Skip to main content

Mutation-Specific Pharmacology of the Long QT Syndrome

  • Chapter
Basis and Treatment of Cardiac Arrhythmias

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 171))

Abstract

The congenital long QT syndrome is a rare disease in which inherited mutations of genes coding for ion channel subunits, or channel interacting proteins, delay repolarization of the human ventricle and predispose mutation carriers to the risk of serious or fatal arrhythmias. Though a rare disorder, the longQT syndrome has provided invaluable insight from studies that have bridged clinical and pre-clinical (basic science) medicine. In this brief review, we summarize some of the key clinical and genetic characteristics of this disease and highlight novel findings about ion channel structure, function, and the causal relationship between channel dysfunction and human disease, that have come from investigations of this disorder.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 389.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 499.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 499.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Abriel H, Motoike H, Kass RS (2000a) KChAP: a novel chaperone for specific K (+) channels key to repolarization of the cardiac action potential. Focus on “KChAP as a chaperone for specific K (+) channels” [editorial; comment]. Am J Physiol Cell Physiol 278:C863–C864

    CAS  PubMed  Google Scholar 

  • Abriel H, Wehrens XH, Benhorin J, Kerem B, Kass RS (2000b) Molecular pharmacology of the sodium channel mutation D1790G linked to the long-QT syndrome. Circulation 102:921–925

    CAS  PubMed  Google Scholar 

  • Ackerman MJ, Tester DJ, Porter CJ (1999) Swimming, a gene-specific arrhythmogenic trigger for inherited long QT syndrome. Mayo Clin Proc 74:1088–1094

    Article  CAS  PubMed  Google Scholar 

  • Aldrich RW, Corey DP, Stevens CF (1983) A reinterpretation of mammalian sodium channel gating based on single channel recording. Nature 306:436–441

    Article  CAS  PubMed  Google Scholar 

  • An RH, Bangalore R, Rosero SZ, Kass RS (1996) Lidocaine block of LQT-3 mutant human Na+ channels. Circ Res 79:103–108

    CAS  PubMed  Google Scholar 

  • Barhanin J, Lesage F, Guillemare E, Fink M, Lazdunski M, Romey G (1996) K (V)LQT1 and lsK (minK) proteins associate to form the I (Ks) cardiac potassium current. Nature 384:78–80

    Article  CAS  PubMed  Google Scholar 

  • Benhorin J, Taub R, Goldmit M, Kerem B, Kass RS, Windman I, Medina A (2000) Effects of flecainide in patients with new SCN5A mutation: mutation-specific therapy for long-QT syndrome? Circulation 101:1698–1706

    CAS  PubMed  Google Scholar 

  • Bennett PB, Yazawa K, Makita N, George AL (1995) Molecular mechanism for an inherited cardiac arrhythmia. Nature 376:683–685

    Article  CAS  PubMed  Google Scholar 

  • Catterall WA (1995) Structure and function of voltage-gated ion channels. Annu Rev Biochem 64:493–531

    Article  CAS  PubMed  Google Scholar 

  • Catterall WA (1996) Molecular properties of sodium and calcium channels [review]. J Bioenerg Biomembr 28:219–230

    Article  CAS  PubMed  Google Scholar 

  • Catterall WA (2000) From ionic currents to molecular mechanisms: the structure and function of voltage-gated sodium channels. Neuron 26:13–25

    Article  CAS  PubMed  Google Scholar 

  • Clancy CE, Tateyama M, Liu H, Wehrens XHT, Kass RS (2003) Non-equilibrium gating in cardiac Na+ channels: an original mechanism of arrhythmia. Circulation 107:2233–2237

    Article  CAS  PubMed  Google Scholar 

  • Deschenes I, Trottier E, Chahine M (1999) Cysteine scanning analysis of the IFM cluster in the inactivation gate of a human heart sodium channel. Cardiovasc Res 42:521–529

    Article  CAS  PubMed  Google Scholar 

  • Dumaine R, Kirsch GE (1998) Mechanism of lidocaine block of late current in long Q-T mutant Na+ channels. Am J Physiol 274:H477–H487

    CAS  PubMed  Google Scholar 

  • Dumaine R, Wang Q, Keating MT, Hartmann HA, Schwartz PJ, Brown AM, Kirsch GE (1996) Multiple mechanisms of Na+ channel linked long-QT syndrome. Circ Res 78:916–924

    CAS  PubMed  Google Scholar 

  • George AL, Varkony TA, Drabkin HA, Han J, Knops JF, Finley WH, Brow GB, Ward DC, Haas M (1995) Assignment of the human heart tetrodotoxin-resistant voltage-gated Na+ channel alpha-subunit gene (SCN5A) to band 3P21. Cytogenet Cell Genet 68:67–70

    Article  CAS  PubMed  Google Scholar 

  • Hille B (1977) Local anesthetics: hydrophilic and hydrophobic pathways for the drug-receptor reaction. J Gen Physiol 69:497–515

    Article  CAS  PubMed  Google Scholar 

  • Hondeghem LM, Katzung BG (1977) Time-and voltage-dependent interactions of antiarrhythmic drugs with cardiac sodium channels [review]. Biochim Biophys Acta 472:373–398

    CAS  PubMed  Google Scholar 

  • Jervell A, Lange-Nielsen F (1957) Congenital deaf-mutism, functional heart disease with prolongation of the Q-T interval and sudden death. Am Heart J 54:59–68

    Article  CAS  PubMed  Google Scholar 

  • Kass RS, Moss AJ (2003) Long QT syndrome: novel insights into the mechanisms of cardiac arrhythmias. J Clin Invest 112:810–815

    Article  CAS  PubMed  Google Scholar 

  • Kass RS, Wiegers SE (1982) The ionic basis of concentration-related effects of noradrenaline on the action potential of calf cardiac Purkinje fibres. J Physiol (Lond) 322:541–558

    CAS  PubMed  Google Scholar 

  • Kass RS, Kurokawa J, Marx SO, Marks AR (2003) Leucine/isoleucine zipper coordination of ion channel macromolecular signaling complexes in the heart. Roles in inherited arrhythmias. Trends Cardiovasc Med 13:52–56

    Article  CAS  PubMed  Google Scholar 

  • Kearney JA, Plummer NW, Smith MR, Kapur J, Cummins TR, Waxman SG, Goldin AL, Meisler MH (2001) A gain-of-function mutation in the sodium channel gene Scn2a results in seizures and behavioral abnormalities. Neuroscience 102:307–317

    Article  CAS  PubMed  Google Scholar 

  • Keating MT, Sanguinetti MC (2001) Molecular and cellular mechanisms of cardiac arrhythmias. Cell 104:569–580

    Article  CAS  PubMed  Google Scholar 

  • Kellenberger S, Scheuer T, Catterall WA (1996) Movement of the Na+ channel inactivation gate during inactivation. J Biol Chem 271:30971–30979

    Article  CAS  PubMed  Google Scholar 

  • Kellenberger S, West JW, Catterall WA, Scheuer T (1997a) Molecular analysis of potential hinge residues in the inactivation gate of brain type IIA Na+ channels. J Gen Physiol 109:607–617

    Article  CAS  PubMed  Google Scholar 

  • Kellenberger S, West JW, Scheuer T, Catterall WA (1997b) Molecular analysis of the putative inactivation particle in the inactivation gate of brain type IIA Na+ channels. J Gen Physiol 109:589–605

    Article  CAS  PubMed  Google Scholar 

  • Kurokawa J, Chen L, Kass RS (2003) Requirement of subunit expression for cAMP-mediated regulation of a heart potassium channel. Proc Natl Acad Sci U S A 100:2122–2127

    Article  CAS  PubMed  Google Scholar 

  • Li HL, Galue A, Meadows L, Ragsdale DS (1999) A molecular basis for the different local anesthetic affinities of resting versus open and inactivated states of the sodium channel. Mol Pharmacol 55:134–141

    CAS  PubMed  Google Scholar 

  • Liu H, Tateyama M, Clancy CE, Abriel H, Kass RS (2002) Channel openings are necessary but not sufficient for use-dependent block of cardiac Na(+) channels by flecainide: evidence from the analysis of disease-linked mutations. J Gen Physiol 120:39–51

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Atkins J, Kass RS (2003) Common molecular determinants of flecainide and lidocaine block of heart Na(+) channels: evidence from experiments with neutral and quaternary flecainide analogues. J Gen Physiol 121:199–214

    Article  CAS  PubMed  Google Scholar 

  • Lossin C, Wang DW, Rhodes TH, Vanoye CG, George AL Jr (2002) Molecular basis of an inherited epilepsy. Neuron 34:877–884

    Article  CAS  PubMed  Google Scholar 

  • Marx SO, Kurokawa J, Reiken S, Motoike H, D’Armiento J, Marks AR, Kass RS (2002) Requirement of a macromolecular signaling complex for beta adrenergic receptor modulation of the KCNQ1-KCNE1 potassium channel. Science 295:496–499

    Article  CAS  PubMed  Google Scholar 

  • McPhee JC, Ragsdale DS, Scheuer T, Catterall WA (1994) A mutation in segment IVS6 disrupts fast inactivation of sodium channels. Proc Natl Acad Sci U S A 91:12346–12350

    CAS  PubMed  Google Scholar 

  • McPhee JC, Ragsdale DS, Scheuer T, Catterall WA (1995) A critical role for transmembrane segment IVS6 of the sodium channel alpha subunit in fast inactivation. J Biol Chem 270:12025–12034

    Article  CAS  PubMed  Google Scholar 

  • McPhee JC, Ragsdale DS, Scheuer T, Catterall WA (1998) A critical role for the S4-S5 intracellular loop in domain IV of the sodium channel alpha-subunit in fast inactivation. J Biol Chem 273:1121–1129

    Article  CAS  PubMed  Google Scholar 

  • Moss AJ (2003) Long QT Syndrome. JAMA 289:2041–2044

    Article  PubMed  Google Scholar 

  • Moss AJ, Schwartz PJ, Crampton RS, Tzivoni D, Locati EH, MacCluer J, Hall WJ, Weitkamp L, Vincent M, Garso A, Robinson JL, Benhorin J, Choi S (1991) The long QT syndrome: prospective longitudinal study of 328 families. Circulation 84:1136–1144

    CAS  PubMed  Google Scholar 

  • Moss AJ, Zareba W, Hall WJ, Schwartz PJ, Crampton RS, Benhorin J, Vincent GM, Locati EH, Priori SG, Napolitano C, Medina A, Zhang L, Robinson JL, Timothy K, Towbin JA, Andrews ML (2000) Effectiveness and limitations of beta-blocker therapy in congenital long-QT syndrome. Circulation 101:616–623

    CAS  PubMed  Google Scholar 

  • Moss AJ, Zareba W, Kaufman ES, Gartman E, Peterson DR, Benhorin J, Towbin JA, Keating MT, Priori SG, Schwartz PJ, Vincent GM, Robinson JL, Andrews ML, Feng C, Hall WJ, Medina A, Zhang L, Wang Z (2002) Increased risk of arrhythmic events in long-QT syndrome with mutations in the pore region of the human ether-a-go-go-related gene potassium channel. Circulation 105:794–799

    Article  CAS  PubMed  Google Scholar 

  • Motoike HK, Liu H, Glaaser IW, Yang AS, Tateyama M, Kass RS (2004) The Na+ channel inactivation gate is a molecular complex: a novel role of the COOH-terminal domain. J Gen Physiol 123:155–165

    Article  CAS  PubMed  Google Scholar 

  • Nagatomo T, January CT, Makielski JC (2000) Preferential block of late sodium current in the LQT3 DeltaKPQ mutant by the class I (C) antiarrhythmic flecainide. Mol Pharmacol 57:101–107

    CAS  PubMed  Google Scholar 

  • Noble D, Tsien R (1968) The kinetics and rectifier properties of the slow potassium current in cardiac Purkinje fibres. J Physiol (Lond) 195:185–214

    CAS  PubMed  Google Scholar 

  • Noble D, Tsien RW (1969) Outward membrane currents activated in the plateau range of potentials in cardiac Purkinje fibres. J Physiol (Lond) 200:205–231

    CAS  PubMed  Google Scholar 

  • Paavonen KJ, Swan H, Piippo K, Hokkanen L, Laitinen P, Viitasalo M, Toivonen L, Kontula K (2001) Response of the QT interval to mental and physical stress in types LQT1 and LQT2 of the long QT syndrome. Heart 86:39–44

    Article  CAS  PubMed  Google Scholar 

  • Patton DE, West JW, Catterall WA, Goldin AL (1992) Amino acid residues required for fast Na (+)-channel inactivation: charge neutralizations and deletions in the III-IV linker. Proc Natl Acad Sci U S A 89:10905–10909

    CAS  PubMed  Google Scholar 

  • Priori SG (2004) From trials to guidelines to clinical practice: the need for improvement. Europace 6:176–178

    Article  PubMed  Google Scholar 

  • Priori SG, Napolitano C, Paganini V, Cantu F, Schwartz PJ (1997) Molecular biology of the long QT syndrome: impact on management. Pacing Clin Electrophysiol 20:2052–2057

    CAS  PubMed  Google Scholar 

  • Priori SG, Napolitano C, Schwartz PJ, Grillo M, Bloise R, Ronchetti E, Moncalvo C, Tulipani C, Veia A, Bottelli G, Nastoli J (2004) Association of long QT syndrome loci and cardiac events among patients treated with beta-blockers. JAMA 292:1341–1344

    Article  CAS  PubMed  Google Scholar 

  • Ragsdale DS, McPhee JC, Scheuer T, Catterall WA (1994) Molecular determinants of state-dependent block of Na+ channels by local anesthetics. Science 265:1724–1728

    CAS  PubMed  Google Scholar 

  • Ragsdale DS, McPhee JC, Scheuer T, Catterall WA (1996) Common molecular determinants of local anesthetic, antiarrhythmic, and anticonvulsant block of voltage-gated Na+ channels. Proc Natl Acad Sci U S A 93:9270–9275

    Article  CAS  PubMed  Google Scholar 

  • Rivolta I, Abriel H, Kass RS (2001) Ion channels as targets for drugs. In: Sperelakis N (ed) Cell physiology sourcebook. Academic Press, New York, pp 643–652

    Google Scholar 

  • Rohl CA, Boeckman FA, Baker C, Scheuer T, Catterall WA, Klevit RE (1999) Solution structure of the sodium channel inactivation gate. Biochemistry 38:855–861

    Article  CAS  PubMed  Google Scholar 

  • Rosen MR, Hoffman BF, Wit AL (1975) Electrophysiology and pharmacology of cardiac arrhythmias. V Cardiac antiarrhythmic effects of lidocaine. Am Heart J 89:526–536

    Article  CAS  PubMed  Google Scholar 

  • Rosero SZ, Zareba W, Robinson JL, (Moss A (1997) Gene-specific therapy for long QT syndrome: QT shortening with lidocaine and tocainide in patients with mutation of the sodidum channel gene. Ann Noninvasive Electrocardiol 2:274–278

    Google Scholar 

  • Sanguinetti MC, Jurkiewicz NK (1990) Two components of cardiac delayed rectifier K+ current. Differential sensitivity to block by class III antiarrhythmic agents. J Gen Physiol 96:195–215

    Article  CAS  PubMed  Google Scholar 

  • Sanguinetti MC, Spector PS (1997) Potassium channelopathies. Neuropharmacology 36:755–762

    Article  CAS  PubMed  Google Scholar 

  • Sanguinetti MC, Jiang C, Curran ME, Keating MT (1995) A mechanistic link between an inherited and an acquired cardiac arrhythmia: HERG encodes the IKr potassium channel. Cell 81:299–307

    Article  CAS  PubMed  Google Scholar 

  • Sanguinetti MC, Curran ME, Spector PS, Keating MT (1996a) Spectrum of HERG K channel dysfunction in an inherited cardiac arrhythmia. Proc Natl Acad Sci U S A 93:2208–2212

    Article  CAS  PubMed  Google Scholar 

  • Sanguinetti MC, Curran ME, Zou A, Shen J, Spector PS, Atkinson DL, Keating MT (1996b) Coassembly of KvLQT1 and minK (ISK) proteins to form cardiac IKS potassium channel. Nature 384:80–83

    Article  CAS  PubMed  Google Scholar 

  • Sato C, Ueno Y, Asai K, Takahashi K, Sato M, Engel A, Fujiyoshi Y (2001) The voltage-sensitive sodium channel is a bell-shaped molecule with several cavities. Nature 409:1047–1051

    Article  CAS  PubMed  Google Scholar 

  • Schwartz PJ, Priori SG, Locati EH, Napolitano C, Cantu F, Towbin JA, Keating MT, Hammoude H, Brown AM, Chen LS (1995) Long QT syndrome patients with mutations of the SCN5A and HERG genes have differential responses to NA+ channel blockade and to increases in heart rate: implications for gene-specific therapy. Circulation 92:3381–3386

    CAS  PubMed  Google Scholar 

  • Schwartz PJ, Priori SG, Spazzolini C, Moss AJ, Vincent GM, Napolitano C, Denjoy I, Guicheney P, Breithardt G, Keating MT, Towbin JA, Beggs AH, Brink P, Wilde AA, Toivonen L, Zareba W, Robinson JL, Timothy KW, Corfield V, Wattanasirichaigoon D, Corbett C, Haverkamp W, Schulze-Bahr E, Lehmann MH, Schwartz K, Coumel P, Bloise R (2001) Genotype-phenotype correlation in the long-QT syndrome: gene-specic triggers for life-threatening arrhythmias. Circulation 103:89–95

    CAS  PubMed  Google Scholar 

  • Sheets MF, Kyle JW, Hanck DA (2000) The role of the putative inactivation lid in sodium channel gating current immobilization. J Gen Physiol 115:609–620

    Article  CAS  PubMed  Google Scholar 

  • Shimizu W, Horie M, Ohno S, Takenaka K, Yamaguchi M, Shimizu M, Washizuka T, Aizawa Y, Nakamura K, Ohe T, Aiba T, Miyamoto Y, Yoshimasa Y, Towbin JA, Priori SG, Kamakura S (2004) Mutation site-specific differences in arrhythmic risk and sensitivity to sympathetic stimulation in the LQT1 form of congenital long QT syndrome: multicenter study in Japan. J Am Coll Cardiol 44:117–125

    Article  CAS  PubMed  Google Scholar 

  • Splawski I, Timothy KW, Vincent GM, Atkinson DL, Keating MT (1997a) Molecular basis of the long-QT syndrome associated with deafness. N Engl J Med 336:1562–1567

    Article  CAS  PubMed  Google Scholar 

  • Splawski I, Tristani-Firouzi M, Lehmann MH, Sanguinetti MC, Keating MT (1997b) Mutations in the hminK gene cause long QT syndrome and suppress IKs function. Nat Genet 17:338–340

    CAS  PubMed  Google Scholar 

  • Splawski I, Shen J, Timothy KW, Lehmann MH, Priori S, Robinson JL, Moss AJ, Schwartz PJ, Towbin JA, Vincent GM, Keating MT (2000) Spectrum of mutations in long-QT syndrome genes: KVLQT1, HERG, SCN5A, KCNE1, and KCNE2. Circulation 102:1178–1185

    CAS  PubMed  Google Scholar 

  • Splawski I, Timothy KW, Sharpe LM, Decher N, Kumar P, Bloise R, Napolitano C, Schwartz PJ, Joseph RM, Condouris K, Tager-Flusberg H, Priori SG, Sanguinetti MC, Keating MT (2004) Ca (V)1.2 calcium channel dysfunction causes a multisystem disorder including arrhythmia and autism. Cell 119:19–31

    Article  CAS  PubMed  Google Scholar 

  • Stuhmer W, Conti F, Suzuki H, Wang X, Noda M, Yahagi N, Kubo H, Numa S (1989) Structural parts involved in activation and inactivation of the sodium channel. Nature 339:597–603

    Article  CAS  PubMed  Google Scholar 

  • Takenaka K, Ai T, Shimizu W, Kobori A, Ninomiya T, Otani H, Kubota T, Takaki H, Kamakura S, Horie M (2003) Exercise stress test amplies genotype-phenotype correlation in the LQT1 and LQT2 forms of the long-QT syndrome. Circulation 107:838–844

    Article  PubMed  Google Scholar 

  • Tateyama M, Rivolta I, Clancy CE, Kass RS (2003) Modulation of cardiac sodium channel gating by protein kinase A can be altered by disease-linked mutation. J Biol Chem 278:46718–46726

    Article  CAS  PubMed  Google Scholar 

  • Vassilev P, Scheuer T, Catterall WA (1989) Inhibition of inactivation of single sodium channels by a site-directed antibody. Proc Natl Acad Sci U S A 86:8147–8151

    CAS  PubMed  Google Scholar 

  • Vassilev PM, Scheuer T, Catterall WA (1988) Identification of an intracellular peptide segment involved in sodium channel inactivation. Science 241:1658–1661

    CAS  PubMed  Google Scholar 

  • Veldkamp MW, Viswanathan PC, Bezzina C, Baartscheer A, Wilde AA, Balser JR (2000) Two distinct congenital arrhythmias evoked by a multidysfunctional Na (+) channel. Circ Res 86:E91–E97

    CAS  PubMed  Google Scholar 

  • Viswanathan PC, Bezzina CR, George AL, Roden JDM, Wilde AA, Balser JR (2001) Gating-dependent mechanisms for flecainide action in SCN5A-linked arrhythmia syndromes. Circulation 104:1200–1205

    CAS  PubMed  Google Scholar 

  • Wang DW, Yazawa K, Makita N, George AL, Bennett PB (1997) Pharmacological targeting of long QT mutant sodium channels. J Clin Invest 99:1714–1720

    CAS  PubMed  Google Scholar 

  • Wang Q, Shen J, Li Z, Timothy K, Vincent GM, Priori SG, Schwartz PJ, Keating MT (1995a) Cardiac sodium channel mutations in patients with long QT syndrome, an inherited cardiac arrhythmia. Hum Mol Genet 4:1603–1607

    CAS  PubMed  Google Scholar 

  • Wang Q, Shen J, Splawski I, Atkinson D, Li Z, Robinson JL, Moss AJ, Towbin JA, Keating MT (1995b) SCN5A mutations associated with an inherited cardiac arrhythmia, long QT syndrome. Cell 80:805–811

    Article  CAS  PubMed  Google Scholar 

  • Wang Q, Curran ME, Splawski I, Burn TC, Millholland JM, Vanraay TJ, Shen J, Timothy KW, Vincent GM, Dejager T, Schwartz PJ, Towbin JA, Moss AJ, Atkinson DL, Landes GM, Connors TD, Keating MT (1996) Positional cloning of a novel potassium channel gene— KVLQT1 mutations cause cardiac arrhythmias. Nat Genet 12:17–23

    Article  PubMed  Google Scholar 

  • Weidmann S (1952) The electrical constants of Purkinje fibres. J Physiol 118:348–360

    CAS  PubMed  Google Scholar 

  • Weiser T, Qu Y, Catterall WA, Scheuer T (1999) Differential interaction of R-mexiletine with the local anesthetic receptor site on brain and heart sodium channel alpha-subunits. Mol Pharmacol 56:1238–1244

    CAS  PubMed  Google Scholar 

  • Weiss LA, Escayg A, Kearney JA, Trudeau M, MacDonald BT, Mori M, Reichert J, Buxbaum JD, Meisler MH (2003) Sodium channels SCN1A, SCN2A and SCN3A in familial autism. Mol Psychiatry 8:186–194

    Article  CAS  PubMed  Google Scholar 

  • West JW, Patton DE, Scheuer T, Wang Y, Goldin AL, Catterall WA (1992) A cluster of hydrophobic amino acid residues required for fast Na (+)-channel inactivation. Proc Natl Acad Sci U S A 89:10910–10914

    CAS  PubMed  Google Scholar 

  • Windle JR, Geletka RC, Moss AJ, Zareba W, Atkins DL (2001) Normalization of ventricular repolarization with flecainide in long QT syndrome patients with SCN5A:DeltaKPQ mutation. Ann Noninvasive Electrocardiol 6:153–158

    CAS  PubMed  Google Scholar 

  • Yang N, Ji S, Zhou M, Ptacek LJ, Barchi RL, Horn R, George AL, ( Jr1994) Sodium channel mutations in paramyotonia congenita exhibit similar biophysical phenotypes in vitro. Proc Natl Acad Sci U S A 91:12785–12789

    CAS  PubMed  Google Scholar 

  • Zareba W, Moss AJ, Sheu G, Kaufman ES, Priori S, Vincent GM, Towbin JA, Benhorin J, Schwartz PJ, Napolitano C, Hall WJ, Keating MT, Qi M, Robinson JL, Andrews ML (2003) Location of mutation in the KCNQ1 and phenotypic presentation of long QT syndrome. J Cardiovasc Electrophysiol 14:1149–1153

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kass, R., Moss, A. (2006). Mutation-Specific Pharmacology of the Long QT Syndrome. In: Basis and Treatment of Cardiac Arrhythmias. Handbook of Experimental Pharmacology, vol 171. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-29715-4_11

Download citation

Publish with us

Policies and ethics