 307:254–258

    PubMed  CAS  Google Scholar 

  • Nishikawa S, Honda K, Vieira P, Yoshida H (2003) Organogenesis of peripheral lymphoid organs. Immunol Rev 195:72–80

    PubMed  CAS  Google Scholar 

  • Nishikawa SI, Hashi H, Honda K, Fraser S, Yoshida H (2000) Inflammation, a prototype for organogenesis of the lymphopoietic/hematopoietic system. Curr Opin Immunol 12:342–345

    PubMed  CAS  Google Scholar 

  • Ohl L, Henning G, Krautwald S, Lipp M, Hardtke S, Bernhardt G, Pabst O, Forster R (2003a) Cooperating mechanisms of CXCR5 and CCR7 in development and organization of secondary lymphoid organs. J Exp Med 197:1199–1204

    PubMed  CAS  Google Scholar 

  • Ohl L, Henning G, Krautwald S, Lipp M, Hardtke S, Bernhardt G, Pabst O, Förster R (2003b) Cooperative mechanisms of CXCR5 and CCR7 in development and organization of secondary lymphoid organs. J Exp Med 197:1199–1204

    PubMed  CAS  Google Scholar 

  • Oliver G (2004) Lymphatic vasculature development. Nat Rev Immunol 4:35–45

    PubMed  CAS  Google Scholar 

  • Owen RL, Piazza AJ, Ermak TH (1991) Ultrastructural and cytoarchitectural features of lymphoreticular organs in the colon and rectum of adult BALB/c mice. Am J Anat 190:10–18

    PubMed  CAS  Google Scholar 

  • Pabst O, Forster R, Lipp M, Engel H, Arnold HH (2000) NKX2.3 is required for MAdCAM-1 expression and homing of lymphocytes in spleen and mucosaassociated lymphoid tissue. Embo J 19:2015

    PubMed  CAS  Google Scholar 

  • Pabst O, Herbrand H, Bernhardt G, Förster R (2004) Elucidating the functional anatomy of secondary lymphoid organs. Curr Opin Immunol 16:394–399

    PubMed  CAS  Google Scholar 

  • Pabst O, Herbrand H, Worbs T, Friedrichsen M, Yan S, Hoffmann MW, Korner H, Bernhardt G, Pabst R, Forster R (2005) Cryptopatches and isolated lymphoid follicles: dynamic lymphoid tissues dispensable for the generation of intraepithelial lymphocytes. Eur J Immunol 35:98–107

    PubMed  CAS  Google Scholar 

  • Pabst O, Schneider A, Brand T, Arnold HH (1997) The mouse Nkx2-3 homeodomain gene is expressed in gut mesenchyme during pre-and postnatal mouse development. Dev Dyn 209:29–35

    PubMed  CAS  Google Scholar 

  • Pabst O, Zweigerdt R, Arnold HH (1999) Targeted disruption of the homeobox transcription factor Nkx2-3 in mice results in postnatal lethality and abnormal development of small intestine and spleen. Development 126:2215–2225

    PubMed  CAS  Google Scholar 

  • Pabst R, Tschernig T (2002) Perivascular capillaries in the lung: an important but neglected vascular bed in immune reactions? J Allergy Clin Immunol 110:209–214

    PubMed  Google Scholar 

  • Park SY, Saijo K, Takahashi T, Osawa M, Arase H, Hirayama N, Miyake K, Nakauchi H, Shirasawa T, Saito T (1995) Developmental defects of lymphoid cells in Jak3 kinase-deficient mice. Immunity 3:771–782

    PubMed  CAS  Google Scholar 

  • Pasparakis M, Alexopoulou L, Episkopou V, Kollias G (1996) Immune and inflammatory responses in TNF α-deficient mice: a critical requirement for TNF α in the formation of primary B cell follicles, follicular dendritic cell networks and germinal centers, and in the maturation of the humoral immune response. J Exp Med 184:1397–1411

    PubMed  CAS  Google Scholar 

  • Pasparakis M, Alexopoulou L, Grell M, Pfizenmaier K, Bluethmann H, Kollias G (1997) Peyer’s patch organogenesis is intact yet formation of B lymphocyte follicles is defective in peripheral lymphoid organs of mice deficient for tumor necrosis factor and its 55-kDa receptor. Proc Natl Acad Sci USA 94:6319–6323

    PubMed  CAS  Google Scholar 

  • Paxian S, Merkle H, Riemann M, Wilda M, Adler G, Hameister H, Liptay S, Pfeffer K, Schmid RM (2002) Abnormal organogenesis of Peyer’s patches in mice deficient for NF-κB1, NF-κB2, and Bcl-3. Gastroenterology 122:1853–1868

    PubMed  CAS  Google Scholar 

  • Pfeffer K, Matsuyama T, Kundig TM, Wakeham A, Kishihara K, Shahinian A, Wiegmann K, Ohashi PS, Kronke M, Mak TW (1993) Mice deficient for the 55 kd tumor necrosis factor receptor are resistant to endotoxic shock, yet succumb to L. monocytogenes infection. Cell 73:457–467

    PubMed  CAS  Google Scholar 

  • Pihlgren M, Tougne C, Bozzotti P, Fulurija A, Duchosal MA, Lambert PH, Siegrist CA (2003) Unresponsiveness to lymphoid-mediated signals at the neonatal follicular dendritic cell precursor level contributes to delayed germinal center induction and limitations of neonatal antibody responses to T-dependent antigens. J Immunol 170:2824–2832

    PubMed  CAS  Google Scholar 

  • Rennert PD, Browning JL, Hochman PS (1997) Selective disruption of lymphotoxin ligands reveals a novel set of mucosal lymph nodes and unique effects on lymph node cellular organization. Int Immunol 9:1627–1639

    PubMed  CAS  Google Scholar 

  • Rennert PD, Browning JL, Mebius R, Mackay F, Hochman PS (1996) Surface lymphotoxin α/α complex is required for the development of peripheral lymphoid organs. J Exp Med 184:1999–2006

    PubMed  CAS  Google Scholar 

  • Rennert PD, Hochman PS, Flavell RA, Chaplin DD, Jayaraman S, Browning JL, Fu YX (2001) Essential role of lymph nodes in contact hypersensitivity revealed in lymphotoxin-α-deficient mice. J Exp Med 193:1227–1238

    PubMed  CAS  Google Scholar 

  • Rennert PD, James D, Mackay F, Browning JL, Hochman PS (1998) Lymph node genesis is induced by signaling through the lymphotoxin β receptor. Immunity 9:71–79

    PubMed  CAS  Google Scholar 

  • Rescigno M, Urbano M, Valzasina B, Francolini M, Rotta G, Bonasio R, Granucci F, Kraehenbuhl JP, Ricciardi-Castagnoli P (2001) Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria. Nat Immunol 2:361–367

    PubMed  CAS  Google Scholar 

  • Roberts CW, Shutter JR, Korsmeyer SJ (1994) Hox11 controls the genesis of the spleen. Nature 368:747–749

    PubMed  CAS  Google Scholar 

  • Rothe J, Lesslauer W, Lotscher H, Lang Y, Koebel P, Kontgen F, Althage A, Zinkernagel R, Steinmetz M, Bluethmann H (1993) Mice lacking the tumour necrosis factor receptor 1 are resistant to TNF-mediated toxicity but highly susceptible to infection by Listeria monocytogenes. Nature 364:798–802

    PubMed  CAS  Google Scholar 

  • Rumbo M, Sierro F, Debard N, Kraehenbuhl JP, Finke D (2004) Lymphotoxin β receptor signaling induces the chemokine CCL20 in intestinal epithelium. Gastroenterology 127:213–223

    PubMed  CAS  Google Scholar 

  • Sabin FR (1909) The lymphatic system in human embryos, with a consideration of the system as a whole. Am J Anat 9:43–91

    Google Scholar 

  • Schacht V, Ramirez MI, Hong YK, Hirakawa S, Feng D, Harvey N, Williams M, Dvorak AM, Dvorak HF, Oliver G, Detmar M (2003) T1α/podoplanin deficiency disrupts normal lymphatic vasculature formation and causes lymphedema. EMBO J 22:3546–3556

    PubMed  CAS  Google Scholar 

  • Scheu S, Alferink J, Potzel T, Barchet W, Kalinke U, Pfeffer K (2002) Targeted disruption of LIGHT causes defects in costimulatory T cell activation and reveals cooperation with lymphotoxin β in mesenteric lymph node genesis. J Exp Med 195:1613–1624

    PubMed  CAS  Google Scholar 

  • Searle AG (1964) The genetics and morphology of two “luxoid”mutations in the house mouse. Genet Res 5:171–197

    Google Scholar 

  • Shankey TV, Clem LW (1980) Phylogeny of immunoglobulin structure and function. IX. Intramolecular heterogeneity of shark 19S IgMantibodies to the dinitrophenyl hapten. J Immunol 125:2690–2698

    PubMed  CAS  Google Scholar 

  • Shikina T, Hiroi T, Iwatani K, Jang MH, Fukuyama S, Tamura M, Kubo T, Ishikawa H, Kiyono H (2004) IgA class switch occurs in the organized nasopharynx-and gut-associated lymphoid tissue, but not in the diffuse lamina propria of airways and gut. J Immunol 172:6259–6264

    PubMed  CAS  Google Scholar 

  • Shimizu Y, Rose DM, Ginsber MH (1999) Integrins in the immune system. Adv Immunol 72:325–380

    PubMed  CAS  Google Scholar 

  • Shinkura R, Matsuda F, Sakiyama T, Tsubata T, Hiai H, Paumen M, Miyawaki S, Honjo T (1996) Defects of somatic hypermutation and class switching in alymphoplasia (aly) mutant mice. Int Immunol 8:1067–1075

    PubMed  CAS  Google Scholar 

  • Sitnicka E, Brakebusch C, Martensson IL, Svensson M, Agace WW, Sigvardsson M, Buza-Vidas N, Bryder D, Cilio CM, Ahlenius H, Maraskovsky E, Peschon JJ, Jacobsen SE (2003) Complementary signaling through flt3 and interleukin-7 receptor α is indispensable for fetal and adult B cell genesis. J Exp Med 198:1495–1506

    PubMed  CAS  Google Scholar 

  • Sitnicka E, Bryder D, Theilgaard-Monch K, Buza-Vidas N, Adolfsson J, Jacobsen SE (2002) Key role of flt3 ligand in regulation of the common lymphoid progenitor but not in maintenance of the hematopoietic stemcell pool. Immunity 17:463–472

    PubMed  CAS  Google Scholar 

  • Sock E, Rettig SD, Enderich J, Bosl MR, Tamm ER, Wegner M (2004) Gene targeting reveals a widespread role for the high-mobility-group transcription factor Sox11 in tissue remodeling. Mol Cell Biol 24:6635–6644

    PubMed  CAS  Google Scholar 

  • Spahn TW, Fontana A, Faria AM, Slavin AJ, Eugster HP, Zhang X, Koni PA, Ruddle NH, Flavell RA, Rennert PD, Weiner HL (2001) Induction of oral tolerance to cellular immune responses in the absence of Peyer’s patches. Eur J Immunol 31:1278–1287

    PubMed  CAS  Google Scholar 

  • Spahn TW, Herbst H, Rennert PD, Lugering N, Maaser C, Kraft M, Fontana A, Weiner HL, Domschke W, Kucharzik T (2002) Induction of colitis in mice de-ficient of Peyer’s patches and mesenteric lymph nodes is associated with increased disease severity and formation of colonic lymphoid patches. Am J Pathol 161:2273–2282

    PubMed  Google Scholar 

  • Sun Z, Unutmaz D, Zou YR, Sunshine MJ, Pierani A, Brenner-Morton S, Mebius RE, Littman DR (2000) Requirement for RORγ in thymocyte survival and lymphoid organ development. Science 288:2369–2373

    PubMed  CAS  Google Scholar 

  • Suto J, Wakayama T, Imamura K, Goto S, Fukuta K (1995) Incomplete development of the spleen and the deformity in the chimeras between asplenic mutant (Dominant hemimelia) and normal mice. Teratology 52:71–77

    PubMed  CAS  Google Scholar 

  • Tachibana K, Hirota S, Iizasa H, Yoshida H, Kawabata K, Kataoka Y, Kitamura Y, Matsushima K, Yoshida N, Nishikawa S, Kishimoto T, Nagasawa T (1998) The chemokine receptor CXCR4 is essential for vascularization of the gastrointestinal tract. Nature 393:591–594

    PubMed  CAS  Google Scholar 

  • Taylor RT, Lugering A, Newell KA, Williams IR (2004) Intestinal cryptopatch formation in mice requires lymphotoxin α and the lymphotoxin β receptor. J Immunol 173:7183–7189

    PubMed  CAS  Google Scholar 

  • Tribioli C, Lufkin T (1999) The murine Bapx1 homeobox gene plays a critical role in embryonic development of the axial skeleton and spleen. Development 126:5699–5711

    PubMed  CAS  Google Scholar 

  • Tripp RA, Topham DJ, Watson SR, Doherty PC (1997) Bone marrow can function as a lymphoid organ during a primary immune response under conditions of disrupted lymphocyte trafficking. J Immunol 158:3716–3720

    PubMed  CAS  Google Scholar 

  • Tumanov A, Kuprash D, Lagarkova M, Grivennikov S, Abe K, Shakhov A, Drutskaya L, Stewart C, Chervonsky A, Nedospasov S (2002) Distinct role of surface lymphotoxin expressed by B cells in the organization of secondary lymphoid tissues. Immunity 17:239–250

    PubMed  CAS  Google Scholar 

  • Wang CC, Biben C, Robb L, Nassir F, Barnett L, Davidson NO, Koentgen F, Tarlinton D, Harvey RP (2000) Homeodomain factor Nkx2-3 controls regional expression of leukocyte homing coreceptor MAdCAM-1 in specialized endothelial cells of the viscera. Dev Biol 224:152–167

    PubMed  CAS  Google Scholar 

  • Wang J, Foster A, Chin R, Yu P, Sun Y, Wang Y, Pfeffer K, Fu YX (2002) The complementation of lymphotoxin deficiency with LIGHT, a newly discovered TNF family member, for the restoration of secondary lymphoid structure and function. Eur J Immunol 32:1969–1979

    PubMed  CAS  Google Scholar 

  • Wang JH, Nichogiannopoulou A, Wu L, Sun L, Sharpe AH, Bigby M, Georgopoulos K (1996) Selective defects in the development of the fetal and adult lymphoid system in mice with an Ikaros null mutation. Immunity 5:537–549

    PubMed  CAS  Google Scholar 

  • Wang Y, Wang J, Sun Y, Wu Q, Fu YX (2001) Complementary effects of TNF and lymphotoxin on the formation of germinal center and follicular dendritic cells. J Immunol 166:330–337

    PubMed  CAS  Google Scholar 

  • Weih DS, Yilmaz ZB, Weih F (2001) Essential role of RelB in germinal center and marginal zone formation and proper expression of homing chemokines. J Immunol 167:1909–1919

    PubMed  CAS  Google Scholar 

  • Weih F, Caamano J (2003) Regulation of secondary lymphoid organ development by the nuclear factor-κB signal transduction pathway. Immunol Rev 195:91–105

    PubMed  CAS  Google Scholar 

  • Weih F, Carrasco D, Durham SK, Barton DS, Rizzo CA, Ryseck RP, Lira SA, Bravo R (1995) Multiorgan inflammation and hematopoietic abnormalities in mice with a targeted disruption of RelB, amember of the NF-κB/Rel family. Cell 80:331–340

    PubMed  CAS  Google Scholar 

  • Wigle JT, Harvey N, Detmar M, Lagutina I, Grosveld G, Gunn MD, Jackson DG, Oliver G (2002) An essential role for Prox1 in the induction of the lymphatic endothelial cell phenotype. EMBO J 21:1505–1513

    PubMed  CAS  Google Scholar 

  • Wigle JT, Oliver G (1999) Prox1 function is required for the development of themurine lymphatic system. Cell 98:769–778

    PubMed  CAS  Google Scholar 

  • Wong BR, Rho J, Arron J, Robinson E, Orlinick J, Chao M, Kalachikov S, Cayani E, Bartlett FS, 3rd, Frankel WN, Lee SY, Choi Y (1997) TRANCE is a novel ligand of the tumor necrosis factor receptor family that activates c-Jun N-terminal kinase in T cells. J Biol Chem 272:25190–25194

    PubMed  CAS  Google Scholar 

  • Wright DE, Bowman EP, Wagers AJ, Butcher EC, Weissman IL (2002) Hematopoietic stem cells are uniquely selective in their migratory response to chemokines. J Exp Med 195:1145–1154

    PubMed  CAS  Google Scholar 

  • Wu HY, Nguyen HH, Russell MW (1997a) Nasal lymphoid tissue (NALT) as a mucosal immune inductive site. Scand J Immunol 46:506–513

    PubMed  CAS  Google Scholar 

  • Wu L, Nichogiannopoulou A, Shortman K, Georgopoulos K (1997b) Cell-autonomous defects in dendritic cell populations of Ikaros mutant mice point to a developmental relationship with the lymphoid lineage. Immunity 7:483–492

    PubMed  CAS  Google Scholar 

  • Yamamoto M, Kweon MN, Rennert PD, Hiroi T, Fujihashi K, McGhee JR, Kiyono H (2004) Role of gut-associatedlymphoreticular tissues inantigen-specific intestinal IgA immunity. J Immunol 173:762–769

    PubMed  CAS  Google Scholar 

  • Yamamoto M, Rennert P, McGhee JR, Kweon MN, Yamamoto S, Dohi T, Otake S, Bluethmann H, Fujihashi K, Kiyono H (2000) Alternative mucosal immune system: organized Peyer’s patches are not required for IgA responses in the gastrointestinal tract. J Immunol 164:5184–5191

    PubMed  CAS  Google Scholar 

  • Yasumizu R, Miyawaki S, Koba M, Kondoh-Tanaka M, Amoh Y, Nishio N, Yamamoto Y, Watanabe H, Ikehara S (2000) Pathology of ALY mice: congenital immunodefi-ciency with lymph node and Peyer’s patch defects. Immunobiology 202:213–225

    PubMed  CAS  Google Scholar 

  • Yilmaz ZB, Weih DS, Sivakumar V, Weih F (2003) RelB is required for Peyer’s patch development: differential regulation of p52-RelB by lymphotoxin and TNF. Embo J 22:121–130

    PubMed  CAS  Google Scholar 

  • Yin L, Wu L, Wesche H, Arthur CD, White JM, Goeddel DV, Schreiber RD (2001) Defective lymphotoxin-beta receptor-induced NF-κB transcriptional activity in NIK-deficient mice. Science 291:2162–2165

    PubMed  CAS  Google Scholar 

  • Yokota Y, Mansouri A, Mori S, Sugawara S, Adachi S, Nishikawa S, Gruss P (1999) Development of peripheral lymphoid organs and natural killer cells depends on the helix-loop-helix inhibitor Id2. Nature 397:702–706

    PubMed  CAS  Google Scholar 

  • Yoshida H, Honda K, Shinkura R, Adachi S, Nishikawa S, Maki K, Ikuta K, Nishikawa SI (1999) IL-7 receptor α+ CD3 cells in the embryonic intestine induces the organizing center of Peyer’s patches. Int Immunol 11:643–655

    PubMed  CAS  Google Scholar 

  • Yoshida H, Kawamoto H, Santee S, Hashi H, Honda K, Nishikawa S, Ware C, Katsura Y, Nishikawa S (2001) Expression of α4β7 integrin defines a distinct pathway of lymphoid progenitors committed to T cells, fetal intestinal lymphotoxin producer, NK, and dendritic cells. J Immunol 167:2511–2521

    PubMed  CAS  Google Scholar 

  • Yoshida H, Naito A, Inoue J, Satoh M, Santee-Cooper SM, Ware CF, Togawa A, Nishikawa S (2002) Different cytokines induce surface lymphotoxin-αβ on IL-7 receptor-α cells that differentially engender lymph nodes and Peyer’s patches. Immunity 17:823–833

    PubMed  CAS  Google Scholar 

  • Yuan L, Moyon D, Pardanaud L, Breant C, Karkkainen MJ, Alitalo K, Eichmann A (2002) Abnormal lymphatic vessel development in neuropilin 2 mutant mice. Development 129:4797–4806

    PubMed  CAS  Google Scholar 

  • Zapata A, Amemiya C (2000) Phylogeny of lower vertebrates and their immunological structures. Curr Top Microbiol Immunol 248:67–110

    PubMed  CAS  Google Scholar 

  • Zapata AG, Torroba M, Vicente A, Varas A, Sacedon R, Jimenez E (1995) The relevance of cell microenvironments for the appearance of lympho-haemopoietic tissues in primitive vertebrates. Histol Histopathol 10:761–778

    PubMed  CAS  Google Scholar 

  • Zhao X, Sato A, Dela Cruz CS, Linehan M, Luegering A, Kucharzik T, Shirakawa AK, Marquez G, Farber JM, Williams I, Iwasaki A (2003) CCL9 is secreted by the follicle-associated epithelium and recruits dome region Peyer’s patch CD11b+ dendritic cells. J Immunol 171:2797–2803

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Finke, D., Meier, D. (2006). Molecular Networks Orchestrating GALT Development. In: Honjo, T., Melchers, F. (eds) Gut-Associated Lymphoid Tissues. Current Topics in Microbiology and Immunology, vol 308. Springer, Berlin, Heidelberg . https://doi.org/10.1007/3-540-30657-9_2

Download citation

Publish with us

Policies and ethics