Skip to main content

Standardised Reconstructed Skin Models in Toxicology and Pharmacology: State of the Art and Future Development

  • Chapter
  • First Online:
Organotypic Models in Drug Development

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 265))

Abstract

Three-dimensional (3D) reconstructed human skin (RhS) models featuring fully-differentiated characteristics of in vivo human epidermis have been known for almost 40 years. In this chapter, the topic of commercial in vitro tissue models is described, taking RhS models as an example. The need for highly standardised models is evident for regulatory testing purposes, e.g. the classification and labelling of chemicals and formulations, as well as for pharmacology-oriented research and drug development. Following the standardisation of RhS model production by commercial developers, international validation studies and regulatory acceptance, 3D RhS models are now used globally in both industrial and academic research laboratories. Industrial production of standardised 3D RhS models involves GMP-compliant processes together with ISO 9001 documentation in order to control and ensure reproducibility and quality. Key biological, functional, and performance features that are addressed in industrial production include barrier properties, histological and immunohistochemical characterisation, lipid profile characterisation, and tissue viability before and after transport. An up-to-date survey of commercial RhS tissue producers and the regulatory acceptance status of major safety, hazard, and efficacy assays currently available to chemical and pharmaceutical industries is presented in this chapter. Safety and ethical concerns related to the use of human tissue in the industrial production of RhS models are discussed. Finally, innovative approaches to the production of standardised 3D RhS models including automated production, development of more representative 3D RhS models using advanced additive manufacturing tools, microfluidics technologies, and bioprinting are presented. The future outlook for 3D RhS models includes a prevalence of high-quality models which will be fabricated by end-users rather than commercial producers. These will overcome problems with shipments and customs clearance that many users still face when buying RhS from overseas commercial suppliers. Open-source technologies and commercial components for “do-it-yourself” RhS will significantly change the skin model market as well as regulatory acceptance of open-source models during the next decade. All of these developments and improvements will together allow more widespread use of in vitro RhS models for broader application as animal replacements in areas ranging from industrial and regulatory toxicology and pharmacology, to drug development and personalised medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alépée N, Tornier C, Robert C, Amsellem C, Roux MH, Doucet O, Pachot J, Méloni M, de Brugerolle de Fraissinette A (2010) A catch-up validation study on reconstructed human epidermis (Skinethic RhE) for full replacement of the draize skin irritation test. Toxicol In Vitro 24:257–266

    Article  PubMed  CAS  Google Scholar 

  • Annon (2018) Poietis: 3D and 4D bioprinting of skin tissue and hair. https://www.hairlosscure2020.com/poietis-3d-and-4d-bioprinting-of-skin-tissue-and-hair/

  • Augustin C, Collombel C, Damour O (1995) Development of a kit for predicting cutaneous toxicity in vitro using 3D dermal equivalent: phase 1 reproducibility of dermal equivalent. J Cell Eng:58–62

    Google Scholar 

  • BASF (2019) BASF and CTIbiotech to develop first 3D bioprinted human reconstructed skin including immune macrophages. Accessed 16 May 2019. https://www.basf.com/global/en/media/news-releases/2019/09/p-19-318.html

  • Bell E, Rosenberg M, Kemp P, Gay R, Green GD, Muthukumaran N, Nolte C (1991) Recipes for reconstituting skin. J Biomech Eng 113:113–119

    Article  CAS  PubMed  Google Scholar 

  • Boelsma E, Gibbs S, Faller C, Ponec M (2000) Characterization and comparison of reconstructed skin models: morphological and immunohistochemical evaluation. Acta Derm Venereol 80:82–88

    CAS  PubMed  Google Scholar 

  • Bouwstra J, Gooris G (2010) The lipid organisation in human stratum corneum and model systems. Open Dermatol J 4:10–13

    CAS  Google Scholar 

  • Bouwstra JA, Ponec M (2006) The skin barrier in healthy and diseased state. Biochim Biophys Acta 1758:2080–2095

    Article  CAS  PubMed  Google Scholar 

  • Cannon CL, Neal PJ, Southee JA, Kubilus J, Klausner M (1994) New epidermal model for dermal irritancy testing. Toxicol In Vitro 8:889–891

    Article  CAS  PubMed  Google Scholar 

  • De Jong WH, Hoffmann S, Lee M, Kandárová H, Pellevoisin C, Haishima Y, Rollins B, Zdawczyk A, Willoughby J, Bachelor M et al (2018) Round robin study to evaluate the reconstructed human epidermis (RhE) model as an in vitro skin irritation test for detection of irritant activity in medical device extracts. Toxicol In Vitro 50:439–449

    Article  PubMed  CAS  Google Scholar 

  • Derr K, Zou J, Luo K, Song MJ, Sittampalam GS, Zhou C, Michael S, Ferrer M, Derr P (2019) Fully three-dimensional bioprinted skin equivalent constructs with validated morphology and barrier function. Tissue Eng Part C Methods 25:334–343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Desprez B, Barroso J, Griesinger C, Kandárová H, Alépée N, Fuchs HW (2015) Two novel prediction models improve predictions of skin corrosive sub-categories by test methods of OECD test guideline no. 431. Toxicol In Vitro 29:2055–2080

    Article  CAS  PubMed  Google Scholar 

  • Fentem JH, Archer GE, Balls M, Botham PA, Curren RD, Earl LK, Esdaile DJ, Holzhütter HG, Liebsch M (1998) The ECVAM international validation study on in vitro tests for skin corrosivity. 2. Results and evaluation by the management team. Toxicol In Vitro 12:483–524

    Article  CAS  PubMed  Google Scholar 

  • Green H, Kehinde O, Thomas J (1979) Growth of cultured human epidermal cells into multiple epithelia suitable for grafting. Proc Natl Acad Sci U S A 76:5665–5668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Groeber F, Holeiter M, Hampel M, Hinderer S, Schenke-Layland K (2011) Skin tissue engineering – in vivo and in vitro applications. Adv Drug Deliv Rev 63:352–366

    Article  CAS  PubMed  Google Scholar 

  • Groeber F, Engelhardt L, Egger S, Werthmann H, Monaghan M, Walles H, Hansmann J (2015) Impedance spectroscopy for the non-destructive evaluation of in vitro epidermal models. Pharm Res 32:1845–1854

    Article  CAS  PubMed  Google Scholar 

  • Gstraunthaler G (2003) Alternatives to the use of fetal bovine serum: serum-free cell culture. ALTEX 20:275–281

    PubMed  Google Scholar 

  • Hayden P, Bachelor M, Ayehunie S, Letasiova S, Kaluzhny Y, Kandarova H (2015) Application of MatTek in vitro reconstructed human skin models for safety, efficacy screening, and basic pre-clinical research. Appl In Vitro Toxicol 1:226–233

    Article  Google Scholar 

  • Hayden P, Bachelor M, Klausner M, Kandarova H (2016) Predicting organ toxicity in vitro: dermal toxicity. In: Will Y, McDuffie J, Olaharski A, Jeffy B (eds) Drug discovery toxicology: from target assessment to translational biomarkers. Wiley, Hoboken, pp 182–192

    Chapter  Google Scholar 

  • Hu T, Kaluzhny Y, Mun GC, Barnett B, Karetsky V, Wilt N, Klausner M, Curren RD, Aardema MJ (2009) Intralaboratory and interlaboratory evaluation of the epiderm 3d human reconstructed skin micronucleus (RSMN) assay. Mutat Res 673:100–108

    Article  CAS  PubMed  Google Scholar 

  • ICH (2013) ICH harmonised tripartite guideline photosafety evaluation of pharmaceuticals s10, ISO 2016. ISO 10993-10:2010 biological evaluation of medical devices – part 10: tests for irritation and skin sensitization. In: ISO (ed)

    Google Scholar 

  • Jean J, Lapointe M, Soucy J, Pouliot R (2009) Development of an in vitro psoriatic skin model by tissue engineering. J Dermatol Sci 53:19–25

    Article  CAS  PubMed  Google Scholar 

  • Kaluzhny Y, Kandárová H, Handa Y, DeLuca J, Truong T, Hunter A, Kearney P, d’Argembeau-Thornton L, Klausner M (2015) The EpiOcular eye irritation test (EIT) for hazard identification and labelling of eye irritating chemicals: protocol optimisation for solid materials and the results after extended shipment. Altern Lab Anim 43:101–127

    Article  PubMed  Google Scholar 

  • Kandarova H (2006) Evaluation and validation of reconstructed human skin models as alternatives to animal tests in regulatory toxicology. PhD thesis, Defended in Berlin 17.07.2006: Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin

    Google Scholar 

  • Kandarova H, Liebsch M (2017) The epidermTM phototoxicity test (epidermTM H3D-PT). In: Eskes C, van Vliet E, Maibach H (eds) Alternatives for dermal toxicity testing. Springer, Berlin, pp 483–503

    Chapter  Google Scholar 

  • Kandárová H, Liebsch M, Schmidt E, Genschow E, Traue D, Spielmann H, Meyer K, Steinhoff C, Tornier C, De Wever B et al (2006a) Assessment of the skin irritation potential of chemicals by using the SkinEthic reconstructed human epidermal model and the common skin irritation protocol evaluated in the ECVAM skin irritation validation study. Altern Lab Anim 34:393–406

    Article  PubMed  Google Scholar 

  • Kandárová H, Liebsch M, Spielmann H, Genschow E, Schmidt E, Traue D, Guest R, Whittingham A, Warren N, Gamer AO et al (2006b) Assessment of the human epidermis model Skinethic RhE for in vitro skin corrosion testing of chemicals according to new oecd tg 431. Toxicol In Vitro 20:547–559

    Article  PubMed  CAS  Google Scholar 

  • Kandárová H, Hayden P, Klausner M, Kubilus J, Kearney P, Sheasgreen J (2009) In vitro skin irritation testing: improving the sensitivity of the EpiDerm skin irritation test protocol. Altern Lab Anim 37:671–689

    Article  PubMed  Google Scholar 

  • Kandarova H, Willoughby JA, De Jong WH, Letasiova S, Milasova T, Bachelor MA, Breyfogle B, Handa Y, De la Fonteyne L, Coleman KP (2018) Pre-validation of an in vitro skin irritation test for medical devices using the reconstructed human tissue model epidermTM. Toxicol In Vitro 50:407–417

    Article  CAS  PubMed  Google Scholar 

  • Lee OJ, Ju HW, Kim JH, Lee JM, Ki CS, Moon BM, Park HJ, Sheikh FA, Park CH (2014) Development of artificial dermis using 3D electrospun silk fibroin nanofiber matrix. J Biomed Nanotechnol 10:1294–1303

    Article  CAS  PubMed  Google Scholar 

  • Liebsch M, Traue D, Barrabas C, Spielmann H, Gerberick GF, Cruse L, Diembeck W, Pfannenbecker U, Spieker J, Holzhütter HG, Brantom P, Aspin P, Southee J (1999) Prevalidation of the EpiDerm phototoxicity test. In: Clark D, Lisansky S, Macmillan R (eds) Proceedings of the second international scientific conference organised by the European cosmetic industry. CPL Press, Newbury, pp 160–166

    Google Scholar 

  • Liebsch M, Traue D, Barrabas C, Spielmann H, Uphill P, Wilkins S, McPherson JP, Wiemann C, Kaufmann T, Remmele M et al (2000) The ECVAM prevalidation study on the use of epiderm for skin corrosivity testing. Altern Lab Anim 28:371–401

    Article  CAS  PubMed  Google Scholar 

  • Ma X, Liu J, Zhu W, Tang M, Lawrence N, Yu C, Gou M, Chen S (2018) 3D bioprinting of functional tissue models for personalized drug screening and in vitro disease modeling. Adv Drug Deliv Rev 132:235–251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • MacNeil S (2007) Progress and opportunities for tissue-engineered skin. Nature 445:874–880

    Article  CAS  PubMed  Google Scholar 

  • Marengo K, Sellman Z, Kassab R, Long NF, Pathan SG, Stolper A, Klausner M, Letasiova S, Phaneuf MD, Hayden PJ (2019) Full-thickness human skin and airway tissue models produced using electrospun scaffolds. EUSAAT 2019; Linz, Austria. ALTEX Proceedings

    Google Scholar 

  • Marino D, Luginbühl J, Scola S, Meuli M, Reichmann E (2014) Bioengineering dermo-epidermal skin grafts with blood and lymphatic capillaries. Sci Transl Med 6:221ra214

    Article  CAS  Google Scholar 

  • Marques AP, Pirraco RP, Cerqueira MT, Reis RL (2018) Skin tissue models. Elsevier/Academic Press, London

    Google Scholar 

  • Naughton G, Jacob L, Naughton B (1989) A physiological skin model for in vitro toxicity studies. In: Goldberg A (ed) In vitro toxicology: mechanisms and new technology. Mary A. Liebert Inc., New York, pp 183–189

    Google Scholar 

  • O’Connor N, Mulliken J, Banks-Schlegel S, Kehinde O, Green H (1981) Grafting of burns with cultured epithelium prepared from autologous epidermal cells. Lancet 1(8211):75–78

    Article  Google Scholar 

  • OECD (2004) Test no. 431: in vitro skin corrosion: human skin model test. OECD 2009. In vitro skin irritation: reconstructed human epidermis test method

    Google Scholar 

  • Pedrosa TDN, Catarino CM, Pennacchi PC, Assis SR, Gimenes F, Consolaro MEL, Barros SBM, Maria-Engler SS (2017) A new reconstructed human epidermis for in vitro skin irritation testing. Toxicol In Vitro 42:31–37

    Article  CAS  PubMed  Google Scholar 

  • Pfuhler S, Pirow R, Downs TR, Haase A, Hewitt N, Luch A, Merkel M, Petrick C, Said A, Schäfer-Korting M et al (2020) Validation of the 3D reconstructed human skin comet assay, an animal-free alternative for following-up positive results from standard in vitro genotoxicity assays. Mutagenesis 10:geaa009. https://doi.org/10.1093/mutage/geaa009

    Article  Google Scholar 

  • Pfuhler S, Barnett B, Downs T, Hewitt N, Hoffman S et al (2021) Validation of the 3d reconstructed human skin micronucleus (RSMN) assay, an animal-free alternative for following-up positive results from standard in vitro genotoxicity assays. Mutagenesis (inpress)

    Google Scholar 

  • Ponec M, Weerheim A, Kempenaar J, Mulder A, Gooris GS, Bouwstra J, Mommaas AM (1997) The formation of competent barrier lipids in reconstructed human epidermis requires the presence of vitamin c. J Invest Dermatol 109:348–355

    Article  CAS  PubMed  Google Scholar 

  • Ponec M, Boelsma E, Weerheim A, Mulder A, Bouwstra J, Mommaas M (2000) Lipid and ultrastructural characterization of reconstructed skin models. Int J Pharm 203:211–225

    Article  CAS  PubMed  Google Scholar 

  • Ponec M, Boelsma E, Gibbs S, Mommaas M (2002) Characterization of reconstructed skin models. Skin Pharmacol Appl Skin Physiol 15(Suppl 1):4–17

    Article  CAS  PubMed  Google Scholar 

  • Powell HB, Boyce ST (2009) Engineered human skin fabricated using electrospun collagen –pcl blends: morphogenesis and mechanical properties. Tissue Eng Part A 15(8):2177–2187

    Article  CAS  PubMed  Google Scholar 

  • Prunieras M (1979) Epidermal cell cultures as models for living epidermis. J Invest Dermatol 73:135–137

    Article  CAS  PubMed  Google Scholar 

  • Pruniéras M, Régnier M, Woodley D (1983) Methods for cultivation of keratinocytes with an air-liquid interface. J Invest Dermatol 81(Suppl 1):28s–33s

    Article  PubMed  Google Scholar 

  • Regnier M, Prunieras M, Woodley D (1981) Growth and differentiation of adult human epidermal cells on dermal substrate. Front Matrix Biol 9:4–35

    Google Scholar 

  • Reisinger K, Blatz V, Brinkmann J, Downs TR, Fischer A, Henkler F, Hoffmann S, Krul C, Liebsch M, Luch A et al (2018) Validation of the 3d skin comet assay using full thickness skin models: transferability and reproducibility. Mutat Res Genet Toxicol Environ Mutagen 827:27–41

    Article  CAS  PubMed  Google Scholar 

  • Rispin A, Stitzel K, Harbell J, Klausner M (2006) Ensuring quality of in vitro alternative test methods: current practice. Regul Toxicol Pharmacol 45:97–103

    Article  CAS  PubMed  Google Scholar 

  • Rosdy M, Clauss LC (1990) Terminal epidermal differentiation of human keratinocytes grown in chemically defined medium on inert filter substrates at the air-liquid interface. J Invest Dermatol 95:409–414

    Article  CAS  PubMed  Google Scholar 

  • Roy B, Simard M, Lorthois I, Bélanger A, Maheux M, Duque-Fernandez A, Rioux G, Simard P, Deslauriers M, Masson LC, Morin A (2018) In vitro models of psoriasis. In: Marques AP, Pirraco RP, Cerqueira MT, Reis RL (eds) Skin tissue models, pp 103–128. https://doi.org/10.1016/B978-0-12-810545-0.00005-X

    Chapter  Google Scholar 

  • Russon (2015) L’Oreal partnering with Organovo to develop 3D printed human skin tissue for cosmetics testing. International Business Times; [Accessed 11 June 2020]. https://www.ibtimes.co.uk/loreal-partnering-organovo-develop-3d-printed-human-skin-tissue-cosmetics-testing-1500171

  • Sarkiri M, Fox SC, Fratila-Apachitei LE, Zadpoor AA (2019) Bioengineered skin intended for skin disease modeling. Int J Mol Sci 20:1407

    Article  CAS  PubMed Central  Google Scholar 

  • Semlin L, Schäfer-Korting M, Borelli C, Korting HC (2011) In vitro models for human skin disease. Drug Discov Today 16:132–139

    Article  CAS  PubMed  Google Scholar 

  • Simard M, Julien P, Fradette J, Pouliot R (2019) Modulation of the lipid profile of reconstructed skin substitutes after essential fatty acid supplementation affects testosterone permeability. Cell 8:1142

    Article  CAS  Google Scholar 

  • Spielmann H, Hoffmann S, Liebsch M, Botham P, Fentem JH, Eskes C, Roguet R, Cotovio J, Cole T, Worth A et al (2007) The ECVAM international validation study on in vitro tests for acute skin irritation: report on the validity of the EPISKIN and EpiDerm assays and on the skin integrity function test. Altern Lab Anim 35:559–601

    Article  CAS  PubMed  Google Scholar 

  • Tinois E, Tiollier J, Gaucherand M, Dumas H, Tardy M, Thivolet J (1991) In vitro and post-transplantation differentiation of human keratinocytes grown on the human type iv collagen film of a bilayered dermal substitute. Exp Cell Res 193:310–319

    Article  CAS  PubMed  Google Scholar 

  • Yun YE, Jung YJ, Choi YJ, Choi JS, Cho YW (2018) Artificial skin models for animal-free testing. J Pharm Investig 48:215–223

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helena Kandarova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kandarova, H., Hayden, P.J. (2020). Standardised Reconstructed Skin Models in Toxicology and Pharmacology: State of the Art and Future Development. In: Schäfer-Korting, M., Stuchi Maria-Engler, S., Landsiedel, R. (eds) Organotypic Models in Drug Development. Handbook of Experimental Pharmacology, vol 265. Springer, Cham. https://doi.org/10.1007/164_2020_417

Download citation

Publish with us

Policies and ethics