Skip to main content

Does GEC1 Enhance Expression and Forward Trafficking of the Kappa Opioid Receptor (KOR) via Its Ability to Interact with NSF Directly?

  • Chapter
  • First Online:
  • 1286 Accesses

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 271))

Abstract

We reported previously that GEC1 (glandular epithelial cell 1), a member of microtubule-associated proteins (MAPs), interacted directly with the C-tail of KOR (KCT) and tubulin and enhanced cell surface expression of KOR in CHO cells by facilitating its trafficking along the export pathway. Two GEC1 analogs (GABARAP and GATE16) were also shown to increase KOR expression. In addition, to understand the underlying mechanism, we demonstrated that N-ethylmaleimide-sensitive factor (NSF), an essential component for membrane fusion, co-immunoprecipitated with GEC1 from brain extracts. In this study, using pull-down techniques, we have found that (1) GEC1 interacts with NSF directly and prefers the ADP-bound NSF to the ATP-bound NSF; (2) D1 and/or D2 domain(s) of NSF interact with GEC1, but the N domain of NSF does not; (3) NSF does not interact with KCT directly, but forms a protein complex with KCT via GEC1; (4) NSF and/or α-SNAP do not affect KCT-GEC1 interaction. Thus, GEC1 (vs the α-SNAP/SNAREs complex) binds to NSF in distinctive ways in terms of the ADP- or ATP-bound form and domains of NSF involved. In conclusion, GEC1 may, via its direct interactions with KOR, NSF, and tubulin, enhance trafficking and fusion of KOR-containing vesicles selectively along the export pathway, which leads to increase in surface expression of KOR. GABARAP and GATE16 may enhance KOR expression in a similar way.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

AAA:

ATPases associated with diverse cellular activities

Atg8:

The yeast autophagy protein 8

CHO-FLAG-KOR:

CHO cell line stably expressing FLAG-hKOR

DOR:

Delta opioid receptor

ER:

Endoplasmic reticulum

GABARAP:

GABAA receptor-associated protein

GABARAPL1:

GABAA receptor-associated protein like 1

GATE16:

Golgi-associated ATPase enhancer of 16 kDa

GEC1:

Glandular epithelial cell 1

GOS-28:

Golgi-specific v-SNARE of 28 kDa

GST:

Glutathione S-transferase

hKOR:

Human KOR

KCT:

KOR C-tail

KOR:

Kappa opioid receptor

LC3:

Light chain 3 of MAP 1A/1B

MAPs:

Microtubule-associated proteins

MOR:

Mu opioid receptor

NSF:

N-ethylmaleimide-sensitive factor

SNARE:

Soluble N-ethylmaleimide sensitive factor attachment protein receptor

α-SNAP:

Soluble NSF attachment protein

References

  • Boeske A, Schwarten M, Ma P, Tusche M, Motter J, Moller C, Neudecker P, Hoffmann S, Willbold D (2017) Direct binding to GABARAP family members is essential for HIV-1 Nef plasma membrane localization. Sci Rep 7:5979

    Article  Google Scholar 

  • Chen L, Wang H, Vicini S, Olsen RW (2000) The gamma-aminobutyric acid type A (GABAA) receptor-associated protein (GABARAP) promotes GABAA receptor clustering and modulates the channel kinetics. Proc Natl Acad Sci U S A 97:11557–11562

    Article  CAS  Google Scholar 

  • Chen C, Li JG, Chen Y, Huang P, Wang Y, Liu-Chen LY (2006) GEC1 interacts with the kappa opioid receptor and enhances expression of the receptor. J Biol Chem 281:7983–7993

    Article  CAS  Google Scholar 

  • Chen Y, Chen C, Kotsikorou E, Lynch DL, Reggio PH, Liu-Chen LY (2009) GEC1-kappa opioid receptor binding involves hydrophobic interactions: GEC1 has chaperone-like effect. J Biol Chem 284:1673–1685

    Article  CAS  Google Scholar 

  • Chen C, Wang Y, Huang P, Liu-Chen LY (2011) Effects of C-terminal modifications of GEC1 protein and gamma-aminobutyric acid type A (GABA(A)) receptor-associated protein (GABARAP), two microtubule-associated proteins, on kappa opioid receptor expression. J Biol Chem 286:15106–15115

    Article  CAS  Google Scholar 

  • Cook JL, Re RN, deHaro DL, Abadie JM, Peters M, Alam J (2008) The trafficking protein GABARAP binds to and enhances plasma membrane expression and function of the angiotensin II type 1 receptor. Circ Res 102:1539–1547

    Article  CAS  Google Scholar 

  • Elazar Z, Scherz-Shouval R, Shorer H (2003) Involvement of LMA1 and GATE-16 family members in intracellular membrane dynamics. Biochim Biophys Acta 1641:145–156

    Article  CAS  Google Scholar 

  • Green F, O'Hare T, Blackwell A, Enns CA (2002) Association of human transferrin receptor with GABARAP. FEBS Lett 518:101–106

    Article  CAS  Google Scholar 

  • Kanematsu T, Mizokami A, Watanabe K, Hirata M (2007) Regulation of GABA(A)-receptor surface expression with special reference to the involvement of GABARAP (GABA(A) receptor-associated protein) and PRIP (phospholipase C-related, but catalytically inactive protein). J Pharmacol Sci 104:285–292

    Article  CAS  Google Scholar 

  • Keulers TG, Schaaf MB, Peeters HJ, Savelkouls KG, Vooijs MA, Bussink J, Jutten B, Rouschop KM (2015) GABARAPL1 is required for increased EGFR membrane expression during hypoxia. Radiother Oncol 116:417–422

    Article  CAS  Google Scholar 

  • Kittler JT, Rostaing P, Schiavo G, Fritschy JM, Olsen R, Triller A, Moss SJ (2001) The subcellular distribution of GABARAP and its ability to interact with NSF suggest a role for this protein in the intracellular transport of GABA(A) receptors. Mol Cell Neurosci 18:13–25

    Article  CAS  Google Scholar 

  • Kuner T, Li Y, Gee KR, Bonewald LF, Augustine GJ (2008) Photolysis of a caged peptide reveals rapid action of N-ethylmaleimide sensitive factor before neurotransmitter release. Proc Natl Acad Sci U S A 105:347–352

    Article  CAS  Google Scholar 

  • Labonte D, Thies E, Kneussel M (2014) The kinesin KIF21B participates in the cell surface delivery of gamma2 subunit-containing GABAA receptors. Eur J Cell Biol 93:338–346

    Article  CAS  Google Scholar 

  • Lainez S, Valente P, Ontoria-Oviedo I, Estevez-Herrera J, Camprubi-Robles M, Ferrer-Montiel A, Planells-Cases R (2010) GABAA receptor associated protein (GABARAP) modulates TRPV1 expression and channel function and desensitization. FASEB J 24:1958–1970

    Article  CAS  Google Scholar 

  • Leil TA, Chen ZW, Chang CS, Olsen RW (2004) GABAA receptor-associated protein traffics GABAA receptors to the plasma membrane in neurons. J Neurosci Off J Soc Neurosci 24:11429–11438

    Article  CAS  Google Scholar 

  • Lystad AH, Ichimura Y, Takagi K, Yang Y, Pankiv S, Kanegae Y, Kageyama S, Suzuki M, Saito I, Mizushima T, Komatsu M, Simonsen A (2014) Structural determinants in GABARAP required for the selective binding and recruitment of ALFY to LC3B-positive structures. EMBO Rep 15:557–565

    Article  CAS  Google Scholar 

  • Mansuy V, Boireau W, Fraichard A, Schlick JL, Jouvenot M, Delage-Mourroux R (2004) GEC1, a protein related to GABARAP, interacts with tubulin and GABA(A) receptor. Biochem Biophys Res Commun 325:639–648

    Article  CAS  Google Scholar 

  • Mansuy-Schlick V, Tolle F, Delage-Mourroux R, Fraichard A, Risold PY, Jouvenot M (2006) Specific distribution of gabarap, gec1/gabarap Like 1, gate16/gabarap Like 2, lc3 messenger RNAs in rat brain areas by quantitative real-time PCR. Brain Res 1073-1074:83–87

    Article  CAS  Google Scholar 

  • Muller JM, Rabouille C, Newman R, Shorter J, Freemont P, Schiavo G, Warren G, Shima DT (1999) An NSF function distinct from ATPase-dependent SNARE disassembly is essential for Golgi membrane fusion. Nat Cell Biol 1:335–340

    Article  CAS  Google Scholar 

  • Muller JM, Shorter J, Newman R, Deinhardt K, Sagiv Y, Elazar Z, Warren G, Shima DT (2002) Sequential SNARE disassembly and GATE-16-GOS-28 complex assembly mediated by distinct NSF activities drives Golgi membrane fusion. J Cell Biol 157:1161–1173

    Article  Google Scholar 

  • Nagiec EE, Bernstein A, Whiteheart SW (1995) Each domain of the N-ethylmaleimide-sensitive fusion protein contributes to its transport activity. J Biol Chem 270:29182–29188

    Article  CAS  Google Scholar 

  • Nemos C, Mansuy V, Vernier-Magnin S, Fraichard A, Jouvenot M, Delage-Mourroux R (2003) Expression of gec1/GABARAPL1 versus GABARAP mRNAs in human: predominance of gec1/GABARAPL1 in the central nervous system. Brain Res Mol Brain Res 119:216–219

    Article  CAS  Google Scholar 

  • Nichols BJ, Ungermann C, Pelham HR, Wickner WT, Haas A (1997) Homotypic vacuolar fusion mediated by t- and v-SNAREs. Nature 387:199–202

    Article  CAS  Google Scholar 

  • O’Sullivan GA, Kneussel M, Elazar Z, Betz H (2005) GABARAP is not essential for GABA receptor targeting to the synapse. Eur J Neurosci 22:2644–2648

    Article  Google Scholar 

  • Pellerin I, Vuillermoz C, Jouvenot M, Ordener C, Royez M, GL A (1993) Identification and characterization of an early estrogen-regulated RNA in cultured guinea-pig endometrial cells. Mol Cell Endocrinol 90:R17–R21

    Article  CAS  Google Scholar 

  • Prinslow EA, Stepien KP, Pan YZ, Xu J, Rizo J (2019) Multiple factors maintain assembled trans-SNARE complexes in the presence of NSF and alphaSNAP. Elife 8:e38880

    Article  Google Scholar 

  • Reining SC, Gisler SM, Fuster D, Moe OW, O’Sullivan GA, Betz H, Biber J, Murer H, Hernando N (2009) GABARAP deficiency modulates expression of NaPi-IIa in renal brush-border membranes. Am J Physiol Renal Physiol 296:F1118–F1128

    Article  CAS  Google Scholar 

  • Sagiv Y, Legesse-Miller A, Porat A, Elazar Z (2000) GATE-16, a membrane transport modulator, interacts with NSF and the Golgi v-SNARE GOS-28. EMBO J 19:1494–1504

    Article  CAS  Google Scholar 

  • Thielmann Y, Weiergraber OH, Ma P, Schwarten M, Mohrluder J, Willbold D (2009) Comparative modeling of human NSF reveals a possible binding mode of GABARAP and GATE-16. Proteins 77:637–646

    Article  CAS  Google Scholar 

  • Tolle F, Risold PY, Mansuy-Schlick V, Rossi E, Boyer-Guittaut M, Fraichard A, Jouvenot M (2008) Specific regional distribution of gec1 mRNAs in adult rat central nervous system. Brain Res 1210:103–115

    Article  CAS  Google Scholar 

  • Wang H, Olsen RW (2000) Binding of the GABA(A) receptor-associated protein (GABARAP) to microtubules and microfilaments suggests involvement of the cytoskeleton in GABARAPGABA(A) receptor interaction. J Neurochem 75:644–655

    Article  CAS  Google Scholar 

  • Wang H, Bedford FK, Brandon NJ, Moss SJ, Olsen RW (1999) GABA(A)-receptor-associated protein links GABA(A) receptors and the cytoskeleton. Nature 397:69–72

    Article  CAS  Google Scholar 

  • Wang Y, Dun SL, Huang P, Chen C, Chen Y, Unterwald EM, Dun NJ, Van Bockstaele EJ, Liu-Chen LY (2006) Distribution and ultrastructural localization of GEC1 in the rat CNS. Neuroscience 140:1265–1276

    Article  CAS  Google Scholar 

  • Xin Y, Yu L, Chen Z, Zheng L, Fu Q, Jiang J, Zhang P, Gong R, Zhao S (2001) Cloning, expression patterns, and chromosome localization of three human and two mouse homologues of GABA(A) receptor-associated protein. Genomics 74:408–413

    Article  CAS  Google Scholar 

  • Yoon TY, Munson M (2018) SNARE complex assembly and disassembly. Curr Biol 28:R397–R401

    Article  CAS  Google Scholar 

  • Zhao C, Slevin JT, Whiteheart SW (2007) Cellular functions of NSF: not just SNAPs and SNAREs. FEBS Lett 581:2140–2149

    Article  CAS  Google Scholar 

  • Zhao C, Matveeva EA, Ren Q, Whiteheart SW (2010) Dissecting the N-ethylmaleimide-sensitive factor: required elements of the N and D1 domains. J Biol Chem 285:761–772

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Supported by NIH grants R01 DA17302, R01 DA041359 and P30 DA13429 (LYLC), R01 NS046242 (SWW).

Declarations of Interest: None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lee-Yuan Liu-Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Huang, P., Zhao, C., Chen, C., Whiteheart, S.W., Liu-Chen, LY. (2020). Does GEC1 Enhance Expression and Forward Trafficking of the Kappa Opioid Receptor (KOR) via Its Ability to Interact with NSF Directly?. In: Liu-Chen, LY., Inan, S. (eds) The Kappa Opioid Receptor. Handbook of Experimental Pharmacology, vol 271. Springer, Cham. https://doi.org/10.1007/164_2020_398

Download citation

Publish with us

Policies and ethics