Skip to main content

Insights from Studies of White Adipose Tissue Using Single-Cell Approaches

  • Chapter
  • First Online:
From Obesity to Diabetes

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 274))

Abstract

Technologies allowing studies at single-cell resolution have provided important insights into how different cell populations contribute to tissue function. Application of these methods to white adipose tissue (WAT) has revealed how various metabolic aspects of this organ, such as insulin response, inflammation and tissue expansion, are regulated by specific WAT resident cells, including different subtypes of adipocytes, adipocyte progenitors as well as immune and endothelial cells. In this chapter, we provide an overview of the different technical approaches, their strengths and weaknesses, and summarize how these studies have improved our understanding of WAT function in health and disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acosta JR, Joost S, Karlsson K, Ehrlund A, Li X, Aouadi M, Kasper M, Arner P, Ryden M, Laurencikiene J (2017) Single cell transcriptomics suggest that human adipocyte progenitor cells constitute a homogeneous cell population. Stem Cell Res Ther 8(1):250

    Article  PubMed  PubMed Central  Google Scholar 

  • Alvarez M, Rahmani E, Jew B, Garske KM, Miao Z, Benhammou JN, Ye CJ, Pisegna JR, Pietilainen KH, Halperin E, Pajukanta P (2020) Enhancing droplet-based single-nucleus RNA-seq resolution using the semi-supervised machine learning classifier DIEM. Sci Rep 10(1):11019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anaparthy N, Ho YJ, Martelotto L, Hammell M, Hicks J (2019) Single-cell applications of next-generation sequencing. Cold Spring Harb Perspect Med 9(10):a026898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andersson A, Bergenstrahle J, Asp M, Bergenstrahle L, Jurek A, Fernandez Navarro J, Lundeberg J (2020) Single-cell and spatial transcriptomics enables probabilistic inference of cell type topography. Commun Biol 3(1):565

    Article  PubMed  PubMed Central  Google Scholar 

  • Andrews TS, Kiselev VY, McCarthy D, Hemberg M (2021) Tutorial: guidelines for the computational analysis of single-cell RNA sequencing data. Nat Protoc 16(1):1–9

    Article  CAS  PubMed  Google Scholar 

  • Angueira AR, Sakers AP, Holman CD, Cheng L, Arbocco MN, Shamsi F, Lynes MD, Shrestha R, Okada C, Batmanov K, Susztak K, Tseng YH, Liaw L, Seale P (2021) Defining the lineage of thermogenic perivascular adipose tissue. Nat Metab 3(4):469–484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Backdahl J, Franzen L, Massier L, Li Q, Jalkanen J, Gao H, Andersson A, Bhalla N, Thorell A, Ryden M, Stahl PL, Mejhert N (2021) Spatial mapping reveals human adipocyte subpopulations with distinct sensitivities to insulin. Cell Metab 33(9):1869–1882.e6

    Article  PubMed  Google Scholar 

  • Berry R, Rodeheffer MS (2013) Characterization of the adipocyte cellular lineage in vivo. Nat Cell Biol 15(3):302–308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berry R, Jeffery E, Rodeheffer MS (2014) Weighing in on adipocyte precursors. Cell Metab 19(1):8–20

    Article  CAS  PubMed  Google Scholar 

  • Burl RB, Ramseyer VD, Rondini EA, Pique-Regi R, Lee YH, Granneman JG (2018) Deconstructing adipogenesis induced by beta3-adrenergic receptor activation with single-cell expression profiling. Cell Metab 28(2):300–309.e304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cawthorn WP, Scheller EL, MacDougald OA (2012) Adipose tissue stem cells meet preadipocyte commitment: going back to the future. J Lipid Res 53(2):227–246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cho DS, Lee B, Doles JD (2019) Refining the adipose progenitor cell landscape in healthy and obese visceral adipose tissue using single-cell gene expression profiling. Life Sci Alliance 2(6):e201900561

    Article  PubMed  PubMed Central  Google Scholar 

  • Corvera S (2021) Cellular heterogeneity in adipose tissues. Annu Rev Physiol 83:257–278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Denisenko E, Guo BB, Jones M, Hou R, de Kock L, Lassmann T, Poppe D, Clement O, Simmons RK, Lister R, Forrest ARR (2020) Systematic assessment of tissue dissociation and storage biases in single-cell and single-nucleus RNA-seq workflows. Genome Biol 21(1):130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deutsch A, Feng D, Pessin JE, Shinoda K (2020) The impact of single-cell genomics on adipose tissue research. Int J Mol Sci 21(13):4773

    Article  CAS  PubMed Central  Google Scholar 

  • Ding J, Adiconis X, Simmons SK, Kowalczyk MS, Hession CC, Marjanovic ND, Hughes TK, Wadsworth MH, Burks T, Nguyen LT, Kwon JYH, Barak B, Ge W, Kedaigle AJ, Carroll S, Li S, Hacohen N, Rozenblatt-Rosen O, Shalek AK, Villani AC, Regev A, Levin JZ (2020) Systematic comparison of single-cell and single-nucleus RNA-sequencing methods. Nat Biotechnol 38(6):737–746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferrero R, Rainer P, Deplancke B (2020) Toward a consensus view of mammalian adipocyte stem and progenitor cell heterogeneity. Trends Cell Biol 30(12):937–950

    Article  CAS  PubMed  Google Scholar 

  • Gu W, Nowak WN, Xie Y, Le Bras A, Hu Y, Deng J, Issa Bhaloo S, Lu Y, Yuan H, Fidanis E, Saxena A, Kanno T, Mason AJ, Dulak J, Cai J, Xu Q (2019) Single-cell RNA-sequencing and metabolomics analyses reveal the contribution of perivascular adipose tissue stem cells to vascular remodeling. Arterioscler Thromb Vasc Biol 39(10):2049–2066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta RK, Arany Z, Seale P, Mepani RJ, Ye L, Conroe HM, Roby YA, Kulaga H, Reed RR, Spiegelman BM (2010) Transcriptional control of preadipocyte determination by Zfp423. Nature 464(7288):619–623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta RK, Mepani RJ, Kleiner S, Lo JC, Khandekar MJ, Cohen P, Frontini A, Bhowmick DC, Ye L, Cinti S, Spiegelman BM (2012) Zfp423 expression identifies committed preadipocytes and localizes to adipose endothelial and perivascular cells. Cell Metab 15(2):230–239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hagberg CE, Li Q, Kutschke M, Bhowmick D, Kiss E, Shabalina IG, Harms MJ, Shilkova O, Kozina V, Nedergaard J, Boucher J, Thorell A, Spalding KL (2018) Flow cytometry of mouse and human adipocytes for the analysis of browning and cellular heterogeneity. Cell Rep 24(10):2746–2756.e2745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hepler C, Shan B, Zhang Q, Henry GH, Shao M, Vishvanath L, Ghaben AL, Mobley AB, Strand D, Hon GC, Gupta RK (2018) Identification of functionally distinct fibro-inflammatory and adipogenic stromal subpopulations in visceral adipose tissue of adult mice. eLife 7:e39636

    Article  PubMed  PubMed Central  Google Scholar 

  • Hildreth AD, Ma F, Wong YY, Sun R, Pellegrini M, O'Sullivan TE (2021) Single-cell sequencing of human white adipose tissue identifies new cell states in health and obesity. Nat Immunol 22(5):639–653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jaitin DA, Adlung L, Thaiss CA, Weiner A, Li B, Descamps H, Lundgren P, Bleriot C, Liu Z, Deczkowska A, Keren-Shaul H, David E, Zmora N, Eldar SM, Lubezky N, Shibolet O, Hill DA, Lazar MA, Colonna M, Ginhoux F, Shapiro H, Elinav E, Amit I (2019) Lipid-associated macrophages control metabolic homeostasis in a trem2-dependent manner. Cell 178(3):686–698.e614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • James DE, Stockli J, Birnbaum MJ (2021) The aetiology and molecular landscape of insulin resistance. Nat Rev Mol Cell Biol 22(11):751–771

    Article  CAS  PubMed  Google Scholar 

  • Jeffery E, Church CD, Holtrup B, Colman L, Rodeheffer MS (2015) Rapid depot-specific activation of adipocyte precursor cells at the onset of obesity. Nat Cell Biol 17(4):376–385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeffery E, Wing A, Holtrup B, Sebo Z, Kaplan JL, Saavedra-Pena R, Church CD, Colman L, Berry R, Rodeheffer MS (2016) The adipose tissue microenvironment regulates depot-specific adipogenesis in obesity. Cell Metab 24(1):142–150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jew B, Alvarez M, Rahmani E, Miao Z, Ko A, Garske KM, Sul JH, Pietilainen KH, Pajukanta P, Halperin E (2020) Accurate estimation of cell composition in bulk expression through robust integration of single-cell information. Nat Commun 11(1):1971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karlina R, Lutter D, Miok V, Fischer D, Altun I, Schottl T, Schorpp K, Israel A, Cero C, Johnson JW, Kapser-Fischer I, Bottcher A, Keipert S, Feuchtinger A, Graf E, Strom T, Walch A, Lickert H, Walzthoeni T, Heinig M, Theis FJ, Garcia-Caceres C, Cypess AM, Ussar S (2021) Identification and characterization of distinct brown adipocyte subtypes in C57BL/6J mice. Life Sci Alliance 4(1):e202000924

    Article  CAS  PubMed  Google Scholar 

  • Karunakaran D, Turner AW, Duchez AC, Soubeyrand S, Rasheed A, Smyth D, Cook DP, Nikpay M, Kandiah JW, Pan C, Geoffrion M, Lee R, Boytard L, Wyatt H, Nguyen MA, Lau P, Laakso M, Ramkhelawon B, Alvarez M, Pietilainen KH, Pajukanta P, Vanderhyden BC, Liu P, Berger SB, Gough PJ, Bertin J, Harper ME, Lusis AJ, McPherson R, Rayner KJ (2020) RIPK1 gene variants associate with obesity in humans and can be therapeutically silenced to reduce obesity in mice. Nat Metab 2(10):1113–1125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim N, Eum HH, Lee HO (2021) Clinical perspectives of single-cell RNA sequencing. Biomol Ther 11(8):1161

    CAS  Google Scholar 

  • Merrick D, Sakers A, Irgebay Z, Okada C, Calvert C, Morley MP, Percec I, Seale P (2019) Identification of a mesenchymal progenitor cell hierarchy in adipose tissue. Science 364(6438):eaav2501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miao Z, Alvarez M, Ko A, Bhagat Y, Rahmani E, Jew B, Heinonen S, Munoz-Hernandez LL, Herrera-Hernandez M, Aguilar-Salinas C, Tusie-Luna T, Mohlke KL, Laakso M, Pietilainen KH, Halperin E, Pajukanta P (2020) The causal effect of obesity on prediabetes and insulin resistance reveals the important role of adipose tissue in insulin resistance. PLoS Genet 16(9):e1009018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Min SY, Desai A, Yang Z, Sharma A, DeSouza T, Genga RMJ, Kucukural A, Lifshitz LM, Nielsen S, Scheele C, Maehr R, Garber M, Corvera S (2019) Diverse repertoire of human adipocyte subtypes develops from transcriptionally distinct mesenchymal progenitor cells. Proc Natl Acad Sci U S A 116(36):17970–17979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moncada R, Barkley D, Wagner F, Chiodin M, Devlin JC, Baron M, Hajdu CH, Simeone DM, Yanai I (2020) Integrating microarray-based spatial transcriptomics and single-cell RNA-seq reveals tissue architecture in pancreatic ductal adenocarcinomas. Nat Biotechnol 38(3):333–342

    Article  CAS  PubMed  Google Scholar 

  • Natarajan KN, Miao Z, Jiang M, Huang X, Zhou H, Xie J, Wang C, Qin S, Zhao Z, Wu L, Yang N, Li B, Hou Y, Liu S, Teichmann SA (2019) Comparative analysis of sequencing technologies for single-cell transcriptomics. Genome Biol 20(1):70

    Article  PubMed  PubMed Central  Google Scholar 

  • Oguri Y, Shinoda K, Kim H, Alba DL, Bolus WR, Wang Q, Brown Z, Pradhan RN, Tajima K, Yoneshiro T, Ikeda K, Chen Y, Cheang RT, Tsujino K, Kim CR, Greiner VJ, Datta R, Yang CD, Atabai K, McManus MT, Koliwad SK, Spiegelman BM, Kajimura S (2020) CD81 controls beige fat progenitor cell growth and energy balance via FAK signaling. Cell 182(3):563–577.e520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pan XX, Ruan CC, Liu XY, Kong LR, Ma Y, Wu QH, Li HQ, Sun YJ, Chen AQ, Zhao Q, Wu F, Wang XJ, Wang JG, Zhu DL, Gao PJ (2019) Perivascular adipose tissue-derived stromal cells contribute to vascular remodeling during aging. Aging Cell 18(4):e12969

    Article  PubMed  PubMed Central  Google Scholar 

  • Rajbhandari P, Arneson D, Hart SK, Ahn IS, Diamante G, Santos LC, Zaghari N, Feng AC, Thomas BJ, Vergnes L, Lee SD, Rajbhandari AK, Reue K, Smale ST, Yang X, Tontonoz P (2019) Single cell analysis reveals immune cell-adipocyte crosstalk regulating the transcription of thermogenic adipocytes. eLife 8:e49501

    Article  PubMed  PubMed Central  Google Scholar 

  • Rao A, Barkley D, Franca GS, Yanai I (2021) Exploring tissue architecture using spatial transcriptomics. Nature 596(7871):211–220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodeheffer MS, Birsoy K, Friedman JM (2008) Identification of white adipocyte progenitor cells in vivo. Cell 135(2):240–249

    Article  CAS  PubMed  Google Scholar 

  • Rondini EA, Granneman JG (2020) Single cell approaches to address adipose tissue stromal cell heterogeneity. Biochem J 477(3):583–600

    Article  CAS  PubMed  Google Scholar 

  • Rosen ED, Spiegelman BM (2014) What we talk about when we talk about fat. Cell 156(1–2):20–44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ryden M, Uzunel M, Hard JL, Borgstrom E, Mold JE, Arner E, Mejhert N, Andersson DP, Widlund Y, Hassan M, Jones CV, Spalding KL, Svahn BM, Ahmadian A, Frisen J, Bernard S, Mattsson J, Arner P (2015) Transplanted bone marrow-derived cells contribute to human adipogenesis. Cell Metab 22(3):408–417

    Article  CAS  PubMed  Google Scholar 

  • Sarvari AK, Van Hauwaert EL, Markussen LK, Gammelmark E, Marcher AB, Ebbesen MF, Nielsen R, Brewer JR, Madsen JGS, Mandrup S (2021) Plasticity of epididymal adipose tissue in response to diet-induced obesity at single-nucleus resolution. Cell Metab 33(2):437–453.e435

    Article  CAS  PubMed  Google Scholar 

  • Scherer PE (2019) The many secret lives of adipocytes: implications for diabetes. Diabetologia 62(2):223–232

    Article  PubMed  Google Scholar 

  • Schwalie PC, Dong H, Zachara M, Russeil J, Alpern D, Akchiche N, Caprara C, Sun W, Schlaudraff KU, Soldati G, Wolfrum C, Deplancke B (2018) A stromal cell population that inhibits adipogenesis in mammalian fat depots. Nature 559(7712):103–108

    Article  CAS  PubMed  Google Scholar 

  • Shamsi F, Piper M, Ho LL, Huang TL, Gupta A, Streets A, Lynes MD, Tseng YH (2021) Vascular smooth muscle-derived Trpv1(+) progenitors are a source of cold-induced thermogenic adipocytes. Nat Metab 3(4):485–495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shao M, Vishvanath L, Busbuso NC, Hepler C, Shan B, Sharma AX, Chen S, Yu X, An YA, Zhu Y, Holland WL, Gupta RK (2018) De novo adipocyte differentiation from Pdgfrbeta(+) preadipocytes protects against pathologic visceral adipose expansion in obesity. Nat Commun 9(1):890

    Article  PubMed  PubMed Central  Google Scholar 

  • Shook BA, Wasko RR, Mano O, Rutenberg-Schoenberg M, Rudolph MC, Zirak B, Rivera-Gonzalez GC, Lopez-Giraldez F, Zarini S, Rezza A, Clark DA, Rendl M, Rosenblum MD, Gerstein MB, Horsley V (2020) Dermal adipocyte lipolysis and myofibroblast conversion are required for efficient skin repair. Cell Stem Cell 26(6):880–895.e886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Slyper M, Porter CBM, Ashenberg O, Waldman J, Drokhlyansky E, Wakiro I, Smillie C, Smith-Rosario G, Wu J, Dionne D, Vigneau S, Jane-Valbuena J, Tickle TL, Napolitano S, Su MJ, Patel AG, Karlstrom A, Gritsch S, Nomura M, Waghray A, Gohil SH, Tsankov AM, Jerby-Arnon L, Cohen O, Klughammer J, Rosen Y, Gould J, Nguyen L, Hofree M, Tramontozzi PJ, Li B, Wu CJ, Izar B, Haq R, Hodi FS, Yoon CH, Hata AN, Baker SJ, Suva ML, Bueno R, Stover EH, Clay MR, Dyer MA, Collins NB, Matulonis UA, Wagle N, Johnson BE, Rotem A, Rozenblatt-Rosen O, Regev A (2020) A single-cell and single-nucleus RNA-Seq toolbox for fresh and frozen human tumors. Nat Med 26(5):792–802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song A, Dai W, Jang MJ, Medrano L, Li Z, Zhao H, Shao M, Tan J, Li A, Ning T, Miller MM, Armstrong B, Huss JM, Zhu Y, Liu Y, Gradinaru V, Wu X, Jiang L, Scherer PE, Wang QA (2020) Low- and high-thermogenic brown adipocyte subpopulations coexist in murine adipose tissue. J Clin Invest 130(1):247–257

    Article  CAS  PubMed  Google Scholar 

  • Spaethling JM, Sanchez-Alavez M, Lee J, Xia FC, Dueck H, Wang W, Fisher SA, Sul JY, Seale P, Kim J, Bartfai T, Eberwine J (2016) Single-cell transcriptomics and functional target validation of brown adipocytes show their complex roles in metabolic homeostasis. FASEB J 30(1):81–92

    Article  CAS  PubMed  Google Scholar 

  • Spalding KL, Arner E, Westermark PO, Bernard S, Buchholz BA, Bergmann O, Blomqvist L, Hoffstedt J, Naslund E, Britton T, Concha H, Hassan M, Ryden M, Frisen J, Arner P (2008) Dynamics of fat cell turnover in humans. Nature 453(7196):783–787

    Article  CAS  PubMed  Google Scholar 

  • Spallanzani RG, Zemmour D, Xiao T, Jayewickreme T, Li C, Bryce PJ, Benoist C, Mathis D (2019) Distinct immunocyte-promoting and adipocyte-generating stromal components coordinate adipose tissue immune and metabolic tenors. Sci Immunol 4(35):eaaw3658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun K, Kusminski CM, Scherer PE (2011) Adipose tissue remodeling and obesity. J Clin Invest 121(6):2094–2101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun W, Dong H, Balaz M, Slyper M, Drokhlyansky E, Colleluori G, Giordano A, Kovanicova Z, Stefanicka P, Balazova L, Ding L, Husted AS, Rudofsky G, Ukropec J, Cinti S, Schwartz TW, Regev A, Wolfrum C (2020) snRNA-seq reveals a subpopulation of adipocytes that regulates thermogenesis. Nature 587(7832):98–102

    Article  CAS  PubMed  Google Scholar 

  • Suwandhi L, Altun I, Karlina R, Miok V, Wiedemann T, Fischer D, Walzthoeni T, Lindner C, Bottcher A, Heinzmann SS, Israel A, Khalil A, Braun A, Pramme-Steinwachs I, Burtscher I, Schmitt-Kopplin P, Heinig M, Elsner M, Lickert H, Theis FJ, Ussar S (2021) Asc-1 regulates white versus beige adipocyte fate in a subcutaneous stromal cell population. Nat Commun 12(1):1588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tabula Muris Consortium, Overall Coordination, Logistical Coordination, Organ Collection and Processing, Library Preparation and Sequencing, Computational Data Analysis, Cell Type Annotation, Writing Group, Supplemental Text Writing Group, Principal Investigators (2018) Single-cell transcriptomics of 20 mouse organs creates a Tabula Muris. Nature 562(7727):367–372

    Article  Google Scholar 

  • Tanay A, Regev A (2017) Scaling single-cell genomics from phenomenology to mechanism. Nature 541(7637):331–338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Hauwaert EL, Gammelmark E, Sarvari AK, Larsen L, Nielsen R, Madsen JGS, Mandrup S (2021) Isolation of nuclei from mouse white adipose tissues for single-nucleus genomics. STAR Protoc 2(3):100612

    Article  PubMed  PubMed Central  Google Scholar 

  • Vijay J, Gauthier MF, Biswell RL, Louiselle DA, Johnston JJ, Cheung WA, Belden B, Pramatarova A, Biertho L, Gibson M, Simon MM, Djambazian H, Staffa A, Bourque G, Laitinen A, Nystedt J, Vohl MC, Fraser JD, Pastinen T, Tchernof A, Grundberg E (2020) Single-cell analysis of human adipose tissue identifies depot and disease specific cell types. Nat Metab 2(1):97–109

    Article  PubMed  Google Scholar 

  • Wang S, Cao S, Arhatte M, Li D, Shi Y, Kurz S, Hu J, Wang L, Shao J, Atzberger A, Wang Z, Wang C, Zang W, Fleming I, Wettschureck N, Honore E, Offermanns S (2020) Adipocyte Piezo1 mediates obesogenic adipogenesis through the FGF1/FGFR1 signaling pathway in mice. Nat Commun 11(1):2303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weinstock A, Brown EJ, Garabedian ML, Pena S, Sharma M, Lafaille J, Moore KJ, Fisher EA (2019) Single-cell RNA sequencing of visceral adipose tissue leukocytes reveals that caloric restriction following obesity promotes the accumulation of a distinct macrophage population with features of phagocytic cells. Immunometabolism 1:e190008

    PubMed  PubMed Central  Google Scholar 

  • Wernstedt Asterholm I, Tao C, Morley TS, Wang QA, Delgado-Lopez F, Wang ZV, Scherer PE (2014) Adipocyte inflammation is essential for healthy adipose tissue expansion and remodeling. Cell Metab 20(1):103–118

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Shao M, Hepler C, Zi Z, Zhao S, An YA, Zhu Y, Ghaben AL, Wang MY, Li N, Onodera T, Joffin N, Crewe C, Zhu Q, Vishvanath L, Kumar A, Xing C, Wang QA, Gautron L, Deng Y, Gordillo R, Kruglikov I, Kusminski CM, Gupta RK, Scherer PE (2019) Dermal adipose tissue has high plasticity and undergoes reversible dedifferentiation in mice. J Clin Invest 129(12):5327–5342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Niklas Mejhert or Mikael Rydén .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mejhert, N., Rydén, M. (2022). Insights from Studies of White Adipose Tissue Using Single-Cell Approaches. In: Eckel, J., Clément, K. (eds) From Obesity to Diabetes. Handbook of Experimental Pharmacology, vol 274. Springer, Cham. https://doi.org/10.1007/164_2021_578

Download citation

Publish with us

Policies and ethics