Skip to main content

Pharmacosynthetic Deconstruction of Sleep-Wake Circuits in the Brain

  • Chapter
  • First Online:
Sleep-Wake Neurobiology and Pharmacology

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 253))

Abstract

Over the past decade, basic sleep research investigating the circuitry controlling sleep and wakefulness has been boosted by pharmacosynthetic approaches, including chemogenetic techniques using designed receptors exclusively activated by designer drugs (DREADD). DREADD offers a series of tools that selectively control neuronal activity as a way to probe causal relationship between neuronal sub-populations and the regulation of the sleep-wake cycle. Following the path opened by optogenetics, DREADD tools applied to discrete neuronal sub-populations in numerous brain areas quickly made their contribution to the discovery and the expansion of our understanding of critical brain structures involved in a wide variety of behaviors and in the control of vigilance state architecture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adamantidis A, Lüthi A (2018) Optogenetic dissection of sleep-wake states in vitro and in vivo. In: Handbook of experimental pharmacology. Springer, Berlin/Heidelberg. https://doi.org/10.1007/164_201894

    Chapter  Google Scholar 

  • Adamantidis AR, Zhang F, Aravanis AM, Deisseroth K, de Lecea L (2007) Neural substrates of awakening probed with optogenetic control of hypocretin neurons. Nature 450:420–424

    CAS  PubMed  PubMed Central  Google Scholar 

  • Alcacer C, Andreoli L, Sebastianutto I, Jakobsson J, Fieblinger T, Cenci MA (2017) Chemogenetic stimulation of striatal projection neurons modulates responses to Parkinson’s disease therapy. J Clin Invest 127:720–734

    PubMed  PubMed Central  Google Scholar 

  • Alexander GM, Rogan SC, Abbas AI, Armbruster BN, Pei Y, Allen JA, Nonneman RJ, Hartmann J, Moy SS, Nicolelis MA, McNamara JO, Roth BL (2009) Remote control of neuronal activity in transgenic mice expressing evolved G protein-coupled receptors. Neuron 63:27–39

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ambrosini MV, Giuditta A (2001) Learning and sleep: the sequential hypothesis. Sleep Med Rev 5:477–490

    PubMed  Google Scholar 

  • Anaclet C, Fuller PM (2017) Brainstem regulation of slow-wave-sleep. Curr Opin Neurobiol 44:139–143

    CAS  PubMed  PubMed Central  Google Scholar 

  • Anaclet C, Parmentier R, Ouk K, Guidon G, Buda C, Sastre J-P, Akaoka H, Sergeeva OA, Yanagisawa M, Ohtsu H, Franco P, Haas HL, Lin JS (2009) Orexin/hypocretin and histamine: distinct roles in the control. J Neurosci 29:14423–14438

    CAS  PubMed  PubMed Central  Google Scholar 

  • Anaclet C, Lin J-S, Vetrivelan R, Krenzer M, Vong L, Fuller PM, Lu J (2012) Identification and characterization of a sleep-active cell group in the rostral medullary brainstem. J Neurosci 32:17970–17976

    CAS  PubMed  PubMed Central  Google Scholar 

  • Anaclet C, Ferrari L, Arrigoni E, Bass CE, Saper CB, Lu J, Fuller PM (2014) The GABAergic parafacial zone is a medullary slow wave sleep-promoting center. Nat Neurosci 17:1217–1224

    CAS  PubMed  PubMed Central  Google Scholar 

  • Anaclet C, Pedersen NP, Ferrari LL, Venner A, Bass CE, Arrigoni E, Fuller PM (2015) Basal forebrain control of wakefulness and cortical rhythms. Nat Commun 6:1–14

    Google Scholar 

  • Armbruster BN, Li X, Pausch MH, Herlitze S, Roth BL (2007) Evolving the lock to fit the key to create a family of G protein-coupled receptors potently activated by an inert ligand. Proc Natl Acad Sci U S A 104:5163–5168

    PubMed  PubMed Central  Google Scholar 

  • Aston-Jones G, Bloom FE (1981) Activity of norepinephrine-containing locus coeruleus neurons in behaving rats anticipates fluctuations in the sleep-waking cycle. J Neurosci 1:876–886

    CAS  PubMed  PubMed Central  Google Scholar 

  • Aston-Jones G, Rajkowski J, Cohen J (1999) Role of locus coeruleus in attention and behavioral flexibility. Biol Psychiatry 46:1309–1320

    CAS  PubMed  Google Scholar 

  • Balleine BW, O’Doherty JP (2010) Human and rodent homologies in action control: corticostriatal determinants of goal-directed and habitual action. Neuropsychopharmacology 35:48–69

    PubMed  Google Scholar 

  • Bauer EP (2015) Serotonin in fear conditioning processes. Behav Brain Res 277:68–77

    CAS  PubMed  Google Scholar 

  • Bender D, Holschbach M, Stöcklin G (1994) Synthesis of n.c.a. carbon-11 labelled clozapine and its major metabolite clozapine-N-oxide and comparison of their biodistribution in mice. Nucl Med Biol 21:921–925

    CAS  PubMed  Google Scholar 

  • Berridge CW (2008) Noradrenergic modulation of arousal. Brain Res Rev 58:1–17

    CAS  PubMed  Google Scholar 

  • Bester H, Besson JM, Bernard JF (1997) Organization of efferent projections from the parabrachial area to the hypothalamus: a Phaseolus vulgaris-leucoagglutinin study in the rat. J Comp Neurol 383:245–281

    CAS  PubMed  Google Scholar 

  • Bianchi MT, Eiseman NA, Cash SS, Mietus J, Peng CK, Thomas RJ (2012) Probabilistic sleep architecture models in patients with and without sleep apnea. J Sleep Res 21:330–341

    PubMed  Google Scholar 

  • Billwiller F, Renouard L, Clement O, Fort P, Luppi PH (2017) Differential origin of the activation of dorsal and ventral dentate gyrus granule cells during paradoxical (REM) sleep in the rat. Brain Struct Funct 222:1495–1507

    PubMed  Google Scholar 

  • Bjorness TE, Greene RW (2009) Adenosine and sleep. Curr Neuropharmacol 7:238–245

    CAS  PubMed  PubMed Central  Google Scholar 

  • Blandina P, Munari L, Provensi G, Passani MB (2012) Histamine neurons in the tuberomamillary nucleus: a whole center or distinct subpopulations? Front Syst Neurosci 6:33

    PubMed  PubMed Central  Google Scholar 

  • Blumberg MS, Seelke AMH, Lowen SB, Karlsson KAE (2005) Dynamics of sleep-wake cyclicity in developing rats. Proc Natl Acad Sci U S A 102:14860–14864

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bolam JP, Ellender TJ (2016) Histamine and the striatum. Neuropharmacology 106:74–84

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bonnavion P, De Lecea L (2010) Hypocretins in the control of sleep and wakefulness. Curr Neurol Neurosci Rep 10:174–179

    CAS  PubMed  Google Scholar 

  • Bonnavion P, Jackson AC, Carter ME, de Lecea L (2015) Antagonistic interplay between hypocretin and leptin in the lateral hypothalamus regulates stress responses. Nat Commun 6:6266

    CAS  PubMed  Google Scholar 

  • Bonnavion P, Mickelsen LE, Fujita A, de Lecea L, Jackson AC (2016) Hubs and spokes of the lateral hypothalamus: cell types, circuits and behaviour. J Physiol 594:6443–6462

    CAS  PubMed  PubMed Central  Google Scholar 

  • Boucetta S, Cisse Y, Mainville L, Morales M, Jones BE (2014) Discharge profiles across the sleep-waking cycle of identified cholinergic, GABAergic, and glutamatergic neurons in the pontomesencephalic tegmentum of the rat. J Neurosci 34:4708–4727

    PubMed  PubMed Central  Google Scholar 

  • Boyce R, Glasgow SD, Williams S, Adamantidis A (2016) Sleep research: causal evidence for the role of REM sleep theta rhythm in contextual memory consolidation. Science 352:812–816

    CAS  PubMed  Google Scholar 

  • Brancaccio M, Maywood ES, Chesham JE, Loudon ASI, Hastings MH (2013) A Gq-Ca2+ axis controls circuit-level encoding of circadian time in the suprachiasmatic nucleus. Neuron 78:714–728

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brown RE, McKenna JT (2015) Turning a negative into a positive: ascending GABAergic control of cortical activation and arousal. Front Neurol 6:135

    PubMed  PubMed Central  Google Scholar 

  • Brown RE, Basheer R, McKenna JT, Strecker RE, McCarley RW (2012) Control of sleep and wakefulness. Physiol Rev 92:1087–1187

    CAS  PubMed  Google Scholar 

  • Buzsáki G, Schomburg EW (2015) What does gamma coherence tell us about inter-regional neural communication? Nat Neurosci 18:484–489

    PubMed  PubMed Central  Google Scholar 

  • Carter ME, Yizhar O, Chikahisa S, Nguyen H, Adamantidis A, Nishino S, Deisseroth K, de Lecea L (2010) Tuning arousal with optogenetic modulation of locus coeruleus neurons. Nat Neurosci 13:1526–1533

    CAS  PubMed  PubMed Central  Google Scholar 

  • Carter ME, Brill J, Bonnavion P, Huguenard JR, Huerta R, de Lecea L (2012) Mechanism for hypocretin-mediated sleep-to-wake transitions. Proc Natl Acad Sci U S A 109:E2635–E2644

    CAS  PubMed  PubMed Central  Google Scholar 

  • Carvalho Poyraz F, Holzner E, Bailey MR, Meszaros J, Kenney L, Kheirbek MA, Balsam PD, Kellendonk C (2016) Decreasing striatopallidal pathway function enhances motivation by energizing the initiation of goal-directed action. J Neurosci 36:5988–6001

    PubMed  PubMed Central  Google Scholar 

  • Chang WH, Lin SK, Lane HY, Wei FC, Hu WH, Lam YWF, Jann MW (1998) Reversible metabolism of clozapine and clozapine N-oxide in schizophrenic patients. Prog Neuropsychopharmacol Biol Psychiatry 22:723–739

    CAS  PubMed  Google Scholar 

  • Chen X, Choo H, Huang XP, Yang X, Stone O, Roth BL, Jin J (2015) The first structure-activity relationship studies for designer receptors exclusively activated by designer drugs. ACS Chem Nerosci 6:476–484

    CAS  Google Scholar 

  • Chen L, Yin D, Wang TX, Guo W, Dong H, Xu Q, Luo YJ, Cherasse Y, Lazarus M, Qiu ZL, Lu J, Qu WM, Huang ZL (2016) Basal forebrain cholinergic neurons primarily contribute to inhibition of electroencephalogram delta activity, rather than inducing behavioral wakefulness in mice. Neuropsychopharmacology 41:2133–2146

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen MC, Vetrivelan R, Guo CN, Chang C, Fuller PM, Lu J (2017) Ventral medullary control of rapid eye movement sleep and atonia. Exp Neurol 290:53–62

    PubMed  PubMed Central  Google Scholar 

  • Chow BY, Han X, Dobry AS, Qian X, Chuong AS, Li M, Henninger MA, Belfort GM, Lin Y, Monahan PE, Boyden ES (2010) High-performance genetically targetable optical neural silencing by light-driven proton pumps. Nature 463:98–102

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chung S, Weber F, Zhong P, Tan CL, Nguyen TN, Beier KT, Hörmann N, Chang WC, Zhang Z, Do JP, Yao S, Krashes MJ, Tasic B, Cetin A, Zeng H, Knight ZA, Luo L, Dan Y (2017) Identification of preoptic sleep neurons using retrograde labelling and gene profiling. Nature 545:477–481

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chuong AS, Miri ML, Busskamp V, Matthews GA, Acker LC, Sorensen AT, Young A, Klapoetke NC, Henninger MA, Kodandaramaiah SB, Ogawa M, Ramanial SB, Bandler RC, Allen BD, Forest CR, Chow BY, Han X, Lin Y, Tye KM, Roska B, Cardin JA, Boyden ES (2014) Noninvasive optical inhibition with a red-shifted microbial rhodopsin. Nat Neurosci 17:1123–1129

    CAS  PubMed  PubMed Central  Google Scholar 

  • Conklin BR, Hsiao EC, Claeysen S, Dumuis A, Srinivasan S, Forsayeth JR, Guettier JM, Chang WC, Pei Y, McCarthy KD, Nissenson RA, Wess J, Bockaert J, Roth BL (2008) Engineering GPCR signaling pathways with RASSLs. Nat Methods 5:673–678

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dahan L, Astier B, Vautrelle N, Urbain N, Kocsis B, Chouvet G (2007) Prominent burst firing of dopaminergic neurons in the ventral tegmental area during paradoxical sleep. Neuropsychopharmacology 32:1232–1241

    CAS  PubMed  Google Scholar 

  • Datta S, Mavanji V, Ulloor J, Patterson EH (2004) Activation of phasic pontine-wave generator prevents rapid eye movement sleep deprivation-induced learning impairment in the rat: a mechanism for sleep-dependent plasticity. J Neurosci 24:1416–1427

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dauvilliers Y, Billiard M, Montplaisir J (2003) Clinical aspects and pathophysiology of narcolepsy. Clin Neurophysiol 114:2000–2017

    PubMed  Google Scholar 

  • De Lecea L (2012) Hypocretins and the neurobiology of sleep-wake mechanisms. Prog Brain Res 198:15–24

    PubMed  PubMed Central  Google Scholar 

  • Diniz Behn CG, Kopell N, Brown EN, Mochizuki T, Scammell TE (2008) Delayed orexin signaling consolidates wakefulness and sleep: physiology and modeling. J Neurophysiol 99:3090–3103

    CAS  PubMed  Google Scholar 

  • Diniz Behn CG, Klerman EB, Mochizuki T, Lin SC, Scammell TE (2010) Abnormal sleep/wake dynamics in orexin knockout mice. Sleep 33:297–306

    PubMed  PubMed Central  Google Scholar 

  • Dong S, Rogan SC, Roth BL (2010) Directed molecular evolution of DREADDs: a generic approach to creating next-generation RASSLs. Nat Protoc 5:561–573

    CAS  PubMed  Google Scholar 

  • Drews J (2000) Drug discovery: a historical perspective. Science 287:1960–1964

    CAS  PubMed  Google Scholar 

  • Durieux PF, Schiffmann SN, de Kerchove d’Exaerde A (2011) Targeting neuronal populations of the striatum. Front Neuroanat 5:40

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dzirasa K, Ribeiro S, Costa R, Santos LM, Lin S-C, Grosmark A, Sotnikova TD, Gainetdinov RR, Caron MG, Nicolelis MAL (2006) Dopaminergic control of sleep-wake states. J Neurosci 26:10577–10589

    CAS  PubMed  PubMed Central  Google Scholar 

  • Eban-Rothschild A, Rothschild G, Giardino WJ, Jones JR, de Lecea L (2016) VTA dopaminergic neurons regulate ethologically relevant sleep-wake behaviors. Nat Neurosci 19(10):1356–1366

    CAS  PubMed  PubMed Central  Google Scholar 

  • Economo C (1930) Sleep as a problem of localization. J Nerv Ment Dis 71:249–259

    Google Scholar 

  • Eldridge MAG, Lerchner W, Saunders RC, Kaneko H, Krausz KW, Gonzalez FJ, Ji B, Higuchi M, Minamimoto T, Richmond BJ (2015) Chemogenetic disconnection of monkey orbitofrontal and rhinal cortex reversibly disrupts reward value. Nat Neurosci 19:37–39

    PubMed  PubMed Central  Google Scholar 

  • Farrell MS, Roth BL (2013) Pharmacosynthetics: reimagining the pharmacogenetic approach. Brain Res 1511:6–20

    CAS  PubMed  Google Scholar 

  • Farrell MS, Pei Y, Wan Y, Yadav PN, Daigle TL, Urban DJ, Lee H-M, Sciaky N, Simmons A, Nonneman RJ, Huang X-P, Hufeisen SJ, Guettier J-M, Moy SS, Wess J, Caron MG, Calakos N, Roth BL (2013) A Gαs DREADD mouse for selective modulation of cAMP production in striatopallidal neurons. Neuropsychopharmacology 38:854–862

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fenno LE, Mattis J, Ramakrishnan C, Hyun M, Lee SY, He M, Tucciarone J, Selimbeyoglu A, Berndt A, Grosenick L, Zalocusky KA, Bernstein H, Swanson H, Perry C, Diester I, Boyce FM, Bass CE, Neve R, Huang ZJ, Deisseroth K (2014) Targeting cells with single vectors using multiple-feature Boolean logic. Nat Methods 11:763–772

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fort P, Bassetti CL, Luppi PH (2009) Alternating vigilance states: new insights regarding neuronal networks and mechanisms. Eur J Neurosci 29:1741–1753

    CAS  PubMed  Google Scholar 

  • Fortress AM, Hamlett ED, Vazey EM, Aston-Jones G, Cass WA, Boger HA, Granholm A-CE (2015) Designer receptors enhance memory in a mouse model of down syndrome. J Neurosci 35:1343–1353

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fraigne JJ, Torontali ZA, Snow MB, Peever JH (2015) REM sleep at its core-circuits, neurotransmitters, and pathophysiology. Front Neurol 6:123

    PubMed  PubMed Central  Google Scholar 

  • Fujita A, Bonnavion P, Wilson MH, Mickelsen LE, Bloit J, de Lecea L, Jackson AC (2017) Hypothalamic tuberomammillary nucleus neurons: electrophysiological diversity and essential role in arousal stability. J Neurosci 37:9574–9592

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fuller P, Sherman D, Pedersen NP, Saper CB, Lu J (2011) Reassessment of the structural basis of the ascending arousal system. J Comp Neurol 519:933–956

    PubMed  PubMed Central  Google Scholar 

  • Gervasoni D, Lin SC, Ribeiro S, Soares ES, Pantoja J, Nicolelis MA (2004) Global forebrain dynamics predict rat behavioral states and their transitions. J Neurosci 24:11137–11147

    CAS  PubMed  PubMed Central  Google Scholar 

  • Giuditta A (2014) Sleep memory processing: the sequential hypothesis. Front Syst Neurosci 8:219

    PubMed  PubMed Central  Google Scholar 

  • Gomez JL, Bonaventura J, Lesniak W, Mathews WB, Sysa-Shah P, Rodriguez LA, Ellis RJ, Richie CT, Harvey BK, Dannals RF, Pomper MG, Bonci A, Michaelides M (2017) Chemogenetics revealed: DREADD occupancy and activation via converted clozapine. Science 357:503–507

    CAS  PubMed  PubMed Central  Google Scholar 

  • González JA, Iordanidou P, Strom M, Adamantidis A, Burdakov D (2016) Awake dynamics and brain-wide direct inputs of hypothalamic MCH and orexin networks. Nat Commun 7:11395

    PubMed  PubMed Central  Google Scholar 

  • Graybiel AM (2008) Habits, rituals, and the evaluative brain. Annu Rev Neurosci 31:359–387

    CAS  PubMed  Google Scholar 

  • Grivel J, Cvetkovic V, Bayer L, Machard D, Tobler I, Muhlethaler M, Serafin M (2005) The wake-promoting hypocretin/orexin neurons change their response to noradrenaline after sleep deprivation. J Neurosci 25:4127–4130

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guettier J-M, Gautam D, Scarselli M, Ruiz de Azua I, Li JH, Rosemond E, Ma X, Gonzalez FJ, Armbruster BN, Lu H, Roth BL, Wess J (2009) A chemical-genetic approach to study G protein regulation of beta cell function in vivo. Proc Natl Acad Sci U S A 106:19197–19202

    CAS  PubMed  PubMed Central  Google Scholar 

  • Haas HL, Sergeeva OA, Selbach O (2008) Histamine in the nervous system. Physiol Rev 88:1183–1241

    CAS  PubMed  Google Scholar 

  • Han Y, Shi YF, Xi W, Zhou R, Tan ZB, Wang H, Li XM, Chen Z, Feng G, Luo M, Huang ZL, Duan S, Yu YQ (2014) Selective activation of cholinergic basal forebrain neurons induces immediate sleep-wake transitions. Curr Biol 24:693–698

    CAS  PubMed  Google Scholar 

  • Hara J, Beuckmann CT, Nambu T, Willie JT, Chemelli RM, Sinton CM, Sugiyama F, Yagami KI, Goto K, Yanagisawa M, Sakurai T (2001) Genetic ablation of orexin neurons in mice results in narcolepsy, hypophagia, and obesity. Neuron 30:345–354

    CAS  PubMed  Google Scholar 

  • Hasegawa E, Yanagisawa M, Sakurai T, Mieda M (2014) Orexin neurons suppress narcolepsy via 2 distinct efferent pathways. J Clin Invest 124:604–616

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hasegawa E, Maejima T, Yoshida T, Masseck OA, Herlitze S, Yoshioka M, Sakurai T, Mieda M (2017) Serotonin neurons in the dorsal raphe mediate the anticataplectic action of orexin neurons by reducing amygdala activity. Proc Natl Acad Sci U S A 114:E3526–E3535

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hassani OK, Henny P, Lee MG, Jones BE (2010) GABAergic neurons intermingled with orexin and MCH neurons in the lateral hypothalamus discharge maximally during sleep. Eur J Neurosci 32:448–457

    PubMed  PubMed Central  Google Scholar 

  • Hayashi Y, Kashiwagi M, Yasuda K, Ando R, Kanuka M, Sakai K, Itohara S (2015) Cells of a common developmental origin regulate REM/non-REM sleep and wakefulness in mice. Science 350:957–962

    CAS  PubMed  Google Scholar 

  • He M, Tucciarone J, Lee S, Nigro MJ, Kim Y, Levine JM, Kelly SM, Krugikov I, Wu P, Chen Y, Gong L, Hou Y, Osten P, Rudy B, Huang ZJ (2016) Strategies and tools for combinatorial targeting of GABAergic neurons in mouse cerebral cortex. Neuron 91:1228–1243

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hellman K, Aadal Nielsen P, Ek F, Olsson R (2016) An ex vivo model for evaluating blood-brain barrier permeability, efflux, and drug metabolism. ACS Chem Nerosci 7:668–680

    CAS  Google Scholar 

  • Herrera CG, Cadavieco MC, Jego S, Ponomarenko A, Korotkova T, Adamantidis A (2015) Hypothalamic feedforward inhibition of thalamocortical network controls arousal and consciousness. Nat Neurosci 19:1–12

    Google Scholar 

  • Herrera CG, Ponomarenko A, Korotkova T, Burdakov D, Adamantidis A (2017) Sleep and metabolism: the multitasking ability of lateral hypothalamic inhibitory circuitries. Front Neuroendocrinol 44:27–34

    CAS  PubMed  Google Scholar 

  • Hinze-Selch D, Mullington J, Orth A, Lauer CJ, Pollmächer T (1997) Effects of clozapine on sleep: a longitudinal study. Biol Psychiatry 42:260–266

    CAS  PubMed  Google Scholar 

  • Inostroza M, Binder S, Born J (2013) Sleep-dependency of episodic-like memory consolidation in rats. Behav Brain Res 237:15–22

    PubMed  Google Scholar 

  • Janak PH, Tye KM (2015) From circuits to behaviour in the amygdala. Nature 517:284–292

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jann MW, Lam YW, Chang WH (1994) Rapid formation of clozapine in guinea-pigs and man following clozapine-N-oxide administration. Arch Int Pharmacodyn Ther 328:243–250

    CAS  PubMed  Google Scholar 

  • Jego S, Glasgow SD, Herrera CG, Ekstrand M, Reed SJ, Boyce R, Friedman J, Burdakov D, Adamantidis AR (2013) Optogenetic identification of a rapid eye movement sleep modulatory circuit in the hypothalamus. Nat Neurosci 16:1637–1643

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jennings JH, Rizzi G, Stamatakis AM, Ung RL, Stuber GD (2013) The inhibitory circuit architecture of the lateral hypothalamus orchestrates feeding. Science 341:1517–1521

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ji B, Kaneko H, Minamimoto T, Inoue H, Takeuchi H, Kumata K, Zhang M-R, Aoki I, Seki C, Ono M, Tokunaga M, Tsukamoto S, Tanabe K, Shin R-M, Minamihisamatsu T, Kito S, Richmond BJ, Suhara T, Higuchi M (2016) Multimodal imaging for DREADD-expressing neurons in living brain and their application to implantation of iPSC-derived neural progenitors. J Neurosci 36:11544–11558

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jin X, Costa RM (2010) Start/stop signals emerge in nigrostriatal circuits during sequence learning. Nature 466:457–462

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jouvet M (1999) Sleep and serotonin: an unfinished story. Neuropsychopharmacology 21:24S–27S

    CAS  PubMed  Google Scholar 

  • Kantor S, Mochizuki T, Janisiewicz AM, Clark E, Nishino S, Scammell TE (2009) Orexin neurons are necessary for the circadian control of REM sleep. Sleep 32:1127–1134

    PubMed  PubMed Central  Google Scholar 

  • Kaur S, Wang JL, Ferrari L, Thankachan S, Kroeger D, Venner A, Lazarus M, Wellman A, Arrigoni E, Fuller PM, Saper CB (2017) A genetically defined circuit for arousal from sleep during hypercapnia. Neuron 96:1153–1167.e5

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim JW, Lee JS, Robinson PA, Jeong DU (2009) Markov analysis of sleep dynamics. Phys Rev Lett 102:178104

    CAS  PubMed  Google Scholar 

  • Kim T, Thankachan S, McKenna JT, McNally JM, Yang C, Choi JH, Chen L, Kocsis B, Deisseroth K, Strecker RE, Basheer R, Brown RE, McCarley RW (2015) Cortically projecting basal forebrain parvalbumin neurons regulate cortical gamma band oscillations. Proc Natl Acad Sci U S A 112:3535–3540

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim CK, Yang SJ, Pichamoorthy N, Young NP, Kauvar I, Jennings JH, Lerner TN, Berndt A, Lee SY, Ramakrishnan C, Davidson TJ, Inoue M, Bito H, Deisseroth K (2016) Simultaneous fast measurement of circuit dynamics at multiple sites across the mammalian brain. Nat Methods 13:325–328

    PubMed  PubMed Central  Google Scholar 

  • Klapoetke NC et al (2014) Independent optical excitation of distinct neural populations. Nat Methods 11:338–346

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kleinlogel S, Terpitz U, Legrum B, Gökbuget D, Boyden ES, Bamann C, Wood PG, Bamberg E (2011) A gene-fusion strategy for stoichiometric and co-localized expression of light-gated membrane proteins. Nat Methods 8:1083–1091

    CAS  PubMed  Google Scholar 

  • Kobilka BK, Deupi X (2007) Conformational complexity of G-protein-coupled receptors. Trends Pharmacol Sci 28:397–406

    CAS  PubMed  Google Scholar 

  • Kodani S, Soya S, Sakurai T (2017) Excitation of GABAergic neurons in the bed nucleus of the stria terminalis triggers immediate transition from non-rapid eye movement sleep to wakefulness in mice. J Neurosci 37:7164–7176

    CAS  PubMed  PubMed Central  Google Scholar 

  • Konadhode RR, Pelluru D, Blanco-Centurion C, Zayachkivsky A, Liu M, Uhde T, Glen WB, van den Pol AN, Mulholland PJ, Shiromani PJ (2013) Optogenetic stimulation of MCH neurons increases sleep. J Neurosci 33:10257–10263

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kosse C, Burdakov D (2014) A unifying computational framework for stability and flexibility of arousal. Front Syst Neurosci 8:192

    PubMed  PubMed Central  Google Scholar 

  • Kosse C, Schöne C, Bracey E, Burdakov D (2017) Orexin-driven GAD65 network of the lateral hypothalamus sets physical activity in mice. Proc Natl Acad Sci U S A 114:4525–4530

    CAS  PubMed  PubMed Central  Google Scholar 

  • Krashes MJ, Koda S, Ye CP, Rogan SC, Adams AC, Cusher DS, Maratos-Flier E, Roth BL, Lowell BB (2011) Rapid, reversible activation of AgRP neurons drives feeding behavior in mice. J Clin Invest 121:1424–1428

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kroeger D, Ferrari LL, Petit G, Mahoney CE, Fuller PM, Arrigoni E, Scammell TE (2017) Cholinergic, glutamatergic, and GABAergic neurons of the pedunculopontine tegmental nucleus have distinct effects on sleep/wake behavior in mice. J Neurosci 37:1352–1366

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lazarus M, Huang ZL, Lu J, Urade Y, Chen JF (2012) How do the basal ganglia regulate sleep-wake behavior? Trends Neurosci 35:723–732

    CAS  PubMed  Google Scholar 

  • Lebow MA, Chen A (2016) Overshadowed by the amygdala: the bed nucleus of the stria terminalis emerges as key to psychiatric disorders. Mol Psychiatry 21:450–463

    CAS  PubMed  PubMed Central  Google Scholar 

  • Léna I, Parrot S, Deschaux O, Muffat-Joly S, Sauvinet V, Renaud B, Suaud-Chagny MF, Gottesmann C (2005) Variations in extracellular levels of dopamine, noradrenaline, glutamate, and aspartate across the sleep-wake cycle in the medial prefrontal cortex and nucleus accumbens of freely moving rats. J Neurosci Res 81:891–899

    PubMed  Google Scholar 

  • Lin JS (2000) Brain structures and mechanisms involved in the control of cortical activation and wakefulness, with emphasis on the posterior hypothalamus and histaminergic neurons. Sleep Med Rev 4:471–503

    CAS  PubMed  Google Scholar 

  • Lin JS, Sergeeva OA, Haas HL (2011a) Histamine H3 receptors and sleep-wake regulation. J Pharmacol Exp Ther 336:17–23

    CAS  PubMed  Google Scholar 

  • Lin JS, Anaclet C, Sergeeva OA, Haas HL (2011b) The waking brain: an update. Cell Mol Life Sci 68:2499–2512

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu K, Kim J, Kim DW, Zhang YS, Bao H, Denaxa M, Lim SA, Kim E, Liu C, Wickersham IR, Pachinis V, Hattar S, Song J, Brown SP, Blackshaw S (2017) Lhx6-positive GABA-releasing neurons of the zona incerta promote sleep. Nature 548:582–587

    CAS  PubMed  PubMed Central  Google Scholar 

  • Llinas RR, Steriade M (2006) Bursting of thalamic neurons and states of vigilance. J Neurophysiol 95:3297–3308

    PubMed  Google Scholar 

  • Lo CC, Amaral LAN, Havlin S, Ivanov PC, Penzel T, Peter JH, Stanley HE (2002) Dynamics of sleep-wake transitions during sleep. Europhys Lett 57:625–631

    CAS  Google Scholar 

  • Lo C-C, Chou T, Penzel T, Scammell TE, Strecker RE, Stanley HE, Ivanov PC (2004) Common scale-invariant patterns of sleep-wake transitions across mammalian species. Proc Natl Acad Sci U S A 101:17545–17548

    CAS  PubMed  PubMed Central  Google Scholar 

  • Loffler S, Korber J, Nubbemeyer U, Fehsel K (2012) Comment on “Impaired respiratory and body temperature control upon acute serotonergic neuron inhibition”. Science 337:646–646

    PubMed  Google Scholar 

  • Lőrincz ML, Adamantidis AR (2017) Monoaminergic control of brain states and sensory processing: existing knowledge and recent insights obtained with optogenetics. Prog Neurobiol 151:237–253

    PubMed  Google Scholar 

  • Luppi PH, Peyron C, Fort P (2017) Not a single but multiple populations of GABAergic neurons control sleep. Sleep Med Rev 32:85–94

    PubMed  Google Scholar 

  • MacLaren DA, Browne RW, Shaw JK, Krishnan Radhakrishnan S, Khare P, Espana RA, Clark SD (2016) Clozapine N-oxide administration produces behavioral effects in long-evans rats: implications for designing DREADD experiments. eNeuro 3

    Google Scholar 

  • Magill PJ, Bolam JP, Bevan MD (2000) Relationship of activity in the subthalamic nucleus-globus pallidus network to cortical electroencephalogram. J Neurosci 20:820–833

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mahler SV, Aston-Jones G (2018) CNO Evil? considerations for the use of DREADDs in behavioral neuroscience. Neuropsychopharmacology 43:934–936

    PubMed  PubMed Central  Google Scholar 

  • Mahon S, Vautrelle N, Pezard L, Slaght SJ, Deniau JM, Chouvet G, Charpier S (2006) Distinct patterns of striatal medium spiny neuron activity during the natural sleep-wake cycle. J Neurosci 26:12587–12595

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mandile P, Vescia S, Montagnese P, Romano F, Giuditta A (1996) Characterization of transition sleep episodes in baseline EEG recordings of adult rats. Physiol Behav 60:1435–1439

    CAS  PubMed  Google Scholar 

  • Maudhuit C, Jolas T, Lainey E, Hamon M, Adrien J (1994) Effects of acute and chronic treatment with amoxapine and cericlamine on the sleep-wakefulness cycle in the rat. Neuropharmacology 33:1017–1025

    CAS  PubMed  Google Scholar 

  • McCall JG, Al-Hasani R, Siuda ER, Hong DY, Norris AJ, Ford CP, Bruchas MR (2015) CRH engagement of the locus coeruleus noradrenergic system mediates stress-induced anxiety. Neuron 87:606–621

    Google Scholar 

  • McGinty DJ, Harper RM (1976) Dorsal raphe neurons: depression of firing during sleep in cats. Brain Res 101:569–575

    CAS  PubMed  Google Scholar 

  • Mileykovskiy BY, Kiyashchenko LI, Siegel JM (2005) Behavioral correlates of activity in identified hypocretin/orexin neurons. Neuron 46:787–798

    CAS  PubMed  PubMed Central  Google Scholar 

  • Miller JD, Farber J, Gatz P, Roffwarg H, German DC (1983) Activity of mesencephalic dopamine and non-dopamine neurons across stages of sleep and waking in the rat. Brain Res 273:133–141

    CAS  PubMed  Google Scholar 

  • Monaca C, Boutrel B, Hen R, Hamon M, Adrien J (2003) 5-HT1A/1B receptor-mediated effects of the selective serotonin reuptake inhibitor, citalopram, on sleep: studies in 5-HT1A and 5-HT1B knockout mice. Neuropsychopharmacol 28:850–856

    CAS  Google Scholar 

  • Nagai Y, Kikuchi E, Lerchner W, Inoue KI, Ji B, Eldridge MA, Kaneko H, Kimura Y, Oh-Nishi A, Hori Y, Kato Y, Hirabayashi T, Fujimoto A, Kumata K, Zhang MR, Aoki I, Suhara T, Higuchi M, Takada M, Richmond BJ, Minamimoto T (2016) PET imaging-guided chemogenetic silencing reveals a critical role of primate rostromedial caudate in reward evaluation. Nat Commun 7:13605

    PubMed  PubMed Central  Google Scholar 

  • Nakajima K, Wess J (2012) Design and functional characterization of a novel, arrestin-biased designer G protein-coupled receptor. Mol Pharmacol 82:575–582

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nishida M, Pearsall J, Buckner RL, Walker MP (2009) REM sleep, prefrontal theta, and the consolidation of human emotional memory. Cereb Cortex 19:1158–1166

    PubMed  Google Scholar 

  • Oishi Y, Xu Q, Wang L, Zhang BJ, Takahashi K, Takata Y, Luo YJ, Cherasse Y, Schiffmann SN, De Kerchove D’Exaerde A, Urade Y, Qu WM, Huang ZL, Lazarus M (2017) Slow-wave sleep is controlled by a subset of nucleus accumbens core neurons in mice. Nat Commun 8:734

    PubMed  PubMed Central  Google Scholar 

  • Orzeł-Gryglewska J, Matulewicz P, Jurkowlaniec E (2015) Brainstem system of hippocampal theta induction: the role of the ventral tegmental area. Synapse 69:553–575

    PubMed  Google Scholar 

  • Pan WX, McNaughton N (2004) The supramammillary area: its organization, functions and relationship to the hippocampus. Prog Neurobiol 74:127–166

    PubMed  Google Scholar 

  • Parmentier R, Ohtsu H, Djebbara-Hannas Z, Valatx J-L, Watanabe T, Lin J-S (2002) Anatomical, physiological, and pharmacological characteristics of histidine decarboxylase knock-out mice: evidence for the role of brain histamine in behavioral and sleep-wake control. J Neurosci 22:7695–7711

    CAS  PubMed  PubMed Central  Google Scholar 

  • Parnaudeau S, O’Neill PK, Bolkan SS, Ward RD, Abbas AI, Roth BL, Balsam PD, Gordon JA, Kellendonk C (2013) Inhibition of mediodorsal thalamus disrupts thalamofrontal connectivity and cognition. Neuron 77:1151–1162

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pedersen NP, Ferrari L, Venner A, Wang JL, Abbott SBG, Vujovic N, Arrigoni E, Saper CB, Fuller PM (2017) Supramammillary glutamate neurons are a key node of the arousal system. Nat Commun 8:1405

    PubMed  PubMed Central  Google Scholar 

  • Popa D, Duvarci S, Popescu AT, Lena C, Pare D (2010) Coherent amygdalocortical theta promotes fear memory consolidation during paradoxical sleep. Proc Natl Acad Sci U S A 107:6516–6519

    CAS  PubMed  PubMed Central  Google Scholar 

  • Portas CM, Bjorvatn B, Ursin R (2000) Serotonin and the sleep/wake cycle: special emphasis on microdialysis studies. Prog Neurobiol 60:12–35

    Google Scholar 

  • Qiu MH, Chen MC, Fuller PM, Lu J (2016a) Stimulation of the pontine parabrachial nucleus promotes wakefulness via extra-thalamic forebrain circuit nodes. Curr Biol 26:2301–2312

    CAS  PubMed  PubMed Central  Google Scholar 

  • Qiu MH, Yao QL, Vetrivelan R, Chen MC, Lu J (2016b) Nigrostriatal dopamine acting on globus pallidus regulates sleep. Cereb Cortex 26:1430–1439

    PubMed  Google Scholar 

  • Rapanelli M, Frick L, Bito H, Pittenger C (2017) Histamine modulation of the basal ganglia circuitry in the development of pathological grooming. Proc Natl Acad Sci U S A 114:6599–6604

    CAS  PubMed  PubMed Central  Google Scholar 

  • Raper J, Morrison RD, Daniels JS, Howell L, Bachevalier J, Wichmann T, Galvan A (2017) Metabolism and distribution of clozapine-N-oxide: implications for nonhuman primate chemogenetics. ACS Chem Nerosci 8:1570–1576

    CAS  Google Scholar 

  • Rasmussen K, Heym J, Jacobs BL (1984) Activity of serotonin-containing neurons in nucleus centralis superior of freely moving cats. Exp Neurol 83:302–317

    CAS  PubMed  Google Scholar 

  • Ravassard P, Hamieh AM, Joseph MA, Fraize N, Libourel PA, Lebarillier L, Arthaud S, Meissirel C, Touret M, Malleret G, Salin PA (2016) REM sleep-dependent bidirectional regulation of hippocampal-based emotional memory and LTP. Cereb Cortex 26:1488–1500

    PubMed  Google Scholar 

  • Ray RS, Corcoran AE, Brust RD, Kim JC, Richerson GB, Nattie E, Dymecki SM (2011) Impaired respiratory and body temperature control upon acute serotonergic neuron inhibition. Science 333:637–642

    CAS  PubMed  PubMed Central  Google Scholar 

  • Reijmers LG, Perkins BL, Matsuo N, Mayford M (2007) Localization of a stable neural correlate of associative memory. Science 317:1230–1233

    CAS  PubMed  Google Scholar 

  • Reiner PB, McGeer EG (1987) Electrophysiological properties of cortically projecting histamine neurons of the rat hypothalamus. Neurosci Lett 73:43–47

    CAS  PubMed  Google Scholar 

  • Renouard L, Billwiller F, Ogawa K, Clément O, Camargo N, Abdelkarim M, Gay N, Scoté-Blachon C, Touré R, Libourel PA, Ravassard P, Salvert D, Peyron C, Claustrat B, Léger L, Salin P, Malleret G, Fort P, Luppi PH (2015) The supramammillary nucleus and the claustrum activate the cortex during REM sleep. Sci Adv 1:e1400177

    PubMed  PubMed Central  Google Scholar 

  • Rioult-Pedotti MS, Pekanovic A, Atiemo CO, Marshall J, Luft AR (2015) Dopamine promotes motor cortex plasticity and motor skill learning via PLC activation. PLoS One 10:e0124986

    PubMed  PubMed Central  Google Scholar 

  • Rolls A, Colas D, Adamantidis A, Carter M, Lanre-Amos T, Heller HC, de Lecea L (2011) Optogenetic disruption of sleep continuity impairs memory consolidation. Proc Natl Acad Sci U S A 108:13305–13310

    CAS  PubMed  PubMed Central  Google Scholar 

  • Root DH, Melendez RI, Zaborszky L, Napier TC (2015) The ventral pallidum: subregion-specific functional anatomy and roles in motivated behaviors. Prog Neurobiol 130:29–70

    PubMed  PubMed Central  Google Scholar 

  • Rorabaugh JM, Chalermpalanupap T, Botz-Zapp CA, Fu VM, Lembeck NA, Cohen RM, Weinshenker D (2017) Chemogenetic locus coeruleus activation restores reversal learning in a rat model of Alzheimer’s disease. Brain 140:3023–3038

    PubMed  PubMed Central  Google Scholar 

  • Roth BL (2016) DREADDs for neuroscientists. Neuron 89:683–694

    CAS  PubMed  PubMed Central  Google Scholar 

  • Saito YC, Tsujino N, Hasegawa E, Akashi K, Abe M, Mieda M, Sakimura K, Sakurai T (2013) GABAergic neurons in the preoptic area send direct inhibitory projections to orexin neurons. Front Neural Circuits 7:192

    PubMed  PubMed Central  Google Scholar 

  • Sakai K (2011) Sleep-waking discharge profiles of dorsal raphe nucleus neurons in mice. Neuroscience 197:200–224

    CAS  PubMed  Google Scholar 

  • Sakai K, Takahashi K, Anaclet C, Lin J-S (2010) Sleep-waking discharge of ventral tuberomammillary neurons in wild-type and histidine decarboxylase knock-out mice. Front Behav Neurosci 4:53

    PubMed  PubMed Central  Google Scholar 

  • Santos LM, Dzirasa K, Kubo R, Silva MTA, Ribeiro S, Sameshima K, Valle AC, Timo-Iaria C (2008) Baseline hippocampal theta oscillation speeds correlate with rate of operant task acquisition. Behav Brain Res 190:152–155

    PubMed  Google Scholar 

  • Sapin E, Lapray D, Bérod A, Goutagny R, Léger L, Ravassard P, Clément O, Hanriot L, Fort P, Luppi PH (2009) Localization of the brainstem GABAergic neurons controlling paradoxical (REM) sleep. PLoS One 4:e4272

    PubMed  PubMed Central  Google Scholar 

  • Sara SJ (2009) The locus coeruleus and noradrenergic modulation of cognition. Nat Rev Neurosci 10:211–223

    CAS  PubMed  Google Scholar 

  • Sara SJ (2017) Sleep to remember dual perspectives. J Neurosci 37:457–463

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sasaki K, Suzuki M, Mieda M, Tsujino N, Roth B, Sakurai T (2011) Pharmacogenetic modulation of orexin neurons alters sleep/wakefulness states in mice. PLoS One 6:e20360

    CAS  PubMed  PubMed Central  Google Scholar 

  • Satoh S, Matsumura H, Kanbayashi T, Yoshida Y, Urakami T, Nakajima T, Kimura N, Nishino S, Yoneda H (2006) Expression pattern of FOS in orexin neurons during sleep induced by an adenosine A2Areceptor agonist. Behav Brain Res 170:277–286

    CAS  PubMed  Google Scholar 

  • Schöne C, Burdakov D (2017) Orexin/hypocretin and organizing principles for a diversity of wake-promoting neurons in the brain. Curr Top Behav Neurosci 33:51–74

    PubMed  PubMed Central  Google Scholar 

  • Schwartz JC (2011) The histamine H3 receptor: from discovery to clinical trials with pitolisant. Br J Pharmacol 163:713–721

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schwarz LA, Miyamichi K, Gao XJ, Beier KT, Weissbourd B, DeLoach KE, Ren J, Ibanes S, Malenka RC, Kremer EJ, Luo L (2015) Viral-genetic tracing of the input–output organization of a central noradrenaline circuit. Nature 524:88–92

    CAS  PubMed  PubMed Central  Google Scholar 

  • Senba E, Daddona PE, Watanabe T, Wu JY, Nagy JI (1985) Coexistence of adenosine deaminase, histidine decarboxylase, and glutamate decarboxylase in hypothalamic neurons of the rat. J Neurosci 5:3393–3402

    CAS  PubMed  PubMed Central  Google Scholar 

  • Slater IH, Jones GT, Moore RA (1978) Inhibition of REM sleep by fluoxetine, a specific inhibitor of serotonin uptake. Neuropharmacol 17:383–389

    CAS  Google Scholar 

  • Sommerfelt L, Ursin R (1987) The effects of zimeldine and alaproclate combined with a small dose of 5-HTP on waking and sleep stages in cats. Behav Brain Res 24:1–10

    CAS  PubMed  Google Scholar 

  • Soussi R, Zhang N, Tahtakran S, Houser CR, Esclapez M (2010) Heterogeneity of the supramammillary-hippocampal pathways: evidence for a unique GABAergic neurotransmitter phenotype and regional differences. Eur J Neurosci 32:771–785

    PubMed  PubMed Central  Google Scholar 

  • Stachniak TJ, Ghosh A, Sternson SM (2014) Chemogenetic synaptic silencing of neural circuits localizes a hypothalamus→midbrain pathway for feeding behavior. Neuron 82:797–808

    CAS  PubMed  PubMed Central  Google Scholar 

  • Steinfels GF, Heym J, Strecker RE, Jacobs BL (1983) Behavioral correlates of dopaminergic unit activity in freely moving cats. Brain Res 258:217–228

    CAS  PubMed  Google Scholar 

  • Stephenson R, Famina S, Caron AM, Lim J (2013) Statistical properties of sleep-wake behavior in the rat and their relation to circadian and ultradian phases. Sleep 36:1377–1390

    PubMed  PubMed Central  Google Scholar 

  • Steriade M (2004) Acetylcholine systems and rhythmic activities during the waking-sleep cycle. Prog Brain Res 145:179–196

    CAS  PubMed  Google Scholar 

  • Sternson SM, Roth BL (2014) Chemogenetic tools to interrogate brain functions. Annu Rev Neurosci 37:387–407

    CAS  PubMed  Google Scholar 

  • Sun HX, Wang DR, Ye CB, Hu ZZ, Wang CY, Huang ZL, Yang SR (2017) Activation of the ventral tegmental area increased wakefulness in mice. Sleep Biol Rhythms 15:107–115

    PubMed  PubMed Central  Google Scholar 

  • Taheri S, Zeitzer JM, Mignot E (2002) The role of hypocretins (orexins) in sleep regulation and narcolepsy. Annu Rev Neurosci 25:283–313

    CAS  PubMed  Google Scholar 

  • Takahashi K, Lin J-S, Sakai K (2006) Neuronal activity of histaminergic tuberomammillary neurons during wake-sleep states in the mouse. J Neurosci 26:10292–10298

    CAS  PubMed  PubMed Central  Google Scholar 

  • Takahashi K, Lin JS, Sakai K (2009) Characterization and mapping of sleep-waking specific neurons in the basal forebrain and preoptic hypothalamus in mice. Neuroscience 161:269–292

    CAS  PubMed  Google Scholar 

  • Takahashi K, Kayama Y, Lin JS, Sakai K (2010) Locus coeruleus neuronal activity during the sleep-waking cycle in mice. Neuroscience 169:1115–1126

    CAS  PubMed  Google Scholar 

  • Takeda N, Inagaki S, Shiosaka S, Taguchi Y, Oertel WH, Tohyama M, Watanabe T, Wada H (1984) Immunohistochemical evidence for the coexistence of histidine decarboxylase-like and glutamate decarboxylase-like immunoreactivities in nerve cells of the magnocellular nucleus of the posterior hypothalamus of rats. Proc Natl Acad Sci U S A 81:7647–7650

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thinschmidt JS, Kinney GG, Kocsis B (1995) The supramammillary nucleus: is it necessary for the mediation of hippocampal theta rhythm? Neuroscience 67:301–312

    CAS  PubMed  Google Scholar 

  • Tritsch NX, Granger AJ, Sabatini BL (2016) Mechanisms and functions of GABA co-release. Nat Rev Neurosci 17:139–145

    CAS  PubMed  PubMed Central  Google Scholar 

  • Trottier S, Chotard C, Traiffort E, Unmehopa U, Fisser B, Swaab DF, Schwartz JC (2002) Co-localization of histamine with GABA but not with galanin in the human tuberomamillary nucleus. Brain Res 939:52–64

    CAS  PubMed  Google Scholar 

  • Tsunematsu T, Kilduff TS, Boyden ES, Takahashi S, Tominaga M, Yamanaka A (2011) Acute optogenetic silencing of orexin/hypocretin neurons induces slow-wave sleep in mice. J Neurosci 31:10529–10539

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tsunematsu T, Ueno T, Tabuchi S, Inutsuka A, Tanaka KF, Hasuwa H, Kilduff TS, Terao A, Yamanaka A (2014) Optogenetic manipulation of activity and temporally controlled cell-specific ablation reveal a role for MCH neurons in sleep/wake regulation. J Neurosci 34:6896–6909

    CAS  PubMed  PubMed Central  Google Scholar 

  • Urbain N, Gervasoni D, Soulière F, Lobo L, Rentéro N, Windels F, Astier B, Savasta M, Fort P, Renaud B, Luppi PH, Chouvet G (2000) Unrelated course of subthalamic nucleus and globus pallidus neuronal activities across vigilance states in the rat. Eur J Neurosci 12:3361–3374

    CAS  PubMed  Google Scholar 

  • Urban DJ, Roth BL (2015) DREADDs (designer receptors exclusively activated by designer drugs): chemogenetic tools with therapeutic utility. Annu Rev Pharmacol Toxicol 55:399–417

    CAS  PubMed  Google Scholar 

  • Ursin R (2002) Serotonin and sleep. Sleep Med Rev 6:55–67

    PubMed  Google Scholar 

  • Valencia Garcia S, Libourel PA, Lazarus M, Grassi D, Luppi PH, Fort P (2017) Genetic inactivation of glutamate neurons in the rat sublaterodorsal tegmental nucleus recapitulates REM sleep behaviour disorder. Brain 140:414–428

    PubMed  Google Scholar 

  • Valencia Garcia S, Brischoux F, Clément O, Libourel PA, Arthaud S, Lazarus M, Luppi PH, Fort P (2018) Ventromedial medulla inhibitory neuron inactivation induces REM sleep without atonia and REM sleep behavior disorder. Nat Commun 9:504

    PubMed  PubMed Central  Google Scholar 

  • Van Dort CJ, Zachs DP, Kenny JD, Zheng S, Goldblum RR, Gelwan NA, Ramos DM, Nolan MA, Wang K, Weng F-J, Lin Y, Wilson MA, Brown EN (2015) Optogenetic activation of cholinergic neurons in the PPT or LDT induces REM sleep. Proc Natl Acad Sci U S A 112:584–589

    PubMed  Google Scholar 

  • Vanni-Mercier G, Gigout S, Debilly G, Lin JS (2003) Waking selective neurons in the posterior hypothalamus and their response to histamine H3-receptor ligands: an electrophysiological study in freely moving cats. Behav Brain Res 144:227–241

    CAS  PubMed  Google Scholar 

  • Vardy E, Robinson JE, Li C, Olsen RHJ, DiBerto JF, Giguere PM, Sassano FM, Huang XP, Zhu H, Urban DJ, White KL, Rittiner JE, Crowley NA, Pleil KE, Mazzone CM, Mosier PD, Song J, Kash TL, Malanga CJ, Krashes MJ, Roth BL (2015) A new DREADD facilitates the multiplexed chemogenetic interrogation of behavior. Neuron 86:936–946

    CAS  PubMed  PubMed Central  Google Scholar 

  • Varin C, Arthaud S, Salvert D, Gay N, Libourel PA, Luppi PH, Léger L, Fort P (2016) Sleep architecture and homeostasis in mice with partial ablation of melanin-concentrating hormone neurons. Behav Brain Res 298:100–110

    CAS  PubMed  Google Scholar 

  • Varin C, Luppi PH, Fort P (2018) Melanin-concentrating hormone-expressing neurons adjust slow-wave sleep dynamics to catalyze paradoxical (REM) sleep. Sleep 41(6). https://doi.org/10.1093/sleep/zsy068

  • Vazey EM, Aston-Jones G (2014) Designer receptor manipulations reveal a role of the locus coeruleus noradrenergic system in isoflurane general anesthesia. Proc Natl Acad Sci U S A 111:3859–3864

    CAS  PubMed  PubMed Central  Google Scholar 

  • Venner A, Anaclet C, Broadhurst RY, Saper CB, Fuller PM (2016) A novel population of wake-promoting GABAergic neurons in the ventral lateral hypothalamus. Curr Biol 26:2137–2143

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vescia S, Mandile P, Montagnese P, Romano F, Cataldo G, Cotugno M, Giuditta A (1996) Baseline transition sleep and associated sleep episodes are related to the learning ability of rats. Physiol Behav 60:1513–1525

    CAS  PubMed  Google Scholar 

  • Vetrivelan R, Kong D, Ferrari LL, Madara JC, Bandaru S, Lowell BB (2016) Melanin-concentrating hormone neurons specifically promote rapid eye movement sleep in mice. Neuroscience 336:102–113

    CAS  PubMed  Google Scholar 

  • Vyazovskiy VV, Olcese U, Hanlon EC, Nir Y, Cirelli C, Tononi G (2011) Local sleep in awake rats. Nature 472:443–447

    CAS  PubMed  PubMed Central  Google Scholar 

  • Watson CJ, Lydic R, Baghdoyan HA (2011) Sleep duration varies as a function of glutamate and GABA in rat pontine reticular formation. J Neurochem 118:571–580

    CAS  PubMed  PubMed Central  Google Scholar 

  • Watson CJ, Baghdoyan HA, Lydic R (2012) Neuropharmacology of sleep and wakefulness: 2012 update. Sleep Med Clin 7:469–486

    PubMed  PubMed Central  Google Scholar 

  • Weber F, Chung S, Beier KT, Xu M, Luo L, Dan Y (2015) Control of REM sleep by ventral medulla GABAergic neurons. Nature 526:435–438

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wieland S, Schindler S, Huber C, Kohr G, Oswald MJ, Kelsch W (2015) Phasic dopamine modifies sensory-driven output of striatal neurons through synaptic plasticity. J Neurosci 35:9946–9956

    CAS  PubMed  PubMed Central  Google Scholar 

  • Williams RH, Jensen LT, Verkhratsky A, Fugger L, Burdakov D (2007) Control of hypothalamic orexin neurons by acid and CO2. Proc Natl Acad Sci U S A 104:10685–10690

    CAS  PubMed  PubMed Central  Google Scholar 

  • Williams RH, Chee MJS, Kroeger D, Ferrari LL, Maratos-Flier E, Scammell TE, Arrigoni E (2014) Optogenetic-mediated release of histamine reveals distal and autoregulatory mechanisms for controlling arousal. J Neurosci 34:6023–6029

    PubMed  PubMed Central  Google Scholar 

  • Wise A, Jupe SC, Rees S (2004) The identification of ligands at orphan G-protein coupled receptors. Annu Rev Pharmacol Toxicol 44:43–66

    CAS  PubMed  Google Scholar 

  • Xu M, Chung S, Zhang S, Zhong P, Ma C, Chang WC, Weissbourd B, Sakai N, Luo L, Nishino S, Dan Y (2015) Basal forebrain circuit for sleep-wake control. Nat Neurosci 18:1641–1647

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yamanaka A, Beuckmann CT, Willie JT, Hara J, Tsujino N, Mieda M, Tominaga M, Yagami KI, Sugiyama F, Goto K, Yanagisawa M, Sakurai T (2003) Hypothalamic orexin neurons regulate arousal according to energy balance in mice. Neuron 38:701–713

    CAS  PubMed  Google Scholar 

  • Yokota S, Kaur S, Vanderhorst VG, Saper CB, Chamberlin NL (2015) Respiratory-related outputs of glutamatergic, hypercapnia-responsive parabrachial neurons in mice. J Comp Neurol 523:907–920

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yu X, Ye Z, Houston CM, Zecharia AY, Ma Y, Zhang Z, Uygun DS, Parker S, Vyssotski AL, Yustos R, Franks NP, Brickley SG, Wisden W (2015) Wakefulness is governed by GABA and histamine cotransmission. Neuron 87:164–178

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yu X, Franks NP, Wisden W (2018) Sleep and sedative states induced by targeting the histamine and noradrenergic systems. Front Neural Circuits 12:4

    PubMed  PubMed Central  Google Scholar 

  • Yuan XS, Wang L, Dong H, Qu WM, Yang SR, Cherasse Y, Lazarus M, Schiffmann SN, De Kerchove D’Exaerde A, Li RX, Huang ZL (2017) Striatal adenosine A2Areceptor neurons control active-period sleep via parvalbumin neurons in external globus pallidus. Elife 6:e29055

    PubMed  PubMed Central  Google Scholar 

  • Zhang Z, Ferretti V, Güntan I, Moro A, Steinberg EA, Ye Z, Zecharia AY, Yu X, Vyssotski AL, Brickley SG, Yustos R, Pillidge ZE, Harding EC, Wisden W, Franks NP (2015) Neuronal ensembles sufficient for recovery sleep and the sedative actions of α2 adrenergic agonists. Nat Neurosci 18:553–561

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu H, Pleil KE, Urban DJ, Moy SS, Kash TL, Roth BL (2014) Chemogenetic inactivation of ventral hippocampal glutamatergic neurons disrupts consolidation of contextual fear memory. Neuropsychopharmacology 39:1880–1892

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patricia Bonnavion .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Varin, C., Bonnavion, P. (2018). Pharmacosynthetic Deconstruction of Sleep-Wake Circuits in the Brain. In: Landolt, HP., Dijk, DJ. (eds) Sleep-Wake Neurobiology and Pharmacology . Handbook of Experimental Pharmacology, vol 253. Springer, Cham. https://doi.org/10.1007/164_2018_183

Download citation

Publish with us

Policies and ethics