Skip to main content

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

8.4 References

  • Keown PA (1987) The role of precision engineering in manufacturing of the future, Annals of CIRP 36:495–501

    Google Scholar 

  • Taniguchi N (1983) Current status in, and future trends of ultraprecision machining and ultrafine material processing, Annals of CIRP 2:573–582

    Google Scholar 

  • Schey JA (1987) Introduction to manufacturing processes. 2nd edn., McGraw-Hill Book Company

    Google Scholar 

  • Shaw MC (1996) Principles of abrasive processing. Clarendon press, Oxford

    Google Scholar 

  • Jain VK (2002) Advanced machining processes. Allied publishers, New Delhi (India)

    Google Scholar 

  • Rhoades LJ (1988) Abrasive flow machining, Manufacturing Engineering 1:75–78

    Google Scholar 

  • Jain VK Ranganath C, Murlidhar K (2001) Evaluation of rheological properties of medium for AFM process, Machining Science and Technology 5:151–170

    Article  Google Scholar 

  • Kohut T (1989) Surface finishing with abrasive flow machining, SME technical paper, pp 35–43

    Google Scholar 

  • Rhoades LJ (1991) Abrasive flow machining: a case study, J of materials processing Technology 28:107–116

    Article  Google Scholar 

  • Gorana VK, Jain VK, Lal GK (2004) Experimental Investigation into cutting forces and active grain density during abrasive flow machining, Institution of Engrs. 44:201–211

    Google Scholar 

  • Kremen GZ (1994) Machining time estimation for magnetic abrasive processes, International J of Production Research 32:2817–2825

    Google Scholar 

  • Jain VK, Kumar P, Behera PK, Jayswal SC, (2001) Effect of working gap and circumferential speed on the performance of magnetic abrasive finishing process, Wear 250:384–390

    Article  Google Scholar 

  • Shinmura T (1987) Study on magnetic abrasive finishing-characteristics of finished surface, J of Japan Society of Precision Engineering 53:1791–1793.

    Google Scholar 

  • Kim JD (1997) Development of a magnetic abrasive jet machining system for internal polishing of circular tubes, J. of material processing technology 71:384–393

    Article  Google Scholar 

  • Kremen GZ (1994) Machining time estimation for magnetic abrasive processes, Int. J of Production Research 32:2817–2825

    Google Scholar 

  • Fox M, Agrawal K, Shinmura T, Komanduri R (1994) Magnetic Abrasive Finishing of Rollers. Annals of CIRP 43:1

    Google Scholar 

  • Kordonski WI (1996) Magnetorheological finishing, International J of modern physics B 10:2837–2849

    Article  CAS  Google Scholar 

  • Furst EM, Gast AP (2000) Micromechanics of magnetorheological suspensions, Physical Review E 61:6732–6739

    Article  CAS  Google Scholar 

  • Kordonski W, Gordokin S, Zhuravski N (2001) Static yield stress in magnetorheological fluid. Int. J. of Modern Physics B 15:1078–1084

    Article  Google Scholar 

  • Ginder J M, Davis LC (1994) Shear stresses in magnetorheological fluids: Role of magnetic saturation. Appl. Phys. Letter 65:3410–3412

    Article  CAS  Google Scholar 

  • Carlson JD, Catanzarite DM, Clair KA (1996) Commercial magnetorheological fluid devices, Int. J of Modern Physics B 10:2857–2865

    Article  CAS  Google Scholar 

  • Klingenberg DJ (2001) Magnetorheology: Applications and challenges, AIChE Journal 47:246–249

    Article  CAS  Google Scholar 

  • Lambropoulo SJ, Yang F, Jacob SD (1996) Optical fabrication and testing, Technical digest series (Optical Society of America, Washington DC), vol. 7, pp 150–153

    Google Scholar 

  • COM (1998) Magnetorheological finishing, Article by Center for Optics Manufacturing (http://www.opticam.rochester.edu)

    Google Scholar 

  • Jha S, Jain VK (2004) Design and development of magnetorheological abrasive flow finishing process, Int. J of Machine Tool and Manufacture 44:1019–1029

    Article  Google Scholar 

  • Rabinow J (1948) The magnetic fluid clutch, AIEE Trans 67:1308

    Google Scholar 

  • Klingenberg DJ (2001) Magnetorheology: Applications and challenges, AIChE Journal 47:246–249

    Article  CAS  Google Scholar 

  • Rosenweig RE (1966) Fluid magnetic buoyancy, AIAA Journal 4:1751

    Google Scholar 

  • Tani Y, Kawata K (1984) Development of high-efficient fine finishing process using magnetic fluid, Annals of CIRP 33:1–5

    Google Scholar 

  • Komanduri R (1996) On material removal mechanisms in finishing of advanced ceramics and glasses. Annals of CIRP 45:509–514

    Google Scholar 

  • Komanduri R (2000) Finishing of silicon nitride balls, Technical Report, Oklahama State University

    Google Scholar 

  • Mori Y, Ikawa N, Okuda T, Yamagata K (1976) Numerically controlled elastic emission machining, Technology reports of the Osaka University, vol. 26, pp 283–294

    Google Scholar 

  • Mori, Y; Yamauchi, K (1987), Elastic Emission Machining, Precision Engineering vol. 9, pp. 123–128

    Article  Google Scholar 

  • Mori Y, Ikawa N, Sugiyama K (2000) Elastic emission machining-stress field and fracture mechanism, Technology Reports of the Osaka University, vol. 28, pp 525–534

    Google Scholar 

  • Mori Y, Ikawa N, Sugiyama K Okuda T, Yamauchi K (2002) Elastic emission machining-2nd Report: Stress field and feasibility of introduction and activation of lattice defects, Japan Society of Precision Engineers, vol. 51, pp 1187–1194

    Google Scholar 

  • Spencer EG, Schmidt PH (1972) Ion beam techniques for device fabrication, J of Vacuum science and technology 8:S52–S70

    Article  Google Scholar 

  • Somekh S (1976) Introduction of the ion and plasma etching, J of Vacuum Science and Technology 13:1003–1007

    Article  CAS  Google Scholar 

  • Smith M (1976) Ion etching for pattern delineation, J of Vacuum Science and Technology, 13:1008–1022

    Article  Google Scholar 

  • Miyamoto I (1993) Ion beam fabrication of ultra fine patterns on cemented carbide chips with ultra-fine grain, Annals of CIRP 42:1

    Google Scholar 

  • Miyamoto I, Ezawa TV (1991) Ion beam fabrication of diamond probes for a scanning tunneling microscope, Nanotechnology 2:52–56

    Article  Google Scholar 

  • Vora H, Orent TW, Stokes RJ (1982) Mechano-chemical polishing of silicon nitrid, J of American Ceramic Society 65:140–141

    Google Scholar 

  • Nanz G, Camilletti L.E. (1995), Modeling of chemical-mechanical polishing: A review, IEEE Trans. on Semiconductor Manufacturing 8:382–389

    Article  Google Scholar 

  • Komanduri R, Lucca DA, Tani Y (1997) Technological advances in fine brasive processes, Annals of CIRP 46:2

    Article  Google Scholar 

  • Hayashi Y, Nakajima T, Kunio T (2001) Ultrauniform chemical mechanical polishing (CMP) using a hydro chuck, featured by wafer mounting on a quartz glass plate with fully flat water supported surface, Japanese J of Applied Physics 35:1054–1059

    Article  Google Scholar 

  • Jhansson S, Schweitz JA, Lagerlof KPD (1989) Surface defects in polished silicon studied by cross-sectional transmission electron microscopy, J of the American Ceramic Society 72:1136–1139

    Article  Google Scholar 

  • Wenski G, Altmann T, Winkler W, Heier G, Holker G (2002) Double side polishing-A technology mandatory for 300 mm wafer manufacturing, Materials Science in Semiconductor Processing 5:375–380

    Article  CAS  Google Scholar 

  • Chang C Y, Lin HY, Lei TF, Cheng JY, Chen LP, Dai BT (1996) Fabrication of thin film transistors by chemical mechanical polished polycrystalline silicon films, IEEE Electron Device Letters 17:100–102

    Article  CAS  Google Scholar 

  • Venkatesh VC, Izman S, Mahadevan SC (2004) Electrochemical mechanical polishing of copper and chemical mechanical polishing of glass, J of Materials Processing Technology 149:493–498

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jha, S., Jain, V.K. (2006). Nanofinishing Techniques. In: Micromanufacturing and Nanotechnology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-29339-6_8

Download citation

Publish with us

Policies and ethics