Skip to main content

Organization of the Adult Primate Fovea

  • Chapter
Macular Degeneration

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahnelt P, Kolb H (2000) The mammalian photoreceptor mosaic-adaptive design. Prog Retina Eye Res 19: 711–777

    CAS  Google Scholar 

  • Ahnelt P, Keri C, Kolb H (1990) Identification of pedicles of putative blue-sensitive cones in the human retina. J Comp Neurol 293: 39–53

    Article  PubMed  CAS  Google Scholar 

  • Barbosa-Carneiro L, Peret M, Bichara A, Coscarelli G, Peret P (2000) Isolated foveal hypoplasia. Invest Ophthalmol Vis Sci 41: S571

    Google Scholar 

  • Bird AC (2003) The Bowman Lecture. Towards an understanding of age-related macular disease. Eye 17: 457–466

    Article  PubMed  CAS  Google Scholar 

  • Borwein B, Borwein D, Medeiros J, McGowan JW (1980) The ultrastructure of monkey foveal photoreceptors, with special reference to the structure, shape, size and spacing of the foveal cones. Am J Anat 159: 125–146

    Article  PubMed  CAS  Google Scholar 

  • Boycott BB, Dowling JE (1969) Organization of the primate retina: light microscopy. Philos Trans R Soc Lond B Biol Sci 255: 109–184

    Google Scholar 

  • Bumsted K, Hendrickson A (1999) Distribution and development of short-wavelength cones differ between Macaca monkey and human fovea. J Comp Neurol 403: 502–516

    Article  PubMed  CAS  Google Scholar 

  • Bumsted K, Jasoni CL, Szél A, Hendrickson A (1997) Spatial and temporal expression of cone opsins during monkey retinal development. J Comp Neurol 378: 117–134

    Article  PubMed  CAS  Google Scholar 

  • Bumsted-O’Brien K, Schulte D, Hendrickson A (2003) Expression of photoreceptor-associated molecules during human fetal eye development. Mol Vis 9: 401–409

    Google Scholar 

  • Burris C, Klug K, Ngo IT, Sterling P, Schein S (2002) How Müller glial cells in macaque fovea coat and isolate the synaptic terminals of cone photoreceptors. J Comp Neurol 453: 100–111

    Article  PubMed  Google Scholar 

  • Cajal S Ramon Y (1892) La rétine des vertébrés. Cellule 9: 121–255

    Google Scholar 

  • Calkins DJ (2001) Seeing with S cones. Prog Retin Eye Res 20: 255–287

    Article  PubMed  CAS  Google Scholar 

  • Carroll J, Neitz J, Neitz M (2002) Estimates of L: M cone ratio from ERG flicker photometry and genetics. J Vis 2: 531–542

    PubMed  Google Scholar 

  • Chan-Ling T (1994) Glial, neuronal and vascular interactions in the mammalian retina. Prog Retin Eye Res 13: 357–389

    Article  Google Scholar 

  • Chun M-H, Grünert U, Martin PR, Wässle H (1996) The synaptic complex for cones in the fovea and in the periphery of the macaque monkey retina. Vis Res 36: 3383–3395

    PubMed  CAS  Google Scholar 

  • Curcio CA, Allen KA (1990) Topography of ganglion cells in human retina. J Comp Neurol 300: 5–25

    Article  PubMed  CAS  Google Scholar 

  • Curcio CA, Hendrickson AE (1991) Organization and development of the primate photoreceptor mosaic. Prog Retin Res 10: 89–120

    Google Scholar 

  • Curcio CA, Sloan KR, Kalina RE, Hendrickson AE (1990) Human photoreceptor topography. J Comp Neurol 292: 497–523

    Article  PubMed  CAS  Google Scholar 

  • Curcio CA, Allen KA, Sloan KR, Lerea CL, Hurley JB, Klock IB, Milam AH (1991) Distribution and morphology of human cone photoreceptors stained with anti-blue opsin. J Comp Neurol 312: 610–624

    Article  PubMed  CAS  Google Scholar 

  • Dacey DM (1999) Primate retina: cell types, circuits and color opponency. Prog Retin Eye Res 18: 737–763

    Article  PubMed  CAS  Google Scholar 

  • Deeb SS, Diller LC, Williams DR, Dacey DM (2000) Interindividual and topographical variation of L:M cone ratios in monkey retinas. J Opt Soc Am A Opt Imag Sci Vis 17: 538–544

    CAS  Google Scholar 

  • Delori FC, Goger DG, Hammond BR, Snodderly DM, Burns SA (2001) Macular pigment density measured by autofluorescence spectrometry: comparison with reflectometry and heterochromatic flicker photometry. J Opt Soc Am A Opt Imag Sci Vis 18: 1212–1230

    CAS  Google Scholar 

  • Distler C, Dreher Z (1996) Glia cells of the monkey retina. II. Müller cells. Vis Res 36: 2381–2394

    PubMed  CAS  Google Scholar 

  • Distler C, Kirby MA (1996) Transience of astrocytes in the newborn macaque monkey retina. Eur J Neurosci 8: 847–851

    PubMed  CAS  Google Scholar 

  • Distler C, Weigel H, Hoffman K-P (1993) Glia cells of the monkey retina. I. Astrocytes. J Comp Neurol 333: 134–147

    Article  PubMed  CAS  Google Scholar 

  • Distler C, Kopatz K, Telkes I (2000) Developmental changes in astrocyte density in the macaque perifoveal region. Eur J Neurosci 12: 1331–1341

    Article  PubMed  CAS  Google Scholar 

  • Dowling JE (1965) Foveal receptors of the monkey retina: fine structure. Science 147: 57–59

    PubMed  CAS  Google Scholar 

  • Engerman RL (1976) Development of the macular circulation. Invest Ophthalmol 15: 835–840

    PubMed  CAS  Google Scholar 

  • Fischer AJ, Reh TA (2003) Potential of Muller glia to become neurogenic retinal progenitor cells. Glia 43: 70–76

    Article  PubMed  Google Scholar 

  • Franco ECS, Finlay BL, Silveira LCL, Yamada ES, Crowley JC (2000) Conservation of absolute foveal area in New World monkeys. A constraint on eye size and conformation. Brain Behav Evol 56: 276–286.

    Article  PubMed  CAS  Google Scholar 

  • Fukada Y, Sawai H, Watanabe M, Wakakuwa K, Morigiwa K (1989) Nasotemporal overlap of crossed and uncrossed retinal ganglion cell projections in the Japanese monkey (Macaca fuscata). J Neurosci 9: 2353–2373

    Google Scholar 

  • Fulton AB, Albert DM, Craft JL (1978) Human albinism: light and electron microscopy. Arch Ophthalmol 96: 305–310

    PubMed  CAS  Google Scholar 

  • Gariano RF, Iruela-Arispe ML, Hendrickson AE (1994) Vascular development in primate retina: comparison of laminar plexus formation in monkey and human. Invest Ophthalmol Vis Sci 35: 3442–3455

    PubMed  CAS  Google Scholar 

  • Gariano RF, Iruela-Arispe ML, Sage EH, Hendrickson AE (1996a) Immunohistochemical characterization of developing and mature primate retinal blood vessels. Invest Ophthalmol Vis Sci 37: 93–103

    PubMed  CAS  Google Scholar 

  • Gariano RF, Sage EH, Kaplan HJ, Hendrickson AE (1996b) Development of astrocytes and their relation to blood vessels in fetal monkey retina. Invest Ophthalmol Vis Sci 37: 2367–2375

    PubMed  CAS  Google Scholar 

  • Goldberg ME (2000) The control of gaze. In: Kandel ER, Schwartz JH, Jessell TM (eds) Principles of neural science, 4th edn. McGraw-Hill, New York, pp 782–800

    Google Scholar 

  • Hagstrom SA, Neitz J, Neitz M (1998) Variations in cone populations for red-green color vision examined by analysis of mRNA. Neuroreport 9: 1963–1967

    PubMed  CAS  Google Scholar 

  • Haverkamp S, Grünert U, Wässle H (2000) The cone pedicle, a complex synapse in the retina. Neuron 27: 85–95

    Article  PubMed  CAS  Google Scholar 

  • Helmholtz H (1924) Treatise on physiological optics, the sensation of vision (JPC Southall, translator). Optical Society of America

    Google Scholar 

  • Hendrickson A (1992) A morphological comparison of foveal development in man and monkey. Eye 6: 136–144

    PubMed  Google Scholar 

  • Hendrickson A, Djajadi HR, Nakaura L, Possin DE, Sajuthi D (2000) Nocturnal tarsier retina has both short and long/medium-wavelength cones in an unusual topography. J Comp Neurol 424: 718–730

    Article  PubMed  CAS  Google Scholar 

  • Hogan, MJ, Alvarado JA, Weddell JE (1971) Histology of the Human Eye. Saunders, Philadelphia

    Google Scholar 

  • Hollyfield JG, Rayborn ME, Nihiyama K, Shadrach KG, Miyagi M, Crabb JW, Rodriquez IR (2001) Interphotoreceptor matrix in the fovea and peripheral retina of the primate Macaca mulatta; distribution and glyoforms of SPACR and SPACRCAN. Exp Eye Res 72: 49–61

    PubMed  CAS  Google Scholar 

  • Iwasaki M, Inomata H (1986) Relation between superficial capillaries and foveal structures in the human retina. Invest Ophthalmol Vis Sci 27: 1698–1705

    PubMed  CAS  Google Scholar 

  • Jacobs GH (1998) Photopigments and seeing — lessons from natural experiments. Invest Ophthalmol Vis Sci 39: 2205–2216

    Google Scholar 

  • Kolb H (1970) Organization of the outer plexiform layer of the primate retina: electron microscopy of Golgi-impregnated cells. Philos Trans R Soc London B Biol Sci 258: 261–283

    Google Scholar 

  • Kolb H (1994) The architecture of functional neural circuits in the vertebrate retina. The Proctor Lecture 1994. Invest Ophthalmol Vis Sci 35: 2385–404.

    PubMed  CAS  Google Scholar 

  • Krebs W, Krebs IP (1989) Quantitative morphology of the central fovea in the primate retina. Am J Anat 184: 225–236

    Article  PubMed  CAS  Google Scholar 

  • Krebs W, Krebs I (1991) Primate retina and choroid: atlas of fine structure in man and monkey. Springer-Verlag, New York

    Google Scholar 

  • Kremers J, Silveira LCL, Yamada ES, Lee BB (1999) The ecology and evolution of primate color vision. In: Gegenfurtner KR, Sharpe LT (eds) Color vision: from genes to perception. Cambridge University Press, Cambridge, UK, pp 123–142

    Google Scholar 

  • Mansour AM, Schachat A, Bodiford G, Haymond R (1993) Foveal avascular zone in diabetes mellitus. Retina 13: 125–128

    PubMed  CAS  Google Scholar 

  • Martin PR (1998) Colour processing in the primate retina: recent progress. J Physiol (Lond) 513: 631–638

    Article  PubMed  CAS  Google Scholar 

  • Martin PR, Grünert U (1999) Analysis of the short wavelength-sensitive “blue” cone mosaic in the primate retina: comparison of new world and old world monkeys. J Comp Neurol 406: 1–14

    Article  PubMed  CAS  Google Scholar 

  • Martin PR, Grünert U, Chan TL, Bumsted K (2000) Spatial order in short-wavelength-sensitive cone photoreceptors: a comparative study of the primate retina. J Opt Soc Am A Opt Imag Sci Vis 17: 557–567

    CAS  Google Scholar 

  • Martin PR, Lee BB, White AJ, Solomon SG, Ruttiger L (2001) Chromatic sensitivity of ganglion cells in the peripheral primate retina. Nature 410: 933–936

    Article  PubMed  CAS  Google Scholar 

  • McMahon C, Neitz J, Dacey DM, Neitz M (2001) Reversed L:M cone ratio in baboon indicates that pigment gene order does not determine relative cone number. Invest Ophthalmol Vis Sci 44: 72S

    Google Scholar 

  • Mietz H, Green WR, Wolff SM, Abundo GP (1992) Foveal hypoplasia in complete oculocutaneous albinism. Retina 12: 254–260

    PubMed  CAS  Google Scholar 

  • Milam AH, Li ZY, Fariss RN (1998) Histopathology of the human retina in retinitis pigmentosa. Prog Retin Eye Res 17: 175–205

    PubMed  CAS  Google Scholar 

  • Missotten L (1965) The ultrastructure of the human retina. Arsia, Brussels, Belgium

    Google Scholar 

  • Missotten L (1974) Estimation of the ratio of the cones and neurons in the fovea of the human retina. Invest Ophthalmol 13: 1045–1049

    PubMed  CAS  Google Scholar 

  • Mollon JD, Bowmaker JK (1992) The spatial arrangement of cones in the primate fovea. Nature 360: 677–679

    Article  PubMed  CAS  Google Scholar 

  • Nathans J, Thomas D, Hogness DS (1986) Molecular genetics of human color vision: the genes encoding blue, green and red pigments. Science 232: 193–202

    PubMed  CAS  Google Scholar 

  • Oliver MD, Dotan SA, Chemke J, Abraham FA (1987) Isolated foveal hypoplasia. Br J Ophthalmol 71: 926–930

    PubMed  CAS  Google Scholar 

  • Osterberg G (1935) Topography of the layer of rods and cones in the human retina. Acta Ophthalmol [Suppl VI]: 1–102

    Google Scholar 

  • Packer O, Hendrickson AE, Curcio CA (1989) Photoreceptor topography of the retina in the adult pigtail macaque (Macaca nemestrina). J Comp Neurol 288: 165–183

    Article  PubMed  CAS  Google Scholar 

  • Packer OS, Williams DR, Bensinger DG (1996) Photopigment transmittance imaging of the primate photoreceptor mosaic. J Neurosci 16: 2251–2260

    PubMed  CAS  Google Scholar 

  • Panda-Jones S, Jonas JB, Jakobczyk-Zmija M (1996) Retinal pigment epithelial cell count, distribution and correlations in normal human eyes. Am J Ophthalmol 121: 181–189

    Google Scholar 

  • Penfold PL, Madigan MC, Gillies MC, Provis JM (2001) Immunological and aetiological aspects of macular degeneration. Prog Retin Eye Res 20: 385–414

    Article  PubMed  CAS  Google Scholar 

  • Polyak SL (1941) The retina. University of Chicago Press, Chicago, IL

    Google Scholar 

  • Provis JM (2001) Development of the primate retinal vasculature. Prog Retin Eye Res 20: 799–821

    Article  PubMed  CAS  Google Scholar 

  • Provis JM, Diaz CM, Penfold PL (1996) Microglia in human retina: a heterogeneous population with distinct ontogenies. Perspect Dev Neurobiol 3: 213–221

    PubMed  CAS  Google Scholar 

  • Provis JM, Leech J, Diaz CM, Penfold PL, Stone J, Keshet E (1997) Development of the human retinal vasculature: cellular relations and VEGF expression. Exp Eye Res 65: 555–568

    Article  PubMed  CAS  Google Scholar 

  • Provis JM, Diaz CM, Dreher B (1998) Ontogeny of the primate fovea: a central issue in retinal development. Prog Neurobiol 54: 549–580

    Article  PubMed  CAS  Google Scholar 

  • Provis JM, Sandercoe T, Hendrickson AE (2000) Astrocytes and blood vessels define the foveal rim during primate retinal development. Invest Ophthalmol Vis Sci 41: 2827–2836

    PubMed  CAS  Google Scholar 

  • Reinhard J, Trauzettel-Klosinski S (2003) Nasotemporal overlap of retinal ganglion cells in humans: a functional study. Invest Ophthalmol Vis Sci 44: 1568–1572

    Article  PubMed  Google Scholar 

  • Robb RM (1985) Regional changes in retinal pigment epithelial cell density during ocular development. Invest Ophthalmol Vis Sci 26: 614–620

    PubMed  CAS  Google Scholar 

  • Robinson SR, Hendrickson A (1995) Shifting relationships between photoreceptors and pigment epithelial cells in monkey retina: implications for the development of retinal topography. Vis Neurosci 12: 767–778

    PubMed  CAS  Google Scholar 

  • Röhrenbeck J, Wässle H, Boycott BB (1989) Horizontal cells in the monkey retina: immunocytochemical staining with antibodies against calcium binding proteins. Eur J Neurosci 1: 407–420

    PubMed  Google Scholar 

  • Roorda A, Williams DR (1999) The arrangement of the three cone classes in the living human eye. Nature 397: 520–522

    Article  PubMed  CAS  Google Scholar 

  • Roorda A, Metha AB, Lennie P, Williams DR (2001) Packing arrangement of the three cone classes in primate retina. Vis Res 41: 1291–1306

    PubMed  CAS  Google Scholar 

  • Sandercoe TM, Madigan MC, Billson FA, Penfold PL, Provis JM (1999) Astrocyte proliferation during development of the human retinal vasculature. Exp Eye Res 69: 511–523

    Article  PubMed  CAS  Google Scholar 

  • Schein SJ (1988) Anatomy of macaque fovea and spatial densities of neurons in foveal representation. J Comp Neurol 269: 479–505

    Article  PubMed  CAS  Google Scholar 

  • Sharpe LT, Stockman A, Jägle H, Nathans J (1999) Opsin genes, cone photopigments, color vision and color blindness. In: KR Gegenfurtner, Sharpe LT (eds) Color vision — from genes to perception. Cambridge University Press, Cambridge, UK, pp 3–51

    Google Scholar 

  • Silveira LCL, Yamada ES, Perry VH, Picanco-Diniz CW (1994) M and P retinal ganglion cells of diurnal and nocturnal New World monkeys. Neuroreport 5: 2077–2081

    PubMed  CAS  Google Scholar 

  • Silveira LCL, Lee BB, Yamada ES, Kremers J, Hunt DM (1998) Postreceptoral mechanisms of colour vision in new world primates. Vis Res 38: 3329–3337

    PubMed  CAS  Google Scholar 

  • Snodderly DM, Weinhaus RS (1990) Retinal vasculature of the fovea of the squirrel monkey Saimiri sciureus: three-dimensional architecture, visual screening and relationships to the neuronal layers. J Comp Neurol 297: 145–163

    PubMed  CAS  Google Scholar 

  • Snodderly DM, Weinhaus RS, Choi JC (1992) Neuralvascular relationships in central retina of macaque monkeys (Macaca fascicularis). J Neurosci 12: 1169–1193

    PubMed  CAS  Google Scholar 

  • Snodderly DM, Sandstrom MM, Leung IY-F, Zucker CL, Neuringer M (2002) Retinal pigment epithelial cell distribution in central retina of rhesus monkeys. Invest Ophthalmol Vis Sci 43: 2815–2818

    PubMed  Google Scholar 

  • Spedick MJ, Beauchamp GR (1986) Retinal vascular and optic nerve abnormalities in albinism. J Pediatr Ophthalmol Strabismus 23: 58–63

    PubMed  CAS  Google Scholar 

  • Springer AD (1999) New role for the primate fovea: a retinal excavation determines photoreceptor deployment and shape. Vis Neurosci 16: 629–636.

    Article  PubMed  CAS  Google Scholar 

  • Springer A, Hendrickson A (2004) Development of the primate fovea. 1. Use of finite element analysis models to identify mechanical variables affecting pit formation. Vis Neurosci 21: 53–62

    PubMed  CAS  Google Scholar 

  • Stone J, Leicester J, Sherman M (1973) The naso-temporal division of the monkey’s retina. J Comp Neurol 150: 333–348

    Article  PubMed  CAS  Google Scholar 

  • Streeten BW (1969) Development of the human retinal pigment epithelium and the posterior segment. Arch Ophthalmol 81: 383–394

    PubMed  CAS  Google Scholar 

  • Swain PK, Hicks D, Mears AJ, Apel IJ, Smith JE, John SK, Hendrickson AE, Milam AH, Swaroop A (2001) Multiple phosphorylated isoforms of NRL are specifically expressed in photoreceptors. J Biol Chem 276: 36824–36830

    PubMed  CAS  Google Scholar 

  • Szél A, Diamanstein T, Röhlich P (1988) Identification of the blue sensitive cones in the mammalian retina by anti-visual pigment antibody. J Comp Neurol 273: 593–602

    PubMed  Google Scholar 

  • Thompson DA, Gal A (2003) Vitamin A metabolism in the retinal pigment epithelium: genes, mutations and diseases. Prog Retin Eye Res 22: 683–703

    Article  PubMed  CAS  Google Scholar 

  • Tootell RBH, Switkes E, Silverman MS, Hamilton SL (1988) Functional anatomy of macaque striate cortex. II. Retinotopic organization. J Neurosci 8: 1531–1568

    PubMed  CAS  Google Scholar 

  • Troilo D, Howland HC, Judge SJ (1993) Visual optics and retinal cone topography in the common marmoset (Callithrix jacchus). Vis Res 33: 1301–1310

    PubMed  CAS  Google Scholar 

  • Wässle H, Boycott BB (1991) Functional architecture of the mammalian retina. Physiol Rev 71: 447–480

    PubMed  Google Scholar 

  • Wässle H, Grünert U, Röhrenbeck J, Boycott BB (1990) Retinal ganglion cell density and cortical magnification factor in the primate. Vis Res 30: 1897–1911

    PubMed  Google Scholar 

  • Weinhaus RS, Burke JM, Delori FC, Snodderly DM (1995) Comparison of fluorescein angiography with microvascular anatomy of macaque retinas. Exp Eye Res 61: 1–16

    Article  PubMed  CAS  Google Scholar 

  • Wikler KC, Rakic P (1990) Distribution of photoreceptor subtypes in the retina of diurnal and nocturnal primates. J Neurosci 10: 3390–3401

    PubMed  CAS  Google Scholar 

  • Wilder HC, Grünert U, Lee BB, Martin PR (1996) Topography of ganglion cells and photoreceptors in the retina of a New World monkey: the marmoset Callithrix jacchus. Vis Neurosci 13: 335–352

    Article  PubMed  CAS  Google Scholar 

  • Wolin LR, Massopust LC Jr (1967) Characteristics of the ocular fundus of the primate. J Anat 101: 693–699

    PubMed  CAS  Google Scholar 

  • Xiao M, Hendrickson A (2000) Spatial and temporal expression of short, long/medium or both opsins in human fetal cones. J Comp Neurol 425: 545–559

    Article  PubMed  CAS  Google Scholar 

  • Yamada E (1969) Some structural features of the fovea centralis in the human retina. Arch Ophthalmol 82: 151–155

    PubMed  CAS  Google Scholar 

  • Yuodelis C, Hendrickson A (1986) A qualitative and quantitative analysis of the human fovea during development. Vis Res 26: 847–855

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hendrickson, A. (2005). Organization of the Adult Primate Fovea. In: Penfold, P.L., Provis, J.M. (eds) Macular Degeneration. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-26977-0_1

Download citation

  • DOI: https://doi.org/10.1007/3-540-26977-0_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-20058-1

  • Online ISBN: 978-3-540-26977-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics