Skip to main content

Dynamic Regulation of Progesterone Receptor Activity in Female Reproductive Tissues

  • Conference paper
  • First Online:
Progestins and the Mammary Gland

Part of the book series: Ernst Schering Foundation Symposium Proceedings ((SCHERING FOUND,volume 2007/1))

Abstract

The progesterone receptor (PR) in cooperation with coregulator complexes coordinates crucial processes in female reproduction. To investigate the dynamic regulation of PR activity in vivo, a new transgenic mouse model utilizing a PR activity indicator (PRAI) system was generated. Studies utilizing the PRAI mouse have revealed that progesterone temporally regulates PR activity in female reproductive tissues. Specifically, progesterone rapidly enhances PR activity immediately after administration. However, chronic progesterone stimulation represses PR activity in female reproductive organs. Like progesterone, RU486 also temporally regulates PR activity in female reproductive organs. However, the temporal regulation of PR activity by RU486 is the inverse of progesterone's activity. RU486 acutely represses PR activity after injection but increases PR activity after chronic treatment in female reproductive tissues. Treatment with a mixed antagonist/agonist of PR, when compared to natural hormone, results in dramatically different tissue-specific patterns of intracellular PR activity, coregulator levels, and kinase activity. Transcriptional regulation of gene expression by PR is facilitated by coordinate interactions with the steroid receptor coactivators (SRCs). Bigenic PRAI–SRC knockout mouse models enabled us to draw a tissue-specific coactivator atlas for PR activity in vivo. Based on this atlas, we conclude that the endogenous physiological function of PR in distinct tissues is modulated by different SRCs. SRC-3 is the primary coactivator for PR in the breast and SRC-1 is the primary coactivator for PR in the uterus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Baird DT, Brown A, Cheng L, Critchley HO, Lin S, Narvekar N, Williams AR (2003) Mifepristone: a novel estrogen-free daily contraceptive pill. Steroids 68:1099–1105

    Article  PubMed  CAS  Google Scholar 

  • Baulieu EE (1991) On the mechanism of action of RU486. Ann N Y Acad Sci 626:545–560

    Article  PubMed  CAS  Google Scholar 

  • Baulieu EE (1997) RU 486 (mifepristone). A short overview of its mechanisms of action and clinical uses at the end of 1996. Ann N Y Acad Sci 828:47–58

    Article  PubMed  CAS  Google Scholar 

  • Beck CA, Weigel NL, Moyer ML, Nordeen SK, Edwards DP (1993) The progesterone antagonist RU486 acquires agonist activity upon stimulation of cAMP signaling pathways. Proc Natl Acad Sci U S A 90:4441–4445

    Article  PubMed  CAS  Google Scholar 

  • Bocchinfuso WP, Korach KS (1997) Mammary gland development and tumorigenesis in estrogen receptor knockout mice. J Mammary Gland Biol Neoplasia 2:323–334

    Article  PubMed  CAS  Google Scholar 

  • Chabbert-Buffet N, Meduri G, Bouchard P, Spitz IM (2005) Selective progesterone receptor modulators and progesterone antagonists: mechanisms of action and clinical applications. Hum Reprod Update 11:293–307

    Article  PubMed  CAS  Google Scholar 

  • Chauchereau A, Amazit L, Quesne M, Guiochon-Mantel A, Milgrom E (2003) Sumoylation of the progesterone receptor and of the steroid receptor coactivator SRC-1. J Biol Chem 278:12335–12343

    Article  PubMed  CAS  Google Scholar 

  • Cheon YP, DeMayo FJ, Bagchi MK, Bagchi IC (2004) Induction of cytotoxic T-lymphocyte antigen-2beta, a cysteine protease inhibitor in decidua: a potential regulator of embryo implantation. J Biol Chem 279:10357–10363

    Article  PubMed  CAS  Google Scholar 

  • Chwalisz K, Perez MC, DeManno D, Winkel C, Schubert G, Elger W (2005) Selective progesterone receptor modulator development and use in the treatment of leiomyomata and endometriosis. Endocr Rev 26:423–438

    Article  PubMed  CAS  Google Scholar 

  • Collins RL, Hodgen GD (1986) Blockade of the spontaneous midcycle gonadotropin surge in monkeys by RU 486: a progesterone antagonist or agonist? J Clin Endocrinol Metab 63:1270–1276

    Article  PubMed  CAS  Google Scholar 

  • Elger W, Bartley J, Schneider B, Kaufmann G, Schubert G, Chwalisz K (2000) Endocrine pharmacological characterization of progesterone antagonists and progesterone receptor modulators with respect to PR-agonistic and antagonistic activity. Steroids 65:713–723

    Article  PubMed  CAS  Google Scholar 

  • Ellis HM, Yu D, DiTizio T, Court DL (2001) High efficiency mutagenesis, repair, and engineering of chromosomal DNA using single-stranded oligonucleotides. Proc Natl Acad Sci U S A 98:6742–6746

    Article  PubMed  CAS  Google Scholar 

  • Feng Q, Yi P, Wong J, O'Malley BW (2006) Signaling within a coactivator complex: methylation of SRC-3/AIB1 is a molecular switch for complex disassembly. Mol Cell Biol 26:7846–7857

    Article  PubMed  CAS  Google Scholar 

  • Fuhrmann U, Hess-Stumpp H, Cleve A, Neef G, Schwede W, Hoffmann J, Fritzemeier KH, Chwalisz K (2000) Synthesis and biological activity of a novel, highly potent progesterone receptor antagonist. J Med Chem 43:5010–5016

    Article  PubMed  CAS  Google Scholar 

  • Gehin M, Mark M, Dennefeld C, Dierich A, Gronemeyer H, Chambon P (2002) The function of TIF2/GRIP1 in mouse reproduction is distinct from those of SRC-1 and p/CIP. Mol Cell Biol 22:5923–5937

    Article  PubMed  CAS  Google Scholar 

  • Gianni M, Parrella E, Raska I Jr, Gaillard E, Nigro EA, Gaudon C, Garattini E, Rochette-Egly C (2006) P38MAPK-dependent phosphorylation and degradation of SRC-3/AIB1 and RARalpha-mediated transcription. EMBO J 25:739–751

    Article  PubMed  CAS  Google Scholar 

  • Gong S, Zheng C, Doughty ML, Losos K, Didkovsky N, Schambra UB, Nowak NJ, Joyner A, Leblanc G, Hatten ME, Heintz N (2003) A gene expression atlas of the central nervous system based on bacterial artificial chromosomes. Nature 425:917–925

    Article  PubMed  CAS  Google Scholar 

  • Gravanis A, Schaison G, George M, de Brux J, Satyaswaroop PG, Baulieu EE, Robel P (1985) Endometrial and pituitary responses to the steroidal antiprogestin RU 486 in postmenopausal women. J Clin Endocrinol Metab 60:156–163

    Article  PubMed  CAS  Google Scholar 

  • Han SJ, Jeong J, DeMayo FJ, Xu J, Tsai SY, Tsai MJ, O'Malley BW (2005) Dynamic cell type specificity of SRC-1 coactivator in modulating uterine progesterone receptor function in mice. Mol Cell Biol 25:8150–8165

    Article  PubMed  CAS  Google Scholar 

  • Han SJ, DeMayo FJ, Xu J, Tsai SY, Tsai MJ, O'Malley BW (2006) Steroid receptor coactivator (SRC)-1 and SRC-3 differentially modulate tissue-specific activation functions of the progesterone receptor. Mol Endocrinol 20:45–55

    Article  PubMed  CAS  Google Scholar 

  • Han SJ, Tsai SY, Tsai MJ, O'Malley BW (2007) Distinct temporal and spatial activities of RU486 on progesterone receptor function in reproductive organs of ovariectomized mice. Endocrinology 148:2471–2486

    Article  PubMed  CAS  Google Scholar 

  • Heintz N (2000) Analysis of mammalian central nervous system gene expression and function using bacterial artificial chromosome-mediated transgenesis. Hum Mol Genet 9:937–943

    Article  PubMed  CAS  Google Scholar 

  • Jeong JW, Lee KY, Kwak I, White LD, Hilsenbeck SG, Lydon JP, DeMayo FJ (2005) Identification of murine uterine genes regulated in a ligand-dependent manner by the progesterone receptor. Endocrinology 146:3490–3505

    Article  PubMed  CAS  Google Scholar 

  • Knott KK, McGinley JN, Lubet RA, Steele VE, Thompson HJ (2001) Effect of the aromatase inhibitor vorozole on estrogen and progesterone receptor content of rat mammary carcinomas induced by 1-methyl-1-nitrosourea. Breast Cancer Res Treat 70:171–183

    Article  PubMed  CAS  Google Scholar 

  • Kuang SQ, Liao L, Zhang H, Lee AV, O'Malley BW, Xu J (2004) AIB1/SRC-3 deficiency affects insulin-like growth factor I signaling pathway and suppresses v-Ha-ras-induced breast cancer initiation and progression in mice. Cancer Res 64:1875–1885

    Article  PubMed  CAS  Google Scholar 

  • Kuang SQ, Liao L, Wang S, Medina D, O'Malley BW, Xu J (2005) Mice lacking the amplified in breast cancer 1/steroid receptor coactivator-3 are resistant to chemical carcinogen-induced mammary tumorigenesis. Cancer Res 65:7993–8002

    PubMed  CAS  Google Scholar 

  • Lange CA, Shen T, Horwitz KB (2000) Phosphorylation of human progesterone receptors at serine-294 by mitogen-activated protein kinase signals their degradation by the 26S proteasome. Proc Natl Acad Sci U S A 97:1032–1037

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Je HD, Malek S, Morgan KG (2004) Role of ERK1/2 in uterine contractility and preterm labor in rats. Am J Physiol Regul Integr Comp Physiol 287:R328–R335

    Article  PubMed  CAS  Google Scholar 

  • Lydon JP, DeMayo FJ, Funk CR, Mani SK, Hughes AR, Montgomery CA Jr, Shyamala G, Conneely OM, O'Malley BW (1995) Mice lacking progesterone receptor exhibit pleiotropic reproductive abnormalities. Genes Dev 9:2266–2278

    Article  PubMed  CAS  Google Scholar 

  • Lydon JP, DeMayo FJ, Conneely OM, O'Malley BW (1996) Reproductive phenotypes of the progesterone receptor null mutant mouse. J Steroid Biochem Mol Biol 56:67–77

    Article  PubMed  CAS  Google Scholar 

  • Marsaud V, Gougelet A, Maillard S, Renoir JM (2003) Various phosphorylation pathways, depending on agonist and antagonist binding to endogenous estrogen receptor-alpha (ERalpha), differentially affect ER(alpha) extractability, proteasome-mediated stability, and transcriptional activity in human breast cancer cells. Mol Endocrinol 17:2013–2027

    Article  PubMed  CAS  Google Scholar 

  • Meyer ME, Pornon A, Ji JW, Bocquel MT, Chambon P, Gronemeyer H (1990) Agonistic and antagonistic activities of RU486 on the functions of the human progesterone receptor. EMBO J 9:3923–3932

    PubMed  CAS  Google Scholar 

  • Michna H, Schneider MR, Nishino Y, el Etreby MF (1989) The antitumor mechanism of progesterone antagonists is a receptor mediated antiproliferative effect by induction of terminal cell death. J Steroid Biochem 34:447–453

    Article  PubMed  CAS  Google Scholar 

  • Mukherjee A, Soyal SM, Fernandez-Valdivia R, Gehin M, Chambon P, DeMayo FJ, Lydon JP, O'Malley BW (2006) Steroid receptor coactivator 2 is critical for progesterone-dependent uterine function and mammary morphogenesis in the mouse. Mol Cell Biol 26:6571–6583

    Article  PubMed  CAS  Google Scholar 

  • Rowan BG, Garrison N, Weigel NL, O'Malley BW (2000a) 8-Bromo-cyclic AMP induces phosphorylation of two sites in SRC-1 that facilitate ligand-independent activation of the chicken progesterone receptor and are critical for functional cooperation between SRC-1 and CREB binding protein. Mol Cell Biol 20:8720–8730

    Article  PubMed  CAS  Google Scholar 

  • Rowan BG, Weigel NL, O'Malley BW (2000b) Phosphorylation of steroid receptor coactivator-1. Identification of the phosphorylation sites and phosphorylation through the mitogen-activated protein kinase pathway. J Biol Chem 275:4475–4483

    Article  PubMed  CAS  Google Scholar 

  • Sartorius CA, Tung L, Takimoto GS, Horwitz KB (1993) Antagonist-occupied human progesterone receptors bound to DNA are functionally switched to transcriptional agonists by cAMP. J Biol Chem 268:9262–9266

    PubMed  CAS  Google Scholar 

  • Seval Y, Cakmak H, Kayisli UA, Arici A (2006) Estrogen-mediated regulation of p38 mitogen-activated protein kinase in human endometrium. J Clin Endocrinol Metab 91:2349–2357

    Article  PubMed  CAS  Google Scholar 

  • Spitz IM, Croxatto HB, Robbins A (1996) Antiprogestins: mechanism of action and contraceptive potential. Annu Rev Pharmacol Toxicol 36:47–81

    Article  PubMed  CAS  Google Scholar 

  • Teng J, Wang ZY, Bjorling DE (2003) Progesterone induces the proliferation of urothelial cells in an epidermal growth factor dependent manner. J Urol 170:2014–2018

    Article  PubMed  CAS  Google Scholar 

  • Wagner BL, Pollio G, Leonhardt S, Wani MC, Lee DY, Imhof MO, Edwards DP, Cook CE, McDonnell DP (1996) 16 alpha-substituted analogs of the antiprogestin RU486 induce a unique conformation in the human progesterone receptor resulting in mixed agonist activity. Proc Natl Acad Sci U S A 93:8739–8744

    Article  PubMed  CAS  Google Scholar 

  • Wu RC, Qin J, Yi P, Wong J, Tsai SY, Tsai MJ, O'Malley BW (2004) Selective phosphorylations of the SRC-3/AIB1 coactivator integrate genomic responses to multiple cellular signaling pathways. Mol Cell 15:937–949

    Article  PubMed  CAS  Google Scholar 

  • Xu J, Qiu Y, DeMayo FJ, Tsai SY, Tsai MJ, O'Malley BW (1998) Partial hormone resistance in mice with disruption of the steroid receptor coactivator-1 (SRC-1) gene. Science 279:1922–1925

    Article  PubMed  CAS  Google Scholar 

  • Xu J, Liao L, Ning G, Yoshida-Komiya H, Deng C, O'Malley BW (2000) The steroid receptor coactivator SRC-3 (p/CIP/RAC3/AIB1/ACTR/TRAM-1) is required for normal growth, puberty, female reproductive function, and mammary gland development. Proc Natl Acad Sci U S A 97:6379–6384

    Article  PubMed  CAS  Google Scholar 

  • Yu D, Court DL (1998) A new system to place single copies of genes, sites and lacZ fusions on the Escherichia coli chromosome. Gene 223:77–81

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Beck CA, Poletti A, Edwards DP, Weigel NL (1994) Identification of phosphorylation sites unique to the B form of human progesterone receptor. In vitro phosphorylation by casein kinase II. J Biol Chem 269:31034–31040

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. W. O'Malley .

Editor information

O. Conneely C. Otto

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag

About this paper

Cite this paper

Han, S.J., DeMayo, F.J., O'Malley, B.W. (2008). Dynamic Regulation of Progesterone Receptor Activity in Female Reproductive Tissues. In: Conneely, O., Otto, C. (eds) Progestins and the Mammary Gland. Ernst Schering Foundation Symposium Proceedings, vol 2007/1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/2789_2007_056

Download citation

  • DOI: https://doi.org/10.1007/2789_2007_056

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73492-5

  • Online ISBN: 978-3-540-73493-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics