Skip to main content

Contrast Enhancement at CT

  • Chapter
  • First Online:
  • 3418 Accesses

Part of the book series: Medical Radiology ((Med Radiol Diagn Imaging))

Abstract

Contrast-enhanced CT studies are highly diagnostic and involve little physiological stress. To obtain the best results, protocols for contrast enhancement must take into consideration the patient factors, CM factors, and scan factors for contrast enhancement.

The original version of this chapter was revised. Water marks and line numbers have been removed.

This is a preview of subscription content, log in via an institution.

References

  • Awai K, Hori S (2003) Effect of contrast injection protocol with dose tailored to patient weight and fixed injection duration on aortic and hepatic enhancement at multidetector-row helical CT. Eur Radiol 13:2155–2160

    PubMed  Google Scholar 

  • Awai K, Takada K, Onishi H et al (2002) Aortic and hepatic enhancement and tumor-to-liver contrast: analysis of the effect of different concentrations of contrast material at multi-detector row helical CT. Radiology 224:757–763

    PubMed  Google Scholar 

  • Awai K, Hiraishi K, Hori S (2004) Effect of contrast material injection duration and rate on aortic peak time and peak enhancement at dynamic CT involving injection protocol with dose tailored to patient weight. Radiology 230:142–150

    PubMed  Google Scholar 

  • Awai K, Hatcho A, Nakayama Y et al (2006) Simulation of aortic peak enhancement on MDCT using a contrast material flow phantom: feasibility study. AJR Am J Roentgenol 186:379–385

    PubMed  Google Scholar 

  • Awai K, Kanematsu M, Kim T et al (2015) The optimal body size index with which to determine iodine dose for hepatic dynamic CT: a prospective multicenter study. Radiology. doi:10.1148/radiol.2015142941

    Article  PubMed  Google Scholar 

  • Bae KT (2003) Peak contrast enhancement in CT and MR angiography: when does it occur and why? Pharmacokinetic study in a porcine model. Radiology 227:809–816

    PubMed  Google Scholar 

  • Bae KT (2010) Intravenous contrast medium administration and scan timing at CT: considerations and approaches. Radiology 256:32–61

    PubMed  Google Scholar 

  • Bae KT, Heiken JP (2005) Scan and contrast administration principles of MDCT. Eur Radiol 15(Suppl 5):E46–E59

    PubMed  Google Scholar 

  • Bae KT, Heiken JP, Brink JA (1998a) Aortic and hepatic contrast medium enhancement at CT. Part I. Prediction with a computer model. Radiology 207:647–655

    CAS  PubMed  Google Scholar 

  • Bae KT, Heiken JP, Brink JA (1998b) Aortic and hepatic contrast medium enhancement at CT. Part II. Effect of reduced cardiac output in a porcine model. Radiology 207:657–662

    CAS  PubMed  Google Scholar 

  • Bae KT, Heiken JP, Brink JA (1998c) Aortic and hepatic peak enhancement at CT: effect of contrast medium injection rate–pharmacokinetic analysis and experimental porcine model. Radiology 206:455–464

    CAS  PubMed  Google Scholar 

  • Bae KT, Seeck BA, Hildebolt CF et al (2008a) Contrast enhancement in cardiovascular MDCT: effect of body weight, height, body surface area, body mass index, and obesity. AJR Am J Roentgenol 190:777–784

    PubMed  Google Scholar 

  • Bae KT, Shah AJ, Shang SS et al (2008b) Aortic and hepatic contrast enhancement with abdominal 64-MDCT in pediatric patients: effect of body weight and iodine dose. AJR Am J Roentgenol 191:1589–1594

    PubMed  Google Scholar 

  • Baron R (1994) Understanding and optimizing use of contrast material for CT of the liver. AJR Am J Roentgenol 163:323–333

    CAS  PubMed  Google Scholar 

  • Behrendt FF, Bruners P, Keil S et al (2010) Effect of different saline chaser volumes and flow rates on intravascular contrast enhancement in CT using a circulation phantom. Eur J Radiol 73:688–693

    PubMed  Google Scholar 

  • Birnbaum BA, Jacobs JE, Ramchandani P (1996) Multiphasic renal CT: comparison of renal mass enhancement during the corticomedullary and nephrographic phases. Radiology 200:753–758

    CAS  PubMed  Google Scholar 

  • Boer P (1984) Estimated lean body mass as an index for normalization of body fluid volumes in humans. Am J Physiol 247:F632–F636

    CAS  PubMed  Google Scholar 

  • Cademartiri F, Mollet N, Van Der Lugt A et al (2004) Non-invasive 16-row multislice CT coronary angiography: usefulness of saline chaser. Eur Radiol 14:178–183

    PubMed  Google Scholar 

  • Cademartiri F, Mollet NR, Van Der Lugt A et al (2005) Intravenous contrast material administration at helical 16-detector row CT coronary angiography: effect of iodine concentration on vascular attenuation. Radiology 236:661–665

    PubMed  Google Scholar 

  • Cademartiri F, Mollet NR, Lemos PA et al (2006) Higher intracoronary attenuation improves diagnostic accuracy in MDCT coronary angiography. AJR Am J Roentgenol 187:W430–W433

    PubMed  Google Scholar 

  • Cademartiri F, Maffei E, Palumbo AA et al (2008) Influence of intra-coronary enhancement on diagnostic accuracy with 64-slice CT coronary angiography. Eur Radiol 18:576–583

    PubMed  Google Scholar 

  • Clark ZE, Bolus DN, Little MD et al (2015) Abdominal rapid-kVp-switching dual-energy MDCT with reduced IV contrast compared to conventional MDCT with standard weight-based IV contrast: an intra-patient comparison. Abdom Imaging 40:852–858

    PubMed  Google Scholar 

  • Cohan RH, Sherman LS, Korobkin M et al (1995) Renal masses: assessment of corticomedullary-phase and nephrographic-phase CT scans. Radiology 196:445–451

    CAS  PubMed  Google Scholar 

  • De Simone G, Devereux RB, Daniels SR et al (1997) Stroke volume and cardiac output in normotensive children and adults. Assessment of relations with body size and impact of overweight. Circulation 95:1837–1843

    CAS  PubMed  Google Scholar 

  • Diehl SJ, Lehmann KJ, Sadick M et al (1998) Pancreatic cancer: value of dual-phase helical CT in assessing resectability. Radiology 206:373–378

    CAS  PubMed  Google Scholar 

  • Dorio PJ, Lee FT Jr, Henseler KP et al (2003) Using a saline chaser to decrease contrast media in abdominal CT. AJR Am J Roentgenol 180:929–934

    PubMed  Google Scholar 

  • Du Bois D, Du Bois EF (1989) A formula to estimate the approximate surface area if height and weight be known. 1916. Nutrition 5:303–311 discussion 312–303

    CAS  PubMed  Google Scholar 

  • Fleischmann D (2005) How to design injection protocols for multiple detector-row CT angiography (MDCTA). Eur Radiol 15(Suppl 5):E60–E65

    PubMed  Google Scholar 

  • Fleischmann D (2010) CT angiography: injection and acquisition technique. Radiol Clin North Am 48:237–247 vii

    PubMed  Google Scholar 

  • Fleischmann D, Hittmair K (1999) Mathematical analysis of arterial enhancement and optimization of bolus geometry for CT angiography using the discrete fourier transform. J Comput Assist Tomogr 23:474–484

    CAS  PubMed  Google Scholar 

  • Fleischmann D, Rubin GD, Bankier AA et al (2000) Improved uniformity of aortic enhancement with customized contrast medium injection protocols at CT angiography. Radiology 214:363–371

    CAS  PubMed  Google Scholar 

  • Fletcher JG, Wiersema MJ, Farrell MA et al (2003) Pancreatic malignancy: value of arterial, pancreatic, and hepatic phase imaging with multi-detector row CT. Radiology 229:81–90

    PubMed  Google Scholar 

  • Foley WD (1989a) Dynamic hepatic CT. Radiology 170:617–622

    CAS  PubMed  Google Scholar 

  • Foley WD (1989b) Dynamic hepatic CT scanning. AJR Am J Roentgenol 152:272–274

    CAS  PubMed  Google Scholar 

  • Freeny PC, Gardner JC, Voningersleben G et al (1995) Hepatic helical CT: effect of reduction of iodine dose of intravenous contrast material on hepatic contrast enhancement. Radiology 197:89–93

    CAS  PubMed  Google Scholar 

  • Furuta A, Ito K, Fujita T et al (2004) Hepatic enhancement in multiphasic contrast-enhanced MDCT: comparison of high- and low-iodine-concentration contrast medium in same patients with chronic liver disease. AJR Am J Roentgenol 183:157–162

    PubMed  Google Scholar 

  • Gehan EA, George SL (1970) Estimation of human body surface area from height and weight. Cancer Chemother Rep 54:225–235

    CAS  PubMed  Google Scholar 

  • Haage P, Schmitz-Rode T, Hubner D et al (2000) Reduction of contrast material dose and artifacts by a saline flush using a double power injector in helical CT of the thorax. AJR Am J Roentgenol 174:1049–1053

    CAS  PubMed  Google Scholar 

  • Hanninen EL, Vogl TJ, Felfe R et al (2000) Detection of focal liver lesions at biphasic spiral CT: randomized double-blind study of the effect of iodine concentration in contrast materials. Radiology 216:403–409

    CAS  PubMed  Google Scholar 

  • Heiken JP, Brink JA, Mcclennan BL et al (1995) Dynamic incremental CT: effect of volume and concentration of contrast material and patient weight on hepatic enhancement. Radiology 195:353–357

    CAS  PubMed  Google Scholar 

  • Herts BR, Paushter DM, Einstein DM et al (1995) Use of contrast material for spiral CT of the abdomen: comparison of hepatic enhancement and vascular attenuation for three different contrast media at two different delay times. AJR Am J Roentgenol 164:327–331

    CAS  PubMed  Google Scholar 

  • Ho LM, Nelson RC, Delong DM (2007) Determining contrast medium dose and rate on basis of lean body weight: does this strategy improve patient-to-patient uniformity of hepatic enhancement during multi-detector row CT? Radiology 243:431–437

    PubMed  Google Scholar 

  • Honda H, Onitsuka H, Yasumori K et al (1993) Intrahepatic peripheral cholangiocarcinoma: two-phased dynamic incremental CT and pathologic correlation. J Comput Assist Tomogr 17:397–402

    CAS  PubMed  Google Scholar 

  • Hopper KD, Mosher TJ, Kasales CJ et al (1997) Thoracic spiral CT: delivery of contrast material pushed with injectable saline solution in a power injector. Radiology 205:269–271

    CAS  PubMed  Google Scholar 

  • Huda W, Scalzetti EM, Levin G (2000) Technique factors and image quality as functions of patient weight at abdominal CT. Radiology 217:430–435

    CAS  PubMed  Google Scholar 

  • Irie T, Kajitani M, Yamaguchi M et al (2002) Contrast-enhanced CT with saline flush technique using two automated injectors: how much contrast medium does it save? J Comput Assist Tomogr 26:287–291

    PubMed  Google Scholar 

  • Itai Y, Ohtomo K, Kokubo T et al (1986) CT of hepatic masses: significance of prolonged and delayed enhancement. AJR Am J Roentgenol 146:729–733

    CAS  PubMed  Google Scholar 

  • Itoh S, Ikeda M, Achiwa M et al (2005) Multiphase contrast-enhanced CT of the liver with a multislice CT scanner: effects of iodine concentration and delivery rate. Radiat Med 23:61–69

    PubMed  Google Scholar 

  • Iyama Y, Nakaura T, Yokoyama K et al (2016a) Low-contrast and low-radiation dose protocol in cardiac computed tomography: usefulness of low tube voltage and knowledge-based iterative model reconstruction algorithm. J Comput Assist Tomogr 40(6):941–947

    PubMed  Google Scholar 

  • Iyama Y, Nakaura T, Yokoyama K et al (2016b) Impact of knowledge-based iterative model reconstruction in abdominal dynamic CT with low tube voltage and low contrast dose. AJR Am J Roentgenol 206:687–693

    PubMed  Google Scholar 

  • Jana M, Gamanagatti SR, Kumar A (2010) Case series: CT scan in cardiac arrest and imminent cardiogenic shock. Indian J Radiol Imaging 20:150–153

    PubMed  PubMed Central  Google Scholar 

  • Kidoh M, Nakaura T, Awai K et al (2013a) Low-contrast dose protection protocol for diagnostic computed tomography in patients at high-risk for contrast-induced nephropathy. J Comput Assist Tomogr 37:289–296

    PubMed  Google Scholar 

  • Kidoh M, Nakaura T, Awai K et al (2013b) Novel connecting tube for saline chaser in contrast-enhanced CT: the effect of spiral flow of saline on contrast enhancement. Eur Radiol 23:3213–3218

    PubMed  Google Scholar 

  • Kidoh M, Nakaura T, Oda S et al (2013c) Contrast enhancement during hepatic computed tomography: effect of total body weight, height, body mass index, blood volume, lean body weight, and body surface area. J Comput Assist Tomogr 37:159–164

    PubMed  Google Scholar 

  • Kidoh M, Nakaura T, Nakamura S et al (2014) Contrast material and radiation dose reduction strategy for triple-rule-out cardiac CT angiography: feasibility study of non-ECG-gated low kVp scan of the whole chest following coronary CT angiography. Acta Radiol 55:1186–1196

    PubMed  Google Scholar 

  • Kim DJ, Kim TH, Kim SJ et al (2008) Saline flush effect for enhancement of aorta and coronary arteries at multidetector CT coronary angiography. Radiology 246:110–115

    PubMed  Google Scholar 

  • Kondo H, Kanematsu M, Goshima S et al (2011) Aortic and hepatic enhancement at multidetector CT: evaluation of optimal iodine dose determined by lean body weight. Eur J Radiol 80:e273–e277

    PubMed  Google Scholar 

  • Konig M, Bultmann E, Bode-Schnurbus L et al (2007) Image quality in CT perfusion imaging of the brain. The role of iodine concentration. Eur Radiol 17:39–47

    PubMed  Google Scholar 

  • Lee CH, Goo JM, Bae KT et al (2007) CTA contrast enhancement of the aorta and pulmonary artery: the effect of saline chase injected at two different rates in a canine experimental model. Invest Radiol 42:486–490

    PubMed  Google Scholar 

  • Loubeyre P, Debard I, Nemoz C et al (2000) Using thoracic helical CT to assess iodine concentration in a small volume of nonionic contrast medium during vascular opacification: a prospective study. AJR Am J Roentgenol 174:783–787

    CAS  PubMed  Google Scholar 

  • Lu DS, Vedantham S, Krasny RM et al (1996) Two-phase helical CT for pancreatic tumors: pancreatic versus hepatic phase enhancement of tumor, pancreas, and vascular structures. Radiology 199:697–701

    CAS  PubMed  Google Scholar 

  • Marchiano A, Spreafico C, Lanocita R et al (2005) Does iodine concentration affect the diagnostic efficacy of biphasic spiral CT in patients with hepatocellular carcinoma? Abdom Imaging 30:274–280

    CAS  PubMed  Google Scholar 

  • Masuda T, Funama Y, Nakaura T et al (2015) Delivering the saline chaser via a spiral flow-generating tube improves arterial enhancement for computed tomography angiography of the lower extremities. J Comput Assist Tomogr 39:962–968

    PubMed  Google Scholar 

  • Masuda T, Funama Y, Nakaura T et al (2016) Comparison of contrast enhancement on CTA images of the lower extremity of dialysis- and non-dialysis patients with suspected peripheral artery disease. AJR Am J Roentgenol in press

    Google Scholar 

  • Matoba M, Yokota H, Kuga G et al (2005) Influence of saline flushing on the optimal temporal window for CT of the liver using a time-density analysis. Radiat Med 23:557–562

    PubMed  Google Scholar 

  • Mccollough CH, Leng S, Yu L et al (2015) Dual- and multi-energy CT: principles, technical approaches, and clinical applications. Radiology 276:637–653

    PubMed  Google Scholar 

  • Mckinstry D, Rommel AJ, Sugerman AA (1984) Pharmacokinetics, metabolism, and excretion of iopamidol in healthy subjects. Invest Radiol 19:S171–S174

    Google Scholar 

  • Mcnulty NJ, Francis IR, Platt JF et al (2001) Multi–detector row helical CT of the pancreas: effect of contrast-enhanced multiphasic imaging on enhancement of the pancreas, peripancreatic vasculature, and pancreatic adenocarcinoma. Radiology 220:97–102

    CAS  PubMed  Google Scholar 

  • Metser U, Goldstein MA, Chawla TP et al (2012) Detection of urothelial tumors: comparison of urothelial phase with excretory phase CT urography–a prospective study. Radiology 264:110–118

    PubMed  Google Scholar 

  • Nakaura T, Awai K, Maruyama N et al (2011a) Abdominal dynamic CT in patients with renal dysfunction: contrast agent dose reduction with low tube voltage and high tube current-time product settings at 256-detector row CT. Radiology 261:467–476

    PubMed  Google Scholar 

  • Nakaura T, Awai K, Oda S et al (2011b) Low-kilovoltage, high-tube-current MDCT of liver in thin adults: pilot study evaluating radiation dose, image quality, and display settings. Am J Roentgenol 196(6):1332–1338.

    Google Scholar 

  • Nakaura T, Awai K, Oda S et al (2011c) Low-kilovoltage, high-tube-current MDCT of liver in thin adults: pilot study evaluating radiation dose, image quality, and display settings. AJR Am J Roentgenol 196:1332–1338

    PubMed  Google Scholar 

  • Nakaura T, Awai K, Oda S et al (2011d) A low-kilovolt (peak) high-tube current technique improves venous enhancement and reduces the radiation dose at indirect multidetector-row CT venography: initial experience. J Comput Assist Tomogr 35:141–147

    PubMed  Google Scholar 

  • Nakaura T, Awai K, Yanaga Y et al (2011e) Low-dose contrast protocol using the test bolus technique for 64-detector computed tomography coronary angiography. Jpn J Radiol 29:457–465

    PubMed  Google Scholar 

  • Nakaura T, Nakamura S, Maruyama N et al (2012) Low contrast agent and radiation dose protocol for hepatic dynamic CT of thin adults at 256-detector row CT: effect of low tube voltage and hybrid iterative reconstruction algorithm on image quality. Radiology 264:445–454

    PubMed  Google Scholar 

  • Nakayama Y, Awai K, Funama Y et al (2005) Abdominal CT with low tube voltage: preliminary observations about radiation dose, contrast enhancement, image quality, and noise. Radiology 237:945–951

    PubMed  Google Scholar 

  • Namimoto T, Oda S, Utsunomiya D et al (2012) Improvement of image quality at low-radiation dose and low-contrast material dose abdominal CT in patients with cirrhosis: intraindividual comparison of low tube voltage with iterative reconstruction algorithm and standard tube voltage. J Comput Assist Tomogr 36:495–501

    PubMed  Google Scholar 

  • Oda S, Utsunomiya D, Funama Y et al (2011) A low tube voltage technique reduces the radiation dose at retrospective ECG-gated cardiac computed tomography for anatomical and functional analyses. Acad Radiol 18:991–999

    PubMed  Google Scholar 

  • Onishi H, Murakami T, Kim T, Hori M, Osuga K, Tatsumi M, Higashihara H, Maeda N, Tsuboyama T, Nakamoto A, Tomoda K, Tomiyama N.Abdominal (2011) multi-detector row CT: effectiveness of determining contrast medium dose on basis of body surface area. Eur J Radiol. Dec; 80(3):643–7. doi: 10.1016/j.ejrad.2010.08.037. Epub 2010 Sep 23.

  • Saunders HS, Dyer RB, Shifrin RY et al (1995) The CT nephrogram: implications for evaluation of urinary tract disease. Radiographics 15:1069–1085 discussion 1086–1068

    CAS  PubMed  Google Scholar 

  • Sawyer M, Ratain MJ (2001) Body surface area as a determinant of pharmacokinetics and drug dosing. Invest New Drugs 19:171–177

    CAS  PubMed  Google Scholar 

  • Schoellnast H, Tillich M, Deutschmann HA et al (2003) Abdominal multidetector row computed tomography: reduction of cost and contrast material dose using saline flush. J Comput Assist Tomogr 27:847–853

    PubMed  Google Scholar 

  • Schoellnast H, Tillich M, Deutschmann HA et al (2004a) Improvement of parenchymal and vascular enhancement using saline flush and power injection for multiple-detector-row abdominal CT. Eur Radiol 14:659–664

    PubMed  Google Scholar 

  • Schoellnast H, Tillich M, Deutschmann MJ et al (2004b) Aortoiliac enhancement during computed tomography angiography with reduced contrast material dose and saline solution flush: influence on magnitude and uniformity of the contrast column. Invest Radiol 39:20–26

    PubMed  Google Scholar 

  • Schoellnast H, Deutschmann HA, Fritz GA et al (2005) MDCT angiography of the pulmonary arteries: influence of iodine flow concentration on vessel attenuation and visualization. AJR Am J Roentgenol 184:1935–1939

    PubMed  Google Scholar 

  • Shinagawa M, Uchida M, Ishibashi M et al (2003) Assessment of pancreatic CT enhancement using a high concentration of contrast material. Radiat Med 21:74–79

    PubMed  Google Scholar 

  • Shuman WP, Chan KT, Busey JM et al (2016) Dual-energy CT Aortography with 50% reduced iodine dose versus single-energy CT aortography with standard iodine dose. Acad Radiol 23:611–618

    PubMed  Google Scholar 

  • Sultana S, Awai K, Nakayama Y et al (2007) Hypervascular hepatocellular carcinomas: bolus tracking with a 40-detector CT scanner to time arterial phase imaging. Radiology 243:140–147

    PubMed  Google Scholar 

  • Taguchi N, Oda S, Utsunomiya D et al (2016) Using 80 kVp on a 320-row scanner for hepatic multiphasic CT reduces the contrast dose by 50% in patients at risk for contrast-induced nephropathy. Eur Radiol . 2016 May 30. [Epub ahead of print].

    Google Scholar 

  • Takayasu K, Ikeya S, Mukai K et al (1990) CT of hilar cholangiocarcinoma: late contrast enhancement in six patients. AJR Am J Roentgenol 154:1203–1206

    CAS  PubMed  Google Scholar 

  • Tanikake M, Shimizu T, Narabayashi I et al (2003) Three-dimensional CT angiography of the hepatic artery: use of multi-detector row helical CT and a contrast agent. Radiology 227:883–889

    PubMed  Google Scholar 

  • Tatsugami F, Matsuki M, Kani H et al (2006) Effect of saline pushing after contrast material injection in abdominal multidetector computed tomography with the use of different iodine concentrations. Acta Radiol 47:192–197

    CAS  PubMed  Google Scholar 

  • Tatsugami F, Matsuki M, Inada Y et al (2007) Usefulness of saline pushing in reduction of contrast material dose in abdominal CT: evaluation of time-density curve for the aorta, portal vein and liver. Br J Radiol 80:231–234

    CAS  PubMed  Google Scholar 

  • Taylor HL, Brozek J, Keys A (1952) Basal cardiac function and body composition with special reference to obesity. J Clin Invest 31:976–983

    CAS  PubMed  PubMed Central  Google Scholar 

  • Verbraecken J, Van De Heyning P, De Backer W et al (2006) Body surface area in normal-weight, overweight, and obese adults. A comparison study. Metabolism 55:515–524

    CAS  PubMed  Google Scholar 

  • Vignaux O, Legmann P, Coste J et al (1999) Cirrhotic liver enhancement on dual-phase helical CT: comparison with noncirrhotic livers in 146 patients. AJR Am J Roentgenol 173:1193–1197

    CAS  PubMed  Google Scholar 

  • Vignaux O, Gouya H, Augui J et al (2002) Hepatofugal portal flow in advanced liver cirrhosis with spontaneous portosystemic shunts: effects on parenchymal hepatic enhancement at dual-phase helical CT. Abdom Imaging 27:536–540

    CAS  PubMed  Google Scholar 

  • Yamashita Y, Komohara Y, Takahashi M et al (2000) Abdominal helical CT: evaluation of optimal doses of intravenous contrast material–a prospective randomized study. Radiology 216:718–723

    CAS  PubMed  Google Scholar 

  • Yanaga Y, Awai K, Nakayama Y et al (2007) Optimal dose and injection duration (injection rate) of contrast material for depiction of hypervascular hepatocellular carcinomas by multidetector CT. Radiat Med 25:278–288

    CAS  PubMed  Google Scholar 

  • Yanaga Y, Awai K, Nakaura T et al (2008) Optimal contrast dose for depiction of hypervascular hepatocellular carcinoma at dynamic CT using 64-MDCT. AJR Am J Roentgenol 190:1003–1009

    PubMed  Google Scholar 

  • Yanaga Y, Awai K, Funama Y et al (2009a) Low-dose MDCT urography: feasibility study of low-tube-voltage technique and adaptive noise reduction filter. AJR Am J Roentgenol 193:W220–W229

    PubMed  Google Scholar 

  • Yanaga Y, Awai K, Nakaura T et al (2009b) Effect of contrast injection protocols with dose adjusted to the estimated lean patient body weight on aortic enhancement at CT angiography. AJR Am J Roentgenol 192:1071–1078

    PubMed  Google Scholar 

  • Yanaga Y, Awai K, Nakaura T, Utsunomiya D, Oda S, Hirai T, Yamashita Y. (2010) Contrast material injection protocol with the dose adjusted to the body surface area for MDCT aortography. AJR Am J Roentgenol. Apr; 194(4):903-8. doi: 10.2214/AJR.09.3460.

  • Yanaga Y, Awai K, Nakaura T et al (2011) Hepatocellular carcinoma in patients weighing 70 kg or less: initial trial of compact-bolus dynamic CT with low-dose contrast material at 80 kVp. AJR Am J Roentgenol 196:1324–1331

    PubMed  Google Scholar 

  • Younathan C, Kaude J, Cook M et al (1994) Dialysis is not indicated immediately after administration of nonionic contrast agents in patients with end-stage renal disease treated by maintenance dialysis. AJR Am J Roentgenol 163:969–971

    CAS  PubMed  Google Scholar 

  • Yu L, Leng S, Mccollough CH (2012) Dual-energy CT-based monochromatic imaging. AJR Am J Roentgenol 199:S9–S15

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuo Awai M.D, Ph.D .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Awai, K., Higaki, T., Tatsugami, F. (2017). Contrast Enhancement at CT. In: Nikolaou, K., Bamberg, F., Laghi, A., Rubin, G.D. (eds) Multislice CT. Medical Radiology(). Springer, Cham. https://doi.org/10.1007/174_2016_98

Download citation

  • DOI: https://doi.org/10.1007/174_2016_98

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42585-6

  • Online ISBN: 978-3-319-42586-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics