Skip to main content

Nuclear Medicine Dose Assessment

  • Chapter
  • First Online:
Therapeutic Nuclear Medicine

Part of the book series: Medical Radiology ((Med Radiol Radiat Oncol))

  • 2673 Accesses

Abstract

Radiation dose estimates are necessary for evaluating risks and benefits from medical examinations using radiopharmaceuticals, in particular for therapeutic applications. This chapter describes standardized methods and models for calculating internal doses from radiopharmaceutical studies. Standard organ and marrow dose models are described, techniques for obtaining data from animal or human studies are outlined, with examples given, and discussion of patient-individualized dosimetry and the biological response of tissues to dose from ionizing radiation is also provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andrew R. Prideaux, Hong Song, Robert F. Hobbs, Bin He, Eric C. Frey, Paul W. Ladenson, Richard L (2007) Wahl1and George Sgouros. Three-Dimensional Radiobiologic Dosimetry: Application of Radiobiologic Modeling to Patient-Specific 3-Dimensional Imaging–Based Internal Dosimetry. J Nucl Med 48(6):1008–1016

    Google Scholar 

  • Autret D, Bitar A, Ferrer L, Lisbona A, Bardies M (2005) Monte Carlo modeling of gamma cameras for I-131 imaging in targeted radiotherapy. Cancer Biother Radiopharmaceuticals 20(1):77–84

    Article  CAS  Google Scholar 

  • Barendson GW (1982) Dose fractionation, dose-rate and iso-effect relationships for normal tissue responses. Int J Radiat Oncol Biol Phys 8:1981–1987

    Article  Google Scholar 

  • Bodey RK, Evans PM, Flux GD (2004) Application of the linear-quadratic model to combined modality radiotherapy. Int J Radiat Oncol Biol Phys 59(1):228–241

    Article  PubMed  Google Scholar 

  • Bouchet LG, Bolch WE, Howell RW, Rao DV (2000) S-values for radionuclides localized within the skeleton. J Nucl Med 41:189–212

    CAS  PubMed  Google Scholar 

  • Chang LT (1978) A method for attenuation correction in radionuclide computed tomography. IEEE Trans Nucl Sci 25:638–643

    Article  Google Scholar 

  • Clairand I, Ricard M, Gouriou J, Di Paola M, Aubert B (1999) DOSE3D: EGS4 Monte Carlo code-based software for internal radionuclide dosimetry. J Nucl Med 40:1517–1523

    CAS  PubMed  Google Scholar 

  • Cristy M, Eckerman K (1987) Specific absorbed fractions of energy at various ages from internal photons sources. ORNL/TM-8381 V1-V7. Oak Ridge National Laboratory, Oak Ridge

    Google Scholar 

  • Dewaraja Yuni K, Wilderman Scott J, Ljungberg Michael, Koral Kenneth F, Zasadny Kenneth, Kaminiski Mark S (2005) Accurate Dosimetry in 131I radionuclide therapy using patient-specific, 3-dimensional methods for SPECT reconstruction and absorbed dose calculation. J Nucl Med 2005(46):840–849

    Google Scholar 

  • Eckerman K, Stabin M (2000) Electron absorbed fractions and dose conversion factors for marrow and bone by skeletal regions. Health Phys 78(2):199–214

    Article  CAS  PubMed  Google Scholar 

  • Fleming JS (1989) A technique for using CT images in attenuation correction and quantification in SPECT. Nucl Med Commun 10(2):83–97

    Article  CAS  PubMed  Google Scholar 

  • Flynn AA, Green AJ, Pedley RB, Boxer GM, Boden R, Begent RH (2001) A mouse model for calculating the absorbed beta-particle dose from 131I- and 90Y-labeled immunoconjugates, including a method for dealing with heterogeneity in kidney and tumor. Radiat Res 156:28–35

    Article  CAS  PubMed  Google Scholar 

  • Fowler JF (1989) The linear-quadratic formula and progress in fractionated radiotherapy. Br J Radiol 62:679–694m

    Article  CAS  PubMed  Google Scholar 

  • Guy MJ, Flux GD, Papavasileiou P, Flower MA, Ott RJ (2003) RMDP: a dedicated package for I-131 SPECT quantification, registration and patient-specific dosimetry. Cancer Biother Radiopharmaceuticals 18(1):61–69

    Article  CAS  Google Scholar 

  • Hindorf C, Ljungberg M, Strand S-E (2004) Evaluation of parameters influencing S values in mouse dosimetry. J Nucl Med 45:1960–1965

    CAS  PubMed  Google Scholar 

  • Hui TE, Fisher DR, Kuhn JA et al (1994) A mouse model for calculating cross-organ beta doses from yttrium-90-labeled immunoconjugates. Cancer 73(suppl):951–957

    CAS  PubMed  Google Scholar 

  • International Commission on Radiological Protection (1975) ICRP Publication 23, Task Group report on reference man. Pergamon Press, Oxford

    Google Scholar 

  • International Commission on Radiological Protection (2003) ICRP 2003 Publication 89: Basic anatomical and physiological data for use in radiological protection: Reference Values, Elsevier Health

    Google Scholar 

  • Keenan MA, Stabin MG, Segars WP, Fernald MJ (2010) RADAR realistic animal model series for dose assessment. J Nucl Med 16(1):60–71

    Google Scholar 

  • Kirschner A, Ice R, Beierwaltes W (1975) Radiation dosimetry of 131I–19-iodocholesterol: the pitfalls of using tissue concentration data, the author’s reply. J Nucl Med 16(3):248–249

    CAS  Google Scholar 

  • Kobe C, Eschner W, Sudbrock F, Weber I, Marx K, Dietlein M, Schicha H (2007) Graves’ disease and radioiodine therapy: is success of ablation dependent on the achieved dose above 200 Gy? Nuklearmedizin 46:198–202

    Google Scholar 

  • Kolbert KS, Sgouros G, Scott AM, Bronstein JE, Malane RA, Zhang J, Kalaigian H, McNamara S, Schwartz L, Larson SM (1997) Implementation and evaluation of patient-specific three-dimensional internal dosimetry. J Nucl Med 38:301–308

    CAS  PubMed  Google Scholar 

  • Kolbert KS, Watson T, Matei C, Xu S, Koutcher JA, Sgouros G. Murine S 2003 factors for liver, spleen and kidney. J Nucl Med 44:784–791

    Google Scholar 

  • Konijnenberg MW, Bijster M, Krenning EP, de Jong M (2004) A stylized computational model of the rat for organ dosimetry in support of preclinical evaluations of peptide receptor radionuclide therapy with 90Y, 111In, or 177Lu. J Nucl Med 45:1260–1269

    CAS  PubMed  Google Scholar 

  • Lehmann J, Hartmann Siantar C, Wessol DE, Wemple CA, Nigg D, Cogliati J, Daly T, Descalle MA, Flickinger T, Pletcher D, Denardo G (2005) Monte Carlo treatment planning for molecular targeted radiotherapy within the MINERVA system. Phys Med Biol Mar 7;50(5):947–58

    Google Scholar 

  • Liu A, Williams L, Lopatin G, Yamauchi D, Wong J, Raubitschek A (1999) A radionuclide therapy treatment planning and dose estimation system. J Nucl Med 40:1151–1153

    CAS  PubMed  Google Scholar 

  • Dewaraja YK, Wilderman SJ, Ljungberg M, KORAL KF, Zasadny K & Kaminiski MS (2005) Accurate dosimetry in I-131 radionuclide therapy using patient- specific, 3-dimensional methods for SPECT reconstruction and absorbed dose calculation. J Nucl Med 46(5):840–849

    Google Scholar 

  • Malaroda A, Flux GD, Buffa FM, Ott RJ (2003) Multicellular dosimetry in voxel geometry for targeted radionuclide therapy. Cancer Biother Radiopharmaceuticals 18(3):451–461

    Article  CAS  Google Scholar 

  • Marinelli L, Quimby E, Hine G (1948) Dosage determination with radioactive isotopes II, practical considerations in therapy and protection. Am J Roent Radium Ther 59:260–280

    CAS  Google Scholar 

  • Muthuswamy MS, Roberson PL, Buchsbaum DJ (1998) A mouse bone marrow dosimetry model. J Nucl Med 39:1243–1247

    CAS  PubMed  Google Scholar 

  • O’Donoghue JA, Sgouros G, Divgi CR, Humm JL (2000) Single-dose versus fractionated radioimmunotherapy: Model comparisons for uniform tumor dosimetry. J Nucl Med 41(3):538–547

    PubMed  Google Scholar 

  • Ogawa K, Harata Y, Ichihara T, Kubo A, Hashimoto S (1991) A practical method for position dependent Compton scatter correction in single photon emission CT. IEEE Trans Nucl Med 10:408–412

    Article  CAS  Google Scholar 

  • Patton PW (2000) NMR microscopy for skeletal dosimetry: an investigation of marrow cellularity on dose estimates, Dissertation, Nuclear and Radiological Engineering. University of Florida, Gainesville, pp 426

    Google Scholar 

  • Quimby E, Feitelberg S (1963) Radioactive isotopes in medicine and biology. Lea and Febiger, Philadelphia

    Google Scholar 

  • Segars JP (2001) Development and application of the new dynamic NURBS-based Cardiac-Torso (NCAT) Phantom, Ph.D. Dissertation, The University of North Carolina

    Google Scholar 

  • Segars WP, Tsui B (2007) 4D MOBY and NCAT phantoms for medical imaging simulation of mice and men. J Nucl Med 48(Supplement 2):203P

    Google Scholar 

  • Siegel J, Thomas S, Stubbs J, Stabin M, Hays M, Koral K, Robertson J, Howell R, Wessels B, Fisher D, Weber D, Brill A (1999) MIRD Pamphlet No 16 – Techniques for quantitative radiopharmaceutical biodistribution data acquisition and analysis for use in human radiation dose estimates. J Nucl Med 40:37S–61S

    CAS  PubMed  Google Scholar 

  • Snyder W, Ford M, Warner G, Fisher, H, Jr (1969) MIRD Pamphlet No 5 - estimates of absorbed fractions for monoenergetic photon sources uniformly distributed in various organs of a heterogeneous phantom. J Nucl Med Suppl No 3, 5***

    Google Scholar 

  • Snyder W, Ford M, Warner G, Watson S (1975) A tabulation of dose equivalent per microcurie-day for source and target organs of an adult for various radionuclides. ORNL-5000, Oak Ridge National Laboratory

    Google Scholar 

  • Snyder W, Ford M, Warner G (1978) Estimates of specific absorbed fractions for photon sources uniformly distributed in various organs of a heterogeneous phantom. MIRD Pamphlet No. 5, revised. Society of Nuclear Medicine, New York

    Google Scholar 

  • Spiers FW (1969) Beta dosimetry in trabecular bone. In: Mays CW (ed) Delayed effects of bone-seeking radionuclides, pp 95–108, University of Utah Press, Salt Lake City

    Google Scholar 

  • Stabin M (1996) MIRDOSE: the personal computer software for use in internal dose assessment in nuclear medicine. J Nucl Med 37:538–546

    CAS  PubMed  Google Scholar 

  • Stabin MG (2008) Fundamentals of nuclear medicine dosimetry. Springer, New York

    Google Scholar 

  • Stabin MG, Flux GD (2007) Internal dosimetry as a tool for radiation protection of the patient in nuclear medicine (Review article). Biomed Imaging Interv J 3(2):e28

    Google Scholar 

  • Stabin M, Watson E, Cristy M, Ryman J, Eckerman K, Davis J, Marshall D, Gehlen K (1995) Mathematical models and specific absorbed fractions of photon energy in the nonpregnant adult female and at the end of each trimester of pregnancy. ORNL Report ORNL/TM-12907

    Google Scholar 

  • Stabin MG, Eckerman KF, Bolch WE, Bouchet LG, Patton PW (2002) Evolution and status of bone and marrow dose models. Cancer Biother Radiopharmaceuticals 17(4):427–434

    Article  CAS  Google Scholar 

  • Stabin MG, Sparks RB, Crowe E. OLINDA/EXM (2005) The second-generation personal computer software for internal dose assessment in nuclear medicine. J Nucl Med 46:1023–1027

    Google Scholar 

  • Stabin MG, Peterson TE, Holburn GE, Emmons MA (2006) Voxel-based mouse and rat models for internal dose calculations. J Nucl Med 47:655–659

    PubMed  Google Scholar 

  • Stabin MG, Emmons MA, Segars WP, Fernald M, Brill AB (2008) ICRP-89 Based Adult and Pediatric Phantom Series. J Nucl Med 49:14P

    Google Scholar 

  • Strigari L, D’Andrea M, Ludovico Maini C, Sciuto R, Benassi M (2006) Biological optimization of heterogeneous dose distributions in systemic radiotherapy. Med Phys 33(6):1857–1866

    Google Scholar 

  • Traino AC, Di Martino F, Lazzeri M, Stabin MG (2000) Influence of thyroid volume reduction on calculated dose in radioiodine therapy of Graves’ hyperthyroidism. Phys. Med. Biol. 45:121–129

    Google Scholar 

  • Yoriyaz H, Stabin M (1997) Electron and photon transport in a model of a 30 g mouse. J Nucl Med 38(5), supplement:228ftable

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael G. Stabin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Stabin, M.G. (2012). Nuclear Medicine Dose Assessment. In: Baum, R. (eds) Therapeutic Nuclear Medicine. Medical Radiology(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/174_2012_737

Download citation

  • DOI: https://doi.org/10.1007/174_2012_737

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-36718-5

  • Online ISBN: 978-3-540-36719-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics