Skip to main content

Transitions in Understanding of RNA Viruses: A Historical Perspective

  • Chapter
Quasispecies: Concept and Implications for Virology

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 299))

Abstract

This chapter documents that RNA viruses have been known for over a century to be genetically variable. In recent decades, genetic and molecular analyses demonstrate that they form RNA quasispecies populations; the most rapidly mutating, highly variable and genetically versatile life forms on earth. Their enormous populations, rapid replication and extreme genetic plasticity can allow rates of evolution that exceed those of their eukaryotic host populations by millions-fold.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahmed R, Graham AF (1977) Persistent infection in L cells with temperature sensitive mutants of reovirus. J Virol 23:250–262

    CAS  PubMed  Google Scholar 

  • Airaksinen A, Pariente N, Menendez-Arias L, Domingo E (2003) Curing of foot-and-mouth disease virus from persistently infected cells by ribavirin involves enhanced mutagenesis. Virology 311:339–349

    Article  CAS  PubMed  Google Scholar 

  • Appleyard G (1977) Amantadine-resistance as a genetic marker for influenza viruses. J Gen Virol 36:249–255

    CAS  PubMed  Google Scholar 

  • Arias A, Lazaro E, Escarmis C, Domingo E (2001) Molecular intermediation of fitness gain of an RNA virus: characterization of a mutant spectrum by biological and molecular cloning. J Gen Virol 82:1049–1060

    CAS  PubMed  Google Scholar 

  • Avery OT, MacLeod CM, McCarty M (1944) Studies on the chemical nature of the substance inducing transformation of pneumococcal types. Induction of transformation by a desoxyribonucleic acid fraction isolated from pneumococcus type III. J Exp Med 79:137–157

    Article  CAS  Google Scholar 

  • Baltimore D, Franklin RM (1963) A new ribonucleic acid polymerase appearing after mengovirus infection of L cells. J Biol Chem 238:3395–3400

    CAS  PubMed  Google Scholar 

  • Batschelet E, Domingo E, Weissmann C (1976) The proportion of revertant and mutant phage in a growing population as a function of mutation and growth rate. Gene 1:27–32

    Article  CAS  PubMed  Google Scholar 

  • Beijerinck MW (1899) Ueber ein contagium vivum fluidum als ursache der fleckenkrankeit der tabaksblatter. Zentralbl Bacteriol partazeitenkd infectionskr Hyg Abt 2, 5:27–33

    Google Scholar 

  • Berry GP, Dedrick HM (1936) A method for changing the virus of rabbit fibroma (Shope) into that of myxomatosis (Sanarelli). J Bact 31:50–51

    Google Scholar 

  • Biebricher CK (1983) Darwinian selection of self-replicating RNA. Evol Biol 16:1–52

    Google Scholar 

  • Biebricher CK (1999) Mutation, competition and selection as measured with small RNA molecules. ln: Domingo E, Webster RG, Holland JJ (eds) Origin and evolution of viruses. Academic Press, San Diego, pp 65–85

    Google Scholar 

  • Biebricher CK, Eigen M, (1988) Kinetics of RNA replication by Qβ replicase. In: Domingo E, Holland JJ, Ahlquist P (eds) RNA genetics. Vol 1. CRC Press, Boca Raton, 1–21

    Google Scholar 

  • Biebricher CK, Gardiner WC (1997) Molecular evolution of RNA in vitro. Biophys Chem 66:179–192

    Article  CAS  PubMed  Google Scholar 

  • Briones C, Domingo E, Molina-Paris C (2003) Memory in retroviral quasispecies: experimental evidence and theoretical model for human immunodeficiency virus. J Mol Biol 331:213–229

    Article  CAS  PubMed  Google Scholar 

  • Brown BA, Oberste MS, Alexander JP Jr, Kennett ML, Pallansh MA (1999) Molecular epidemiology and evolution of enterovirus 71 strains isolated from 1970 to 1998. J Virol 73:9969–9975

    CAS  PubMed  Google Scholar 

  • Buist JB (1892) Vaccinia and variola: a study of their life history. Churchill, London

    Google Scholar 

  • Burnet FM, Bull DR (1943) Changes in Influenza virus associated with adaptation to passage in chick embryos. Aust J Exper Biol Mol Sci 21:55–69

    Google Scholar 

  • Carp RI, Koprowski H (1962) Mutation of type 3 poliovirus with nitrous acid. Virology 17:99–109

    Article  CAS  PubMed  Google Scholar 

  • Chao L (1990) Fitness of RNA virus decreased by Muller’s ratchet. Nature (London) 348:454–455

    Article  CAS  PubMed  Google Scholar 

  • Clarke DK, Duarte EA, Moya A, Elena SF, Domingo E, Holland JJ (1993) Genetic bottlenecks and population passages cause profound fitness differences in RNA viruses. J Virol 67:222–228

    CAS  PubMed  Google Scholar 

  • Clarke DK, Duarte EA, Elena SF, Moya A, Domingo E, Holland JJ (1994) The Red Queen reigns in the kingdom of RNA viruses. Proc Natl Acad Sci U S A 91:4821–4824

    CAS  PubMed  Google Scholar 

  • Coffin JM, Tsichlis P, Barker CS, Voynow S (1980) Variation in retrovirus genomes. Ann N Y Acad Sci 354:410–425

    CAS  PubMed  Google Scholar 

  • Commoner B (1957) The biological activity of tobacco mosaic virus components. In: St. Whitlock O (ed) Cellular biology nucleic acids and viruses. Special Publications of N Y Acad Sci 5:237–246

    Google Scholar 

  • Cooper PD (1968) A genetic map of poliovirus temperature-sensitive mutants. Virology 35:584–596

    Article  CAS  PubMed  Google Scholar 

  • Crotty S, Maag D, Arnold JJ, Zhong W, Lau JYN, Hong R, Andino R, Cameron CE (2000) The broad-spectrum antiviral ribonucleotide, ribavirin, is an RNA virus mutagen. Nat Med 6:1375–1379

    CAS  PubMed  Google Scholar 

  • Crotty S, Cameron CE, Andino R (2001) RNA virus error catastrophe: direct molecular test by using ribavirin. Proc natl Acad Sci U S A 98:6895–6900

    Article  CAS  PubMed  Google Scholar 

  • Cupples CG, Miller JH (1989) A set of lacZ gene mutations in E. coli that allow rapid detection of each of the six base substitutions. Proc Natl Acad Sci U S A 86:5345–5349

    CAS  PubMed  Google Scholar 

  • De la Torre JC, Wimmer E, Holland JJ (1990) Very high frequency of reversion to guanidine resistance in clonal pools of guanidine dependent type 1 poliovirus. J Virol 64:664–671

    PubMed  Google Scholar 

  • De la Torre JC, Giachetti C, Semler BL, Holland JJ (1992) High frequency of single-base transitions and extreme frequency of precise multiple-base reversion mutations in poliovirus. Proc Natl Acad Sci U S A 89:2531–2535

    PubMed  Google Scholar 

  • Delbruck M (1950) (ed) Viruses (1950) California Institute of Technology, Pasadena

    Google Scholar 

  • D’Herelle F (1926) The bacteriophage and its behavior. Williams and Wilkins, Baltimore

    Google Scholar 

  • Dietzschold B, Kaaden OR, Tokui T, Bohm HO (1971) Polynucleotide sequence homologies among the RNAs of foot-and-mouth disease virus types A, C and O. J Gen Virol 13:1–7

    CAS  PubMed  Google Scholar 

  • Doi RH, Spiegelman S (1962) Homology test between the nucleic acid of an RNA virus and the DNA in the host cell. Science 138:1270–1272

    CAS  PubMed  Google Scholar 

  • Domingo E (2003) Quasispecies and the development of new antiviral strategies. Prog Drug Res 60:133–158

    CAS  PubMed  Google Scholar 

  • Domingo E (ed) (2005) Virus entry into error catastrophe as a new antiviral strategy. Vol. 107. Virus Res

    Google Scholar 

  • Domingo E, Holland JJ (1988) High error rates, population equilibrium and evolution of RNA replication systems. In: Domingo E, Holland JJ, Ahlquist P (eds) RNA genetics. Vol 3. CRC Boca Raton, 3–36

    Google Scholar 

  • Domingo E, Holland JJ (1994) Mutation rates and rapid evolution of RNA viruses. In: Morse S (ed) Emerging viruses. Oxford University Press, Oxford, pp 203–218

    Google Scholar 

  • Domingo E, Holland JJ (1997) RNA virus mutations and fitness for survival. Annu Rev Microbiol 51:151–178

    Article  CAS  PubMed  Google Scholar 

  • Domingo E, Flavell RA, Weissmann C (1976) In vitro site-directed mutagenesis: generation and properties of an infectious extracistronic mutant of bacteriophage Qβ. Gene 1:3–25

    Article  CAS  PubMed  Google Scholar 

  • Domingo E, Sabo DL, Taniguchi T, Weissmann C (1978) Nucleotide sequence heterogeneity of an RNA phage population. Cell 13:735–744

    Article  CAS  PubMed  Google Scholar 

  • Domingo E, Davila M, Ortin J (1980) Nucleotide sequence heterogeneity of the RNA from a natural population of foot-and-mouth disease virus. Gene 11:333–346

    Article  CAS  PubMed  Google Scholar 

  • Domingo E, Martinez-Salas E, Sobrino F, de La Torre JC, Portela A, Ortin J, Lopez-Galindez C, Perez-Brena P, Villanueva N, Najera R, VandePol S, Steinhauer D, DePolo N, Holland J (1985) The quasispecies (extremely heterogeneous) nature of viral RNA genome populations: biological relevance: a review. Gene 40:1–8

    Article  CAS  PubMed  Google Scholar 

  • Domingo E, Holland JJ, Ahlquist P (eds) (1988) RNA Genetics. Vol III. CRC Press, Boca Raton pp 1–260

    Google Scholar 

  • Domingo E, Escarmis C, Martinez MA, Martinez-Salas E, Mateu MG (1992) Foot and mouth disease virus populations are quasispecies. In: Holland JJ (ed) Genetic diversity of RNA viruses. Curr Top Microbiol Immunol 176:33–47

    Google Scholar 

  • Domingo E, Webster RG, Holland JJ (eds) (1999) Origin and evolution of viruses. Academic Press, London

    Google Scholar 

  • Domingo E, Biebricher CK, Eigen M, Holland JJ (2001) Quasispecies and RNA virus evolution: principles and consequences. Landes Biosciences, Georgetown, Austin, TX

    Google Scholar 

  • Domingo E, Escarmis C, Baranowski E, Ruiz-Jarabo CM, Carrillo E, Núñez JI, Sobrino F (2003) Evolution of foot-and-mouth disease virus. Virus Res 91:47–63

    Article  CAS  PubMed  Google Scholar 

  • Drake JW (1969) Comparative rates of spontaneous mutation. Nature (London) 221:1–132

    Google Scholar 

  • Drake JW (1991) A constant rate of spontaneous mutation in DNA based microbes. Proc Natl Acad Sci U S A 88:7160–7164

    CAS  PubMed  Google Scholar 

  • Drake JW (1993) Rates of spontaneous mutation among RNA viruses. Proc Natl Acad Sci U S A 90:4171–4175

    CAS  PubMed  Google Scholar 

  • Drake JW, Holland JJ (1999) Mutation rates among RNA viruses. Proc Natl Acad Sci U S A 96:13910–13913

    Article  CAS  PubMed  Google Scholar 

  • Duarte EA, Clarke DK, Moya A, Domingo E, Holland JJ (1992) Rapid fitness losses in mammalian RNA virus clones due to Muller’s ratchet. Proc Natl Acad Sci U S A 89:6015–6019

    CAS  PubMed  Google Scholar 

  • Duarte EA, Clarke DA, Moya A, Elena SF, Domingo E, Holland JJ (1993) Many trillion-fold amplification of single virus particles fails to overcome the Muller’s ratchet effect. J Virol 67:3620–3623

    CAS  PubMed  Google Scholar 

  • Duarte EA, Novella IS, Ledesma S, Clarke DK, Moya A, Elena SF, Domingo E, Holland JJ (1994) Subclonal components of consensus fitness in an RNA virus clone. J Virol 67:4295–4301

    Google Scholar 

  • Dulbecco R (1957) Discussion. In: St. Whitelock OV (ed) Cellular biology nucleic acids and viruses. Special Publications of the N Y Acad Sci 5:138–139

    Google Scholar 

  • Dulbecco R, Vogt M (1953) Some problems of animal virology as studied by the plaque technique. Cold Spring Harb Symp Quant Biol 18:273–279

    CAS  PubMed  Google Scholar 

  • Eggers HJ, Tamm I (1965) Coxsackie A9 virus: mutation from drug dependence to drug resistance. Science 148:97–98

    CAS  PubMed  Google Scholar 

  • Eigen M (1971) Self-organization of matter and the evolution of biological macromolecules. Naturwissenschaften 58:465–523

    Article  CAS  PubMed  Google Scholar 

  • Eigen M (2000) Natural selection: a phase transition. Biophys Chem 85:101–123

    Article  CAS  PubMed  Google Scholar 

  • Eigen M (2002) Error catastrophe and antiviral strategy. Proc Natl Acad Sci U S A 99:13374–13376

    Article  CAS  PubMed  Google Scholar 

  • Eigen M, Schuster P (1979) The hypercycle. A principle of natural self-organization. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Eigen M, Biebricher CK (1988) Sequence space and quasispecies distribution. In: Domingo E, Holland JJ Ahlquist P (eds) RNA Genetics. Vol 3. CRC Boca Raton, 211–245

    Google Scholar 

  • Eigen M, Winkler-Oswatitsch R (1992) Steps towards life. A perspective on evolution. Oxford University Press, Oxford

    Google Scholar 

  • Elford WJ (1929) Ultrafiltration methods and their application in bacteriological and pathological studies. Br J Exp Pathol 10:126–144

    CAS  Google Scholar 

  • Elford WJ, Andrewes CH, Tang FF (1936) The sizes of the viruses of human and swine influenza as determined by ultrafiltration. Br J Exp Path 17:51–53

    Google Scholar 

  • Enders J, Katz SL, Milanovic MJ, Holloway A (1960) Studies on an attenuated measles virus vaccine. 1. Development and preparation of vaccine: techniques for assay of effects of vaccination. N Engl J Med 263:153–159

    CAS  PubMed  Google Scholar 

  • Enders JF, Weller TH, Robbins FC (1949) Cultivation of the Lansing strain of poliomyelitis virus in cultures of various human embryonic tissues. Science 109:85–87

    Google Scholar 

  • Escarmis C, Davila M, Charpentier N, Bracho A, Moya A, Domingo E (1996) Genetic lesions associated with Muller’s ratchet in an RNA virus. J Mol Biol 264:255–267

    CAS  PubMed  Google Scholar 

  • Escarmis C, Davila M, Domingo E, (1999) Multiple molecular pathways for fitness recovery of an RNA virus debilitated by operation of Muller’s ratchet. J Mol Biol 285:495–505

    CAS  PubMed  Google Scholar 

  • Escarmis C, Gomez-Mariano G, Davila M, Lazaro E, Domingo E (2002) Resistance to extinction of low fitness virus subjected to plaque-to-plaque transfers: diversification by mutation clustering. J Mol Biol 315:647–664

    CAS  PubMed  Google Scholar 

  • Fields BN, Joklik WK (1969) Isolation and preliminary characterization of temperature sensitive mutants of reovirus. Virology 37:335–342

    Article  CAS  PubMed  Google Scholar 

  • Fields BN, Raine CS (1974) Altered neurologic disease induced by reovirus mutants. In: Fox CF (ed) Mechanisms of virus diseases. Benjamin, Menlo Park, CA, pp 161–167

    Google Scholar 

  • Findlay GM (1936) Variation in animal viruses. A review. J Royal Microscop Soc LVI:213–299

    Google Scholar 

  • Flamand A (1980) Rhabdovirus genetics. In: Bishop DHL (ed) Rhabdovirus. CRC Press, Boca Raton, pp 115–139

    Google Scholar 

  • Francis T Jr (1957) Facts and perspectives of a large-scale field trial. In: St. Whitlock OV (ed) Cellular biology nucleic acids and viruses. Special Publications of The N Y Acad Sci 5:99–107

    Google Scholar 

  • Frankel-Conrat H, Williams RC (1955) Reconstitution of active tobacco mosaic virus from its inactive protein and nucleic acid components. Proc Natl Acad Sci U S A 41:6980–6989

    Google Scholar 

  • Frankel-Conrat H, Singer B, Williams RC (1957) Infectivity of viral nucleic acid. Biochem Biophys Acta 25:87–96

    Google Scholar 

  • Franklin RM, Baltimore D (1962) Patterns of macromolecular synthesis in normal and virus-infected mammalian cells. Cold Spr Harbor Symp Quant Biol 27:175–198

    CAS  Google Scholar 

  • Gause GF (1971) The struggle for existence. Dover, New York

    Google Scholar 

  • Gebauer F, de la Torre JC, Gomes I, Mateu M, Barahona H, Tiraboschi B, Bergmann I, DeMello PA, Domingo E (1988) Rapid selection of genetic and antigenic variants of foot-and mouth Disease virus during persistence in cattle. J Virol 62:2041–2049

    CAS  PubMed  Google Scholar 

  • Gibbs A, Calisher C, Garcia-Arenal F (1995) (eds) Molecular basis of virus evolution. Cambridge University Press, Cambridge

    Google Scholar 

  • Gierer A, Schramm G (1956) Die Infectösität der Nucleinsäure aus Tobakmosaikvirus. Zeitschrift fur Naturforschung. 11b:138–141

    CAS  Google Scholar 

  • González-López C, Arias A, Pariente N, Gómez-Mariano G, Domingo E (2004) Preextinction viral RNA can interfere with infectivity. J Virol 78:3319–3324

    PubMed  Google Scholar 

  • Gorman OT, Bean WJ, Webster RG (1992) Evolutionary processes in influenza viruses: divergence, rapid evolution and stasis. In: Holland JJ (ed) Genetic diversity of RNA viruses. Curr Topics Microbiol Immunol 76:75–97

    Google Scholar 

  • Granoff A (1961) Induction of Newcastle disease virus mutants with nitrous acid. Virology 13:402–408

    CAS  PubMed  Google Scholar 

  • Granoff A (1964) Nature of the newcastle disease virus population. In: Hanson RP (ed) Newcastle disease virus, an evolving pathogen. University of Wisconsin Press, Madison, pp 106–108

    Google Scholar 

  • Halle S (1968) 5-azacytidine as a mutagen for arboviruses. J Virol 2:1228–1229

    CAS  PubMed  Google Scholar 

  • Haruna I, Nozu K, Ohtaka Y, Spiegleman S (1963) An RNA replicase induced by and selective for a viral RNA: isolation and properties. Proc Natl Acad Sci U S A 50:905–912

    CAS  PubMed  Google Scholar 

  • Hershey AD (1957) Experimental problems concerning the role of deoxyribonucleic acid in growth of bacteriophage T2. In: St. Whitlock O (ed) Cellular biology nucleic acids and viruses. Special Publications of the N Y Acad Sci 5:251–257

    Google Scholar 

  • Hershey AD, Chase M (1952) Independent functions of viral protein and nucleic acid in growth of bacteriophage. J Gen Physiol 36:39–56

    Article  CAS  PubMed  Google Scholar 

  • Hirst GK (1962) Genetic recombination with Newcastle disease virus, polioviruses and influenza virus. Cold Spr Harbor Symp Quant Biol 27:303–309

    CAS  Google Scholar 

  • Holland JJ (1961) Altered base ratios in He La cell RNA during poliovirus infection. Biochem Biophys Res Comm 6:196–200

    Article  CAS  PubMed  Google Scholar 

  • Holland JJ, Villarreal LP (1974) Persistent noncytocidal vesicular stomatitis virus infections mediated by defective T particles that suppress virion transcriptase. Proc Natl Acad Sci U S A 71:2956–2960

    CAS  PubMed  Google Scholar 

  • Holland JJ, Domingo E (1998) Origin and evolution of viruses. Virus Genes 16:13–21

    Article  CAS  PubMed  Google Scholar 

  • Holland JJ, Kohne D, Doyle MV (1973) Analysis of virus replication in ageing human fibroblasts. Nature 245:316–319

    Article  CAS  PubMed  Google Scholar 

  • Holland JJ, Villarreal LP, Welsh RM, Oldstone MBA, Kohne D, Lazzarini R, Scolnick E (1976) Long term persistent vesicular stomatitis and rabies virus infection of cells in vitro. J Gen Virol 33:193–211

    CAS  PubMed  Google Scholar 

  • Holland JJ, Grabau EA, Jones CL, Semler BL (1979) Evolution of multiple genome mutations during long term persistent infection by vesicular stomatitis virus. Cell 16:495–504

    Article  CAS  PubMed  Google Scholar 

  • Holland JJ, Spindler K, Horodyski F, Grabau E, Nichol S, van de Pol S (1982) Rapid evolution of RNA genomes. Science 215:1577–1585

    CAS  PubMed  Google Scholar 

  • Holland JJ, de la Torre JC, Steinhauer DA, Clarke D, Duarte E, Domingo E (1989) Virus mutation frequencies can be greatly underestimated by monoclonal antibody neutralization of virions. J Virol 63:5030–5036

    CAS  PubMed  Google Scholar 

  • Holland JJ, Domingo E, de la Torre JC, Steinhauer DA (1990) Mutation frequencies at defined single codon sites can be increased only slightly by chemical mutagenesis. J Virol 64:3960–3962

    CAS  PubMed  Google Scholar 

  • Holland JJ, de la Torre JC, Clarke DA, Duarte EA (1991) Quantitation of relative fitness and great adaptability of clonal populations of RNA viruses. J Virol 65:2960–2967

    CAS  PubMed  Google Scholar 

  • Holland JJ, de La Torre JC, Steinhauer DA (1992) RNA virus populations as quasispecies. In: Holland JJ (ed) Genetic diversity of RNA viruses. Curr Top Microbiol Immunol 176:1–20

    Google Scholar 

  • Horiuchi K (1975) Genetic studies of RNA phages. In: Zinder ND (ed) RNA phages. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY pp 29–50

    Google Scholar 

  • Iwanowski D (1892) Uber die mosaikkrankheit der tabakpflanze. Bull de l’Acad Imp des Sci de St Petersbourg 3:67–70

    Google Scholar 

  • Kawai A, Matsumoto S, Tanabe K (1975) Characterization of rabies viruses recovered from persistently infected BHK cells. Virology 67:520–533

    Article  CAS  PubMed  Google Scholar 

  • Kew OM, Notay BK (1984) Evolution of oral poliovirus vaccine strain in humans occurs by both mutation and intermolecular recombination. In: Chanock R, Lerner R (eds) Modern approaches to vaccines. Cold Spring Harbor, New York

    Google Scholar 

  • Kew OM, Notay BK, Hatch MH, Nakano JH, Obijewski JF (1981) Multiple genetic changes can occur in the oral poliovaccines upon replication in humans. J Gen Virol 56:337–347

    CAS  PubMed  Google Scholar 

  • Kew OM, Sutter RW, Notay BK, McDonough MJ, Prevots OR, Quick L, Pallansch MA (1998) Prolonged replication of a type 1 vaccine-derived poliovirus in an immunodeficient patient. J Clin Microbiol 36:2893–2899

    CAS  PubMed  Google Scholar 

  • King AM, McCahon D, Slade WR, Newman JW (1982) Recombination in RNA. Cell 29:921–928

    Article  CAS  PubMed  Google Scholar 

  • Kinnunen L, Poyry T, Hovi T (1992) Genetic diversity and rapid evolution of poliovirus in human hosts. In: Holland JJ (ed) Genetic diversity of RNA viruses. Curr Top Microbiol Immunol 176:49–61

    Google Scholar 

  • Koprowski H (1957) Discussion. In: St. Whitelock OV (ed) Cellular biology nucleic acids and viruses. Special Publications of the N Y Acad Sci 5:128–135

    Google Scholar 

  • Kunkle LO (1947) Variation in phytopathogenic viruses. Annu Rev Microbiol 1:85–100

    Google Scholar 

  • Lai MMC (1992) Genetic recombination in RNA viruses. In: Holland JJ (ed) Genetic diversity of RNA viruses. Curr Top Microbiol Immunol 176:21–32

    Google Scholar 

  • Lazaro E, Escarmis C, Domingo E, Manrubia SC (2002) Modeling viral genome fitness associated with serial bottleneck events: evidence of stationary states of fitness. J Virol 76:8675–8681

    Article  CAS  PubMed  Google Scholar 

  • Lazaro E, Escarmis C, Perez-Mercader J, Manrubia SC, Domingo E (2003) Resistance of virus to extinction on bottleneck passages: study of a decaying and fluctuating pattern of fitness loss. Proc Natl Acad Sci U S A 100:10830–10835

    Article  CAS  PubMed  Google Scholar 

  • Ledinko N (1963) Genetic recombination with poliovirus type 1: studies of crosses between a normal horse serum-resistant mutant and several guanidine-resistant mutants of the same strain. Virology 20:107–119

    CAS  PubMed  Google Scholar 

  • Lee CH, Gilbertson DI, Novella IS, Huerta R, Domingo E, Holland JJ (1997) Negative effects of chemical mutagenesis on the adaptive behavior of vesicular stomatitis virus. J Virol 71:3636–3640

    CAS  PubMed  Google Scholar 

  • Loeb LA, Eissigmann JM, Kazazi F, Zhang J, Rose KD, Mullins JI (1999) Lethal mutagenesis of HIV with mutagenic nucleoside analogs. Proc Natl Acad Sci U S A 96:1492–1497

    Article  CAS  PubMed  Google Scholar 

  • Loeffler F, Frosch P (1898) Berichte der Komission zur Erforschung der Maul and Klauenseuche bei dem Institut für Infectionskrankeiten in Berlin. Zentralbl Bacteriol Parasitenkd Infectionskr Hyg Abtl Orig 23:371–91

    Google Scholar 

  • Luria SE (1950) Bacteriophage. An essay on virus reproduction. In: Delbruck M (ed) Viruses 1950. California Institute of Technology, Pasadena, 7–16

    Google Scholar 

  • Maag D, Castro C, Hong Z, Cameron CE (2001) Hepatitis virus RNA-dependent RNA polymerase (NS5B) as a mediator of the antiviral activity of ribavirin. J Biol Chem 276:46094–46098

    Article  CAS  PubMed  Google Scholar 

  • Meinkoth J, Kennedy SIT (1980) Semliki forest virus persistence in L929 cells. Virology 100:141–155

    CAS  PubMed  Google Scholar 

  • Mills DR, Peterson RL, Spiegelman S, (1967) An extracellular darwinian experiment with a self-duplicating nucleic acid molecule. Proc Natl Acad Sci U S A 58:217–224

    CAS  PubMed  Google Scholar 

  • Morse SS (ed) (1994) Evolutionary biology of viruses. Raven Press, New York

    Google Scholar 

  • Mudd JA, Leavitt RW, Kingsbury DT, Holland JJ (1973) Natural selection of mutants of vesicular stomatitis virus by cultured cells of Drosophila melanogaster. J Gen Virol 20:341–351

    CAS  PubMed  Google Scholar 

  • Muller HJ (1964) The relation of recombination to mutational advance. Mutat Res 1:2–9

    Google Scholar 

  • Mundry KW, Gierer A (1958) Die Erzeugung von Mutationen des Tobakmosaikvirus durch chemisch Behandlung seiner Nucleinsaure in vitro. Z Vererbungsl 89:614–630

    Article  CAS  PubMed  Google Scholar 

  • Nathanson N, Fine P (2002) Poliomyelitis eradication — a dangerous endgame. Science 296:269–270

    Article  CAS  PubMed  Google Scholar 

  • Nichol ST, Rowe JE, Fitch WM (1993) Punctuated equilibrium and positive Darwinian evolution in vesicular stomatitis virus. Proc Natl Acad Sci U S A 90:10424–10428

    CAS  PubMed  Google Scholar 

  • Nishiyama Y (1977) Studies of L cells persistently infected with VSV: factors involved in the regulation of persistent infection. J Gen Virol 35:265–279

    CAS  PubMed  Google Scholar 

  • Nishiyama Y, Ito Y, Shimokata K (1978) Properties of viruses selected during persistent infection of L cells with VSV. J Gen Virol 40:481–484

    CAS  PubMed  Google Scholar 

  • Notay BK, Kew OM, Hatch MH, Heyward JT, Obijewski JF (1981) Molecular variation of vaccine-related and wild poliovirus during replication in humans. Virology 108:405–423

    Google Scholar 

  • Novella IS, Duarte EA, Elena SF, Moya A, Domingo E, Holland JJ (1995a) Exponential increases of RNA virus fitness during large population transmissions. Proc Natl Acad Sci U S A 92:5841–5844

    CAS  PubMed  Google Scholar 

  • Novella IS, Elena SF, Moya A, Domingo E, Holland JJ (1995b) Size of genetic bottlenecks leading to virus fitness loss is determined by mean initial population fitness. J Virol 69:2869–2872

    CAS  PubMed  Google Scholar 

  • Novella IS, Clarke D, Quer J, Duarte EA, Lee C, Weaver SC, Moya A, Domingo E, Holland JJ (1995c) Extreme fitness differences in mammalian and insect hosts after continuous replication of vesicular stomatitis virus in sandfly cells. J Virol 69:6805–6809

    CAS  PubMed  Google Scholar 

  • Novella IS, Quer J, Domingo E, Holland JJ (1999) Exponential fitness gains of RNA virus populations are limited by bottleneck effects. J Virol 73:1668–1671

    CAS  PubMed  Google Scholar 

  • Palese P, Young JF (1982) Variation of influenza A, B, and C viruses. Science 215:1468–1474

    CAS  PubMed  Google Scholar 

  • Pasteur L, Chamberland, Roux (1884) Nouvelle communication sur la rage. Compte Rend Acad Sci 98:457–463

    Google Scholar 

  • Pathak VK, Temin HM (1990) Broad spectrum of in vivo forward mutations, hypermutations and mutational hotspots in a retrovirus shuttle vector after a single replication cycle: substitutions, frameshifts and hypermutations. Proc Natl Acad Sci U S A 87:6019–6023

    CAS  PubMed  Google Scholar 

  • Pincus SE, Diamond DC, Emini EA, Wimmer E (1986) Guanidine-selected mutants of poliovirus: mapping of point mutations to polypeptide 2C. J Virol 57:638–646

    CAS  PubMed  Google Scholar 

  • Popescu M, Lehmann-Grube F (1977) Defective interfering particles in mice infected with lymphocytic choriomeningitis virus. Virology 77:78–83

    Article  CAS  PubMed  Google Scholar 

  • Portner A, Webster RG, Bean W (1980) Similar frequency of antigenic variants in Sendai, vesicular stomatitis virus and influenza viruses. Virology 104:235–238

    Article  CAS  PubMed  Google Scholar 

  • Pringle CR (1965) Evidence of genetic recombination in foot and mouth disease virus. Virology 25:48–54

    Article  CAS  PubMed  Google Scholar 

  • Pringle CR (1970) Genetic characteristics of conditional lethal mutants of vesicular stomatitis virus induced by 5-fluoracil, 5-azacytidine and ethylmethanesulfonate. J Virol 5:559–567

    CAS  PubMed  Google Scholar 

  • Preble OT, Youngner J (1973) Temperature sensitive defect of mutants isolated from L cells persistently infected with Newcastle disease virus. J Virol 12:472–480

    CAS  PubMed  Google Scholar 

  • Pringle CR, Devine B, Wilkie M, Preston CM, Dohn A, McGeoch DJ (1981) Enhanced mutability associated with a temperature sensitive mutant of vesicular stomatitis virus. J Virol 39:377–389

    CAS  PubMed  Google Scholar 

  • Quer J, Huerta R, Novella IS, Tsimring L, Domingo E, Holland JJ (1996) Reproducible nonlinear population dynamics and critical points during replicative competitions of RNA virus quasispecies. J Mol Biol 264:465–471

    Article  CAS  PubMed  Google Scholar 

  • Quer J, Hershey CL, Domingo E, Holland JJ, Novella IS (2001) Contingent neutrality in competing viral populations. J Virol 75:7315–7320

    Article  CAS  PubMed  Google Scholar 

  • Ramseur JM, Friedman RM (1977) Prolonged infection of interferon-treated cells by vesicular stomatitis virus: possible role of temperature sensitive mutants and interferon. J Gen Virol 37:523–533

    CAS  Google Scholar 

  • Rawlins TE, Takahashi WN (1938) The nature of viruses. Science 87:255–256

    CAS  Google Scholar 

  • Reanney DC (1982) The evolution of RNA viruses. Annu Rev Microbiol 326:47–73

    Google Scholar 

  • Rhozon EJ, Wilson AK, Jubelt B (1984) Characterization of genetic changes occurring in attenuated poliovirus 2 during persistent infection in mouse central nervous systems. J Virol 50:137–141

    Google Scholar 

  • Rima BK, Davidson WB, Martin SJ (1977) The role of defective interfering particles in persistent infection of Vero cells by measles virus. J Gen Virol 35:89–97

    CAS  PubMed  Google Scholar 

  • Rohde N, Daum H, Biebricher CK (1995) The mutant distribution of an RNA species replicated by Qβ replicase. J Mol Biol 249:754–762

    Article  CAS  PubMed  Google Scholar 

  • Roux L, Holland JJ (1979) Role of defective interfering particles of Sendai virus in persistent infections. Virology 93:91–103

    Article  CAS  PubMed  Google Scholar 

  • Roux L, Simon AE, Holland JJ (1991) Effects of defective interfering viruses on virus replication in vitro and in vivo. Adv Virus Res 40:181–211

    CAS  PubMed  Google Scholar 

  • Ruiz-Jarabo CM, Arias A, Baranowski E, Escarmis C, Domingo E (2000) Memory in viral quasispecies. J Virol 74:3543–3547

    Article  CAS  PubMed  Google Scholar 

  • Ruiz-Jarabo CM, Arias A, Molina-Paris C, Briones C, Baronowski E, Escarmis C, Domingo E (2002) Duration and fitness-dependence of quasispecies memory. J Mol Biol 315:285–296

    CAS  PubMed  Google Scholar 

  • Ruiz-Jarabo CM, Ly C, Domingo E, de la Torre JC (2003) Lethal mutagenesis of the prototype arenavirus lymphocytic choriomeningitis virus (LCMV). Virology 305:1–11

    Google Scholar 

  • Sabin AB (1957) Properties of attenuated polioviruses and their behavior in human beings. In: St. Whitelock OV (ed) Cellular nucleic acids and viruses. Special Publications of the N Y Acad Sci 5:113–127

    Google Scholar 

  • Sabin AB, Boulger LR (1973) History of Sabin attenuated poliovirus oral live vaccine strains. J Biol Stand 1:115–118

    Article  Google Scholar 

  • Salk JE (1957) Viral and cellular factors pertinent to control of poliomyelitis with a noninfectious vaccine. In: St. Whitelock OV (ed) cellular biology nucleic acids and viruses. Special Publications of the N Y Acad Sci 5:77–89

    Google Scholar 

  • Salzman NP, Lockart RZ Jr, Sebring ED (1959) Alterations in He La cell metabolism resulting from poliovirus infection. Virology 9:244

    Article  CAS  PubMed  Google Scholar 

  • Schmaljohn C, Blair CD (1977) Persistent infection of cultured mammalian cells by Japanese encephalitis virus. J Virol 24:580–589

    CAS  PubMed  Google Scholar 

  • Schrag SJ, Rota PA, Bellini WJ (1999) Spontaneous mutation rate of measles virus: direct estimation based on mutations conferring monoclonal antibody resistance. J Virol 73:51–54

    CAS  PubMed  Google Scholar 

  • Schuster P, Stadler PF (1999) Nature and evolution of early replicons. In: Domingo E, Webster RG, Holland JJ (eds) Origin and evolution of viruses. Academic Press, San Diego, pp 1–24

    Google Scholar 

  • Severson WE, Schmaljohn CS, Javadian A, Jonsson C (2003). Ribavirin causes error catastrophe during Hantaan virus replication. J Virol 77:481–488

    CAS  PubMed  Google Scholar 

  • Shope RE (1950) Masking, transformation and interepidemic survival of animal viruses. In: Delbruck (ed) Viruses 1950. California Institute of Technology, Pasadena, 79–92

    Google Scholar 

  • Smith DB, Inglis SC (1987) The mutation rate and variability of eukaryotic viruses: an analytical review. J Gen Virol 68:2729–2740

    CAS  PubMed  Google Scholar 

  • Sobrino F, Palma EL, Beck E, Davila M, de la Torre JC, Negro P, Villanueva N, Ortin J, Domingo E (1986) Fixation of mutations in the viral genome during an outbreak of foot-and-mouth disease: heterogeneity and rate variations. Gene 50:149–159

    Article  CAS  PubMed  Google Scholar 

  • Spiegelman S (1971) An approach to the analysis of precellular evolution. Quart Rev Biophys 4:213–253

    CAS  Google Scholar 

  • St. Whitlock O (ed) (1957) Cellular biology nucleic acids and viruses. Special Publications of the N Y Acad Sci 5:1–414

    Google Scholar 

  • Stanley WM (1935) Isolation of a crystalline protein possessing the properties of tobacco-mosaic virus. Science 81:644–645

    CAS  Google Scholar 

  • Steinhauer DA, Holland JJ (1986) Direct method for quantification of extreme polymerase error frequencies at selected single base sites in viral RNA. J Virol 57:219–228

    CAS  PubMed  Google Scholar 

  • Steinhauer DA, Holland JJ (1987) Rapid evolution of RNA viruses. Annu Rev Microbiol 41:409–433

    Article  CAS  PubMed  Google Scholar 

  • Steinhauer DA, de la Torre JC, Holland JJ (1989) High nucleotide substitution error frequencies in clonal pools of vesicular stomatitis virus. J Virol 63:2063–2071

    CAS  PubMed  Google Scholar 

  • Steinhauer DA, Domingo E, Holland JJ (1992) Lack of evidence for proofreading mechanisms associated with an RNA virus polymerase. Gene 122:281–288

    Article  CAS  PubMed  Google Scholar 

  • Strauss JH, Strauss E (1988) Evolution of RNA viruses. Annu Rev Microbiol 42:657–683

    Article  CAS  PubMed  Google Scholar 

  • Strauss JH, Strauss EG (1994) The alphavirus gene expression, replication and evolution. Microbiol Rev 58:491–562

    CAS  PubMed  Google Scholar 

  • Swetina J, Schuster P (1982) Self-replication with errors. A model for polynucleotide replication. Biophys Chem 16:329–345

    Article  CAS  PubMed  Google Scholar 

  • Takeda N, Tanimura M, Miyamura K (1994) Molecular evolution of the major capsid protein VP1 of enterovirus 70. J Virol 68:854–862

    CAS  PubMed  Google Scholar 

  • Ter Meulen V, Martin SJ (1976) Genesis and maintenance of persistent infection by canine distemper virus. J Can Virol 32:431–440

    Google Scholar 

  • Theiler M, Smith HH (1937) The use of yellow fever virus modified by in vitro cultivation for human immunization. J Exp Med 65:787–800

    Google Scholar 

  • Valentine RC, Ward R, Strant M (1969) The replication cycle of RNA bacteriophages. Adv Virus Res 15:1–59

    CAS  PubMed  Google Scholar 

  • Van Valen L (1973) A new evolutionary law. Evol Theory 1:1–30

    Google Scholar 

  • Wagner RR, Levy A, Snyder R, Ratcliff G, Hyatt D (1963) Biologic properties of two plaque variants of vesicular stomatitis virus (Indiana serotype). J Immunol 91:112–122

    CAS  PubMed  Google Scholar 

  • Ward CD, Stokes MAM, Flanegan JB (1988) Direct measurement of the poliovirus polymerase error frequency in vitro. J Virol 62:558–562

    CAS  PubMed  Google Scholar 

  • Watson JD, Crick FHC (1953) Molecular structure of nucleic acids: a structure for deoxyribonucleic acid. Nature (London) 171:737–738

    CAS  PubMed  Google Scholar 

  • Weaver SC, Rico-Hesse R, Scott TW (1992) In Holland JJ (ed) Genetic diversity of RNA viruses. Curr Topics Microbiol Immunol 176:99–117

    Google Scholar 

  • Weaver SC, Bellew LA, Gousset L, Repik PM, Scott TW, Holland JJ (1993) Diversity within natural populations of eastern equine encephalomyelitis virus. Virology 198:700–709

    Google Scholar 

  • Webster RG (1999) Antigenic variation in influenza viruses. In: Domingo E, Webster RG, Holland JJ (eds) Origin and evolution of viruses. Academic Press, San Diego, pp 377–390

    Google Scholar 

  • Webster RG, Laver WG (1975) Antigenic variation of the influenza viruses. In: Kilbourne ED (ed) The influenza viruses and influenza. Academic Press, New York pp 269–314

    Google Scholar 

  • Webster RG, Bean WJ, Gorman OT, Chambers TM, Kawaoka Y (1992) Evolution and ecology of influenza A viruses. Microbiol Rev 56:152–179

    CAS  PubMed  Google Scholar 

  • Wimmer E, Hellen CU, Cao X (1993) Genetics of poliovirus. Ann Rev Genet 27:353–436

    CAS  PubMed  Google Scholar 

  • Youngner JS, Dubovi J, Quagliana DO, Kelley M, Preble OT (1976) Role of temperature sensitive mutants in persistent infections initiated with vesicular stomatitis virus. J Virol 19:90–101

    CAS  PubMed  Google Scholar 

  • Zimmerman EF, Heeter M, Darnell JE (1963) RNA synthesis in poliovirus-infected cells. Virology 19:400–408

    Article  CAS  PubMed  Google Scholar 

  • Zimmern D (1988) Evolution of RNA viruses. In: Domingo E, Holland JJ, Ahlquist P (eds) RNA Genetics. Vol III. CRC Press, Boca Raton, pp 211–240

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Holland, J.J. (2006). Transitions in Understanding of RNA Viruses: A Historical Perspective. In: Domingo, E. (eds) Quasispecies: Concept and Implications for Virology. Current Topics in Microbiology and Immunology, vol 299. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-26397-7_14

Download citation

Publish with us

Policies and ethics