Skip to main content

Immunotherapy in the Treatment of Advanced Colorectal Cancer

  • Chapter
  • First Online:
Immune Strategies for Gastrointestinal Cancer

Part of the book series: Cancer Immunotherapy ((CAIMUN,volume 2))

  • 49 Accesses

Abstract

Immunotherapy has rapidly evolved in the treatment of select malignancies. In colorectal cancer, response to treatment has varied based on the presence of mismatch repair deficiency (dMMR) and microsatellite instability (MSI-H). Patients with dMMR/MSI-H metastatic colorectal cancer (mCRC) have a favorable tumor microenvironment (TME) resulting in activation of the immune system and targeting of the malignancy by T and NK cells leading to a good response to immune checkpoint inhibitors (ICIs). Pembrolizumab and nivolumab are ICIs that target programmed cell death protein 1. Nivolumab is FDA approved for the treatment of dMMR/MSI-H mCRC after initial chemotherapy regimens have failed, while pembrolizumab is now approved for first-line treatment. However, at least 96% of metastatic colorectal cancers are pMMR/MSS and do not exhibit responses to treatment with ICIs. Studies are exploring therapeutic combinations with targets such as BRAF, VEGF, and others that may activate T and NK cells, reduce inhibitory signals, and increase robustness of the immune response.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Siegel RL, Miller KD, Goding Sauer A, Fedewa SA, Butterly LF, Anderson JC et al (2020) Colorectal cancer statistics, 2020. CA Cancer J Clin 70(3):145–164. https://doi.org/10.3322/caac.21601

    Article  PubMed  Google Scholar 

  2. Montminy EM, Karlitz JJ, Landreneau SW (2019) Progress of colorectal cancer screening in United States: past achievements and future challenges. Prev Med 120:78–84. https://doi.org/10.1016/j.ypmed.2018.12.004

    Article  PubMed  Google Scholar 

  3. Gustavsson B, Carlsson G, Machover D, Petrelli N, Roth A, Schmoll HJ et al (2015) A review of the evolution of systemic chemotherapy in the management of colorectal cancer. Clin Colorectal Cancer 14(1):1–10. https://doi.org/10.1016/j.clcc.2014.11.002

    Article  PubMed  Google Scholar 

  4. Saltz LB, Cox JV, Blanke C, Rosen LS, Fehrenbacher L, Moore MJ et al (2000) Irinotecan plus fluorouracil and leucovorin for metastatic colorectal cancer. Irinotecan Study Group. N Engl J Med 343(13):905–914. https://doi.org/10.1056/nejm200009283431302

    Article  PubMed  Google Scholar 

  5. Goldberg RM, Sargent DJ, Morton RF, Fuchs CS, Ramanathan RK, Williamson SK et al (2004) A randomized controlled trial of fluorouracil plus leucovorin, irinotecan, and oxaliplatin combinations in patients with previously untreated metastatic colorectal cancer. J Clin Oncol 22(1):23–30. https://doi.org/10.1200/jco.2004.09.046

    Article  PubMed  Google Scholar 

  6. Tournigand C, André T, Achille E, Lledo G, Flesh M, Mery-Mignard D et al (2004) FOLFIRI followed by FOLFOX6 or the reverse sequence in advanced colorectal cancer: a randomized GERCOR study. J Clin Oncol 22(2):229–237. https://doi.org/10.1200/jco.2004.05.113

    Article  PubMed  Google Scholar 

  7. Colucci G, Gebbia V, Paoletti G, Giuliani F, Caruso M, Gebbia N et al (2005) Phase III randomized trial of FOLFIRI versus FOLFOX4 in the treatment of advanced colorectal cancer: a multicenter study of the Gruppo Oncologico Dell'Italia Meridionale. J Clin Oncol 23(22):4866–4875. https://doi.org/10.1200/jco.2005.07.113

    Article  PubMed  Google Scholar 

  8. Hurwitz H, Fehrenbacher L, Novotny W, Cartwright T, Hainsworth J, Heim W et al (2004) Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med 350(23):2335–2342. https://doi.org/10.1056/NEJMoa032691

    Article  PubMed  Google Scholar 

  9. Giantonio BJ, Catalano PJ, Meropol NJ, O'Dwyer PJ, Mitchell EP, Alberts SR et al (2007) Bevacizumab in combination with oxaliplatin, fluorouracil, and leucovorin (FOLFOX4) for previously treated metastatic colorectal cancer: results from the Eastern Cooperative Oncology Group Study E3200. J Clin Oncol 25(12):1539–1544. https://doi.org/10.1200/jco.2006.09.6305

    Article  PubMed  Google Scholar 

  10. Heinemann V, von Weikersthal LF, Decker T, Kiani A, Vehling-Kaiser U, Al-Batran SE et al (2014) FOLFIRI plus cetuximab versus FOLFIRI plus bevacizumab as first-line treatment for patients with metastatic colorectal cancer (FIRE-3): a randomised, open-label, phase 3 trial. Lancet Oncol 15(10):1065–1075. https://doi.org/10.1016/s1470-2045(14)70330-4

    Article  PubMed  Google Scholar 

  11. Heinemann V, von Weikersthal LF, Decker T, Kiani A, Kaiser F, Al-Batran S-E et al (2021) FOLFIRI plus cetuximab or bevacizumab for advanced colorectal cancer: final survival and per-protocol analysis of FIRE-3, a randomised clinical trial. Br J Cancer 124(3):587–594. https://doi.org/10.1038/s41416-020-01140-9

    Article  PubMed  Google Scholar 

  12. Falcone A, Cremolini C, Masi G, Lonardi S, Zagonel V, Salvatore L et al (2013) FOLFOXIRI/bevacizumab (bev) versus FOLFIRI/bev as first-line treatment in unresectable metastatic colorectal cancer (mCRC) patients (pts): results of the phase III TRIBE trial by GONO group. J Clin Oncol 31(Suppl. 15):3505. https://doi.org/10.1200/jco.2013.31.15_suppl.3505

    Article  Google Scholar 

  13. Cremolini C, Antoniotti C, Rossini D, Lonardi S, Loupakis F, Pietrantonio F et al (2020) Upfront FOLFOXIRI plus bevacizumab and reintroduction after progression versus mFOLFOX6 plus bevacizumab followed by FOLFIRI plus bevacizumab in the treatment of patients with metastatic colorectal cancer (TRIBE2): a multicentre, open-label, phase 3, randomised, controlled trial. Lancet Oncol 21(4):497–507. https://doi.org/10.1016/S1470-2045(19)30862-9

    Article  PubMed  Google Scholar 

  14. Del Vecchio F, Mastroiaco V, Di Marco A, Compagnoni C, Capece D, Zazzeroni F et al (2017) Next-generation sequencing: recent applications to the analysis of colorectal cancer. J Transl Med 15(1):246. https://doi.org/10.1186/s12967-017-1353-y

    Article  PubMed  PubMed Central  Google Scholar 

  15. Fukui K (2010) DNA mismatch repair in eukaryotes and bacteria. J Nucl Acids 2010. https://doi.org/10.4061/2010/260512

  16. Nojadeh JN, Behrouz Sharif S, Sakhinia E (2018) Microsatellite instability in colorectal cancer. EXCLI J 17:159–168. https://doi.org/10.17179/excli2017-948

    Article  PubMed  PubMed Central  Google Scholar 

  17. Le DT, Uram JN, Wang H, Bartlett BR, Kemberling H, Eyring AD et al (2015) PD-1 Blockade in tumors with mismatch-repair deficiency. N Engl J Med 372(26):2509–2520. https://doi.org/10.1056/NEJMoa1500596

    Article  PubMed  PubMed Central  Google Scholar 

  18. Overman MJ, Ernstoff MS, Morse MA (2018) Where we stand with immunotherapy in colorectal cancer: deficient mismatch repair, proficient mismatch repair, and toxicity management. Am Soc Clin Oncol Educ Book 38:239–247. https://doi.org/10.1200/edbk_200821

    Article  PubMed  Google Scholar 

  19. Stadler ZK, Battaglin F, Middha S, Hechtman JF, Tran C, Cercek A et al (2016) Reliable detection of mismatch repair deficiency in colorectal cancers using mutational load in next-generation sequencing panels. J Clin Oncol 34(18):2141–2147. https://doi.org/10.1200/jco.2015.65.1067

    Article  PubMed  PubMed Central  Google Scholar 

  20. Kawakami H, Zaanan A, Sinicrope FA (2015) Microsatellite instability testing and its role in the management of colorectal cancer. Curr Treat Options in Oncol 16(7):30. https://doi.org/10.1007/s11864-015-0348-2

    Article  Google Scholar 

  21. Hanahan D, Coussens LM (2012) Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell 21(3):309–322. https://doi.org/10.1016/j.ccr.2012.02.022

    Article  PubMed  Google Scholar 

  22. Korneev KV, Atretkhany KN, Drutskaya MS, Grivennikov SI, Kuprash DV, Nedospasov SA (2017) TLR-signaling and proinflammatory cytokines as drivers of tumorigenesis. Cytokine 89:127–135. https://doi.org/10.1016/j.cyto.2016.01.021

    Article  PubMed  Google Scholar 

  23. Mlecnik B, Tosolini M, Kirilovsky A, Berger A, Bindea G, Meatchi T et al (2011) Histopathologic-based prognostic factors of colorectal cancers are associated with the state of the local immune reaction. J Clin Oncol 29(6):610–618. https://doi.org/10.1200/jco.2010.30.5425

    Article  PubMed  Google Scholar 

  24. Maoz A, Dennis M, Greenson JK (2019) The Crohn’s-like lymphoid reaction to colorectal cancer-tertiary lymphoid structures with immunologic and potentially therapeutic relevance in colorectal cancer. Front Immunol 10:1884. https://doi.org/10.3389/fimmu.2019.01884

    Article  PubMed  PubMed Central  Google Scholar 

  25. Basile D, Garattini SK, Bonotto M, Ongaro E, Casagrande M, Cattaneo M et al (2017) Immunotherapy for colorectal cancer: where are we heading? Expert Opin Biol Ther 17(6):709–721. https://doi.org/10.1080/14712598.2017.1315405

    Article  PubMed  Google Scholar 

  26. Pagès F, Kirilovsky A, Mlecnik B, Asslaber M, Tosolini M, Bindea G et al (2009) In situ cytotoxic and memory T cells predict outcome in patients with early-stage colorectal cancer. J Clin Oncol 27(35):5944–5951. https://doi.org/10.1200/jco.2008.19.6147

    Article  PubMed  Google Scholar 

  27. Pagès F, Mlecnik B, Marliot F, Bindea G, Ou F-S, Bifulco C et al (2018) International validation of the consensus Immunoscore for the classification of colon cancer: a prognostic and accuracy study. Lancet 391(10135):2128–2139. https://doi.org/10.1016/S0140-6736(18)30789-X

    Article  PubMed  Google Scholar 

  28. Bruni D, Angell HK, Galon J (2020) The immune contexture and Immunoscore in cancer prognosis and therapeutic efficacy. Nat Rev Cancer 20(11):662–680. https://doi.org/10.1038/s41568-020-0285-7

    Article  PubMed  Google Scholar 

  29. Jiang T, Shi T, Zhang H, Hu J, Song Y, Wei J et al (2019) Tumor neoantigens: from basic research to clinical applications. J Hematol Oncol 12(1):93. https://doi.org/10.1186/s13045-019-0787-5

    Article  PubMed  PubMed Central  Google Scholar 

  30. Trombetta ES, Mellman I (2005) Cell biology of antigen processing in vitro and in vivo. Annu Rev Immunol 23:975–1028. https://doi.org/10.1146/annurev.immunol.22.012703.104538

    Article  PubMed  Google Scholar 

  31. Chen C, Liu S, Qu R, Li B (2020) Recurrent neoantigens in colorectal cancer as potential immunotherapy targets. Biomed Res Int 2020:2861240. https://doi.org/10.1155/2020/2861240

    Article  PubMed  PubMed Central  Google Scholar 

  32. Schumacher TN, Schreiber RD (2015) Neoantigens in cancer immunotherapy. Science (New York, NY) 348(6230):69–74. https://doi.org/10.1126/science.aaa4971

    Article  Google Scholar 

  33. Rodriguez-Salas N, Dominguez G, Barderas R, Mendiola M, García-Albéniz X, Maurel J et al (2017) Clinical relevance of colorectal cancer molecular subtypes. Crit Rev Oncol Hematol 109:9–19. https://doi.org/10.1016/j.critrevonc.2016.11.007

    Article  PubMed  Google Scholar 

  34. Peltomäki P (2003) Role of DNA mismatch repair defects in the pathogenesis of human cancer. J Clin Oncol 21(6):1174–1179. https://doi.org/10.1200/jco.2003.04.060

    Article  PubMed  Google Scholar 

  35. Sharma P, Allison JP (2015) The future of immune checkpoint therapy. Science (New York, NY) 348(6230):56–61. https://doi.org/10.1126/science.aaa8172

    Article  Google Scholar 

  36. Townsend SE, Allison JP (1993) Tumor rejection after direct costimulation of CD8+ T cells by B7-transfected melanoma cells. Science (New York, NY) 259(5093):368–370. https://doi.org/10.1126/science.7678351

    Article  Google Scholar 

  37. Wei SC, Duffy CR, Allison JP (2018) Fundamental mechanisms of immune checkpoint blockade therapy. Cancer Discov 8(9):1069–1086. https://doi.org/10.1158/2159-8290.cd-18-0367

    Article  PubMed  Google Scholar 

  38. Khalil DN, Smith EL, Brentjens RJ, Wolchok JD (2016) The future of cancer treatment: immunomodulation, CARs and combination immunotherapy. Nat Rev Clin Oncol 13(5):273–290. https://doi.org/10.1038/nrclinonc.2016.25

    Article  PubMed  PubMed Central  Google Scholar 

  39. Jacobs J, Smits E, Lardon F, Pauwels P, Deschoolmeester V (2015) Immune checkpoint modulation in colorectal cancer: what’s new and what to expect. J Immunol Res 2015:158038. https://doi.org/10.1155/2015/158038

    Article  PubMed  PubMed Central  Google Scholar 

  40. Ge J, Zhu L, Zhou J, Li G, Li Y, Li S et al (2015) Association between co-inhibitory molecule gene tagging single nucleotide polymorphisms and the risk of colorectal cancer in Chinese. J Cancer Res Clin Oncol 141(9):1533–1544. https://doi.org/10.1007/s00432-015-1915-4

    Article  PubMed  Google Scholar 

  41. Llosa NJ, Cruise M, Tam A, Wicks EC, Hechenbleikner EM, Taube JM et al (2015) The vigorous immune microenvironment of microsatellite instable colon cancer is balanced by multiple counter-inhibitory checkpoints. Cancer Discov 5(1):43–51. https://doi.org/10.1158/2159-8290.cd-14-0863

    Article  PubMed  Google Scholar 

  42. Arora SP, Mahalingam D (2018) Immunotherapy in colorectal cancer: for the select few or all? J Gastrointestinal Oncol 9(1):170–179. https://doi.org/10.21037/jgo.2017.06.10

    Article  Google Scholar 

  43. Pardoll DM (2012) The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 12(4):252–264. https://doi.org/10.1038/nrc3239

    Article  PubMed  PubMed Central  Google Scholar 

  44. Tran L, Theodorescu D (2020) Determinants of resistance to checkpoint inhibitors. Int J Mol Sci 21(5). https://doi.org/10.3390/ijms21051594

  45. Schrock AB, Ouyang C, Sandhu J, Sokol E, Jin D, Ross JS et al (2019) Tumor mutational burden is predictive of response to immune checkpoint inhibitors in MSI-high metastatic colorectal cancer. Ann Oncol 30(7):1096–1103. https://doi.org/10.1093/annonc/mdz134

    Article  PubMed  Google Scholar 

  46. Zemek RM, Chin WL, Nowak AK, Millward MJ, Lake RA, Lesterhuis WJ (2020) Sensitizing the tumor microenvironment to immune checkpoint therapy. Front Immunol 11:223. https://doi.org/10.3389/fimmu.2020.00223

    Article  PubMed  PubMed Central  Google Scholar 

  47. Xu L, Pelosof L, Wang R, McFarland HI, Wu WW, Phue JN et al (2020) NGS evaluation of colorectal cancer reveals interferon gamma dependent expression of immune checkpoint genes and identification of novel IFNγ induced genes. Front Immunol 11:224. https://doi.org/10.3389/fimmu.2020.00224

    Article  PubMed  PubMed Central  Google Scholar 

  48. Gao J, Shi LZ, Zhao H, Chen J, Xiong L, He Q et al (2016) Loss of IFN-γ pathway genes in tumor cells as a mechanism of resistance to anti-CTLA-4 therapy. Cell 167(2):397–404.e9. https://doi.org/10.1016/j.cell.2016.08.069

    Article  PubMed  PubMed Central  Google Scholar 

  49. Koveitypour Z, Panahi F, Vakilian M, Peymani M, Seyed Forootan F, Nasr Esfahani MH et al (2019) Signaling pathways involved in colorectal cancer progression. Cell Biosci 9(1):97. https://doi.org/10.1186/s13578-019-0361-4

    Article  PubMed  PubMed Central  Google Scholar 

  50. Roberts PJ, Der CJ (2007) Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the treatment of cancer. Oncogene 26(22):3291–3310. https://doi.org/10.1038/sj.onc.1210422

    Article  PubMed  Google Scholar 

  51. Caputo F, Santini C, Bardasi C, Cerma K, Casadei-Gardini A, Spallanzani A et al (2019) BRAF-mutated colorectal cancer: clinical and molecular insights. Int J Mol Sci 20(21):5369. https://doi.org/10.3390/ijms20215369

    Article  PubMed  PubMed Central  Google Scholar 

  52. Markowitz SD, Bertagnolli MM (2009) Molecular origins of cancer: Molecular basis of colorectal cancer. N Engl J Med 361(25):2449–2460. https://doi.org/10.1056/NEJMra0804588

    Article  PubMed  PubMed Central  Google Scholar 

  53. Nosho K, Irahara N, Shima K, Kure S, Kirkner GJ, Schernhammer ES et al (2008) Comprehensive biostatistical analysis of CpG island methylator phenotype in colorectal cancer using a large population-based sample. PLoS One 3(11):e3698. https://doi.org/10.1371/journal.pone.0003698

    Article  PubMed  PubMed Central  Google Scholar 

  54. Clarke CN, Kopetz ES (2015) BRAF mutant colorectal cancer as a distinct subset of colorectal cancer: clinical characteristics, clinical behavior, and response to targeted therapies. J Gastrointestinal Oncol 6(6):660–667. https://doi.org/10.3978/j.issn.2078-6891.2015.077

    Article  Google Scholar 

  55. Rajagopalan H, Bardelli A, Lengauer C, Kinzler KW, Vogelstein B, Velculescu VE (2002) Tumorigenesis: RAF/RAS oncogenes and mismatch-repair status. Nature 418(6901):934. https://doi.org/10.1038/418934a

    Article  PubMed  Google Scholar 

  56. Beeram M, Patnaik A, Rowinsky EK (2005) Raf: a strategic target for therapeutic development against cancer. J Clin Oncol 23(27):6771–6790. https://doi.org/10.1200/jco.2005.08.036

    Article  PubMed  Google Scholar 

  57. Fransén K, Klintenäs M, Osterström A, Dimberg J, Monstein HJ, Söderkvist P (2004) Mutation analysis of the BRAF, ARAF and RAF-1 genes in human colorectal adenocarcinomas. Carcinogenesis 25(4):527–533. https://doi.org/10.1093/carcin/bgh049

    Article  PubMed  Google Scholar 

  58. Tie J, Gibbs P, Lipton L, Christie M, Jorissen RN, Burgess AW et al (2011) Optimizing targeted therapeutic development: analysis of a colorectal cancer patient population with the BRAF(V600E) mutation. Int J Cancer 128(9):2075–2084. https://doi.org/10.1002/ijc.25555

    Article  PubMed  Google Scholar 

  59. Taieb J, Le Malicot K, Shi Q, Penault-Llorca F, Bouché O, Tabernero J et al (2016) Prognostic value of BRAF and KRAS mutations in MSI and MSS stage III colon cancer. J Natl Cancer Inst 109(5):djw272. https://doi.org/10.1093/jnci/djw272

    Article  PubMed  PubMed Central  Google Scholar 

  60. Taieb J, Shi Q, Pederson L, Alberts S, Wolmark N, Van Cutsem E et al (2019) Prognosis of microsatellite instability and/or mismatch repair deficiency stage III colon cancer patients after disease recurrence following adjuvant treatment: results of an ACCENT pooled analysis of seven studies. Ann Oncol 30(9):1466–1471. https://doi.org/10.1093/annonc/mdz208

    Article  PubMed  PubMed Central  Google Scholar 

  61. Wang L, Cunningham JM, Winters JL, Guenther JC, French AJ, Boardman LA et al (2003) BRAF mutations in colon cancer are not likely attributable to defective DNA mismatch repair. Cancer Res 63(17):5209–5212

    PubMed  Google Scholar 

  62. Sinicrope FA, Shi Q, Smyrk TC, Thibodeau SN, Dienstmann R, Guinney J et al (2015) Molecular markers identify subtypes of stage III colon cancer associated with patient outcomes. Gastroenterology 148(1):88–99. https://doi.org/10.1053/j.gastro.2014.09.041

    Article  PubMed  Google Scholar 

  63. Kim YH, Kakar S, Cun L, Deng G, Kim YS (2008) Distinct CpG island methylation profiles and BRAF mutation status in serrated and adenomatous colorectal polyps. Int J Cancer 123(11):2587–2593. https://doi.org/10.1002/ijc.23840

    Article  PubMed  Google Scholar 

  64. Kim G, McKee AE, Ning YM, Hazarika M, Theoret M, Johnson JR et al (2014) FDA approval summary: vemurafenib for treatment of unresectable or metastatic melanoma with the BRAFV600E mutation. Clin Cancer Res 20(19):4994–5000. https://doi.org/10.1158/1078-0432.ccr-14-0776

    Article  PubMed  Google Scholar 

  65. Kopetz S, Desai J, Chan E, Hecht JR, O'Dwyer PJ, Maru D et al (2015) Phase II Pilot Study of vemurafenib in patients with metastatic BRAF-mutated colorectal cancer. J Clin Oncol 33(34):4032–4038. https://doi.org/10.1200/JCO.2015.63.2497

    Article  PubMed  PubMed Central  Google Scholar 

  66. Prahallad A, Sun C, Huang S, Di Nicolantonio F, Salazar R, Zecchin D et al (2012) Unresponsiveness of colon cancer to BRAF(V600E) inhibition through feedback activation of EGFR. Nature 483(7387):100–103. https://doi.org/10.1038/nature10868

    Article  PubMed  Google Scholar 

  67. Corcoran RB, Ebi H, Turke AB, Coffee EM, Nishino M, Cogdill AP et al (2012) EGFR-mediated re-activation of MAPK signaling contributes to insensitivity of BRAF mutant colorectal cancers to RAF inhibition with vemurafenib. Cancer Discov 2(3):227–235. https://doi.org/10.1158/2159-8290.cd-11-0341

    Article  PubMed  PubMed Central  Google Scholar 

  68. Corcoran RB, André T, Atreya CE, Schellens JHM, Yoshino T, Bendell JC et al (2018) Combined BRAF, EGFR, and MEK inhibition in patients with BRAF(V600E)-mutant colorectal cancer. Cancer Discov 8(4):428–443. https://doi.org/10.1158/2159-8290.cd-17-1226

    Article  PubMed  PubMed Central  Google Scholar 

  69. Kopetz S, Guthrie KA, Morris VK, Lenz H-J, Magliocco AM, Maru D et al (2020) Randomized trial of irinotecan and cetuximab with or without vemurafenib in BRAF-Mutant Metastatic Colorectal Cancer (SWOG S1406). J Clin Oncol 39(4):285–294. https://doi.org/10.1200/JCO.20.01994

    Article  PubMed  PubMed Central  Google Scholar 

  70. Kopetz S, Grothey A, Yaeger R, Van Cutsem E, Desai J, Yoshino T et al (2019) Encorafenib, binimetinib, and cetuximab in BRAF V600E–mutated colorectal cancer. N Engl J Med 381(17):1632–1643. https://doi.org/10.1056/NEJMoa1908075

    Article  PubMed  Google Scholar 

  71. Tabernero J, Grothey A, Van Cutsem E, Yaeger R, Wasan H, Yoshino T et al (2021) Encorafenib Plus Cetuximab as a new standard of care for previously treated BRAF V600E-mutant metastatic colorectal cancer: updated survival results and subgroup analyses from the BEACON study. J Clin Oncol 39(4):273–284. https://doi.org/10.1200/jco.20.02088

    Article  PubMed  PubMed Central  Google Scholar 

  72. Kopetz S, Grothey A, Yaeger R, Ciardiello F, Desai J, Kim TW et al (2021) BREAKWATER: randomized phase 3 study of encorafenib (enco) + cetuximab (cetux) ± chemotherapy for first-line (1L) treatment (tx) of BRAF V600E-mutant (BRAFV600E) metastatic colorectal cancer (mCRC). J Clin Oncol 39(Suppl. 15):TPS3619. https://doi.org/10.1200/JCO.2021.39.15_suppl.TPS3619

    Article  Google Scholar 

  73. Corcoran R, Giannakis M, Allen J, Chen J, Pelka K, Chao S et al (2020) SO-26 Clinical efficacy of combined BRAF, MEK, and PD-1 inhibition in BRAFV600E colorectal cancer patients. Ann Oncol 31:S226–S2S7. https://doi.org/10.1016/j.annonc.2020.04.041

    Article  Google Scholar 

  74. Yang J, Yan J, Liu B (2018) Targeting VEGF/VEGFR to modulate antitumor immunity. Front Immunol 9:978. https://doi.org/10.3389/fimmu.2018.00978

    Article  PubMed  PubMed Central  Google Scholar 

  75. Wolchok JD, Saenger Y (2008) The mechanism of anti-CTLA-4 activity and the negative regulation of T-cell activation. Oncologist 13(Suppl. 4):2–9. https://doi.org/10.1634/theoncologist.13-S4-2

    Article  PubMed  Google Scholar 

  76. Zhu P, Hu C, Hui K, Jiang X (2017) The role and significance of VEGFR2(+) regulatory T cells in tumor immunity. Onco Targets Ther 10:4315–4319. https://doi.org/10.2147/ott.s142085

    Article  PubMed  PubMed Central  Google Scholar 

  77. Wallin J, Pishvaian MJ, Hernandez G, Yadav M, Jhunjhunwala S, Delamarre L et al (2016) Abstract 2651: clinical activity and immune correlates from a phase Ib study evaluating atezolizumab (anti-PDL1) in combination with FOLFOX and bevacizumab (anti-VEGF) in metastatic colorectal carcinoma. Cancer Res 76(Suppl. 14):2651. https://doi.org/10.1158/1538-7445.am2016-2651

    Article  Google Scholar 

  78. Cohen MH, Gootenberg J, Keegan P, Pazdur R (2007) FDA drug approval summary: bevacizumab plus FOLFOX4 as second-line treatment of colorectal cancer. Oncologist 12(3):356–361. https://doi.org/10.1634/theoncologist.12-3-356

    Article  PubMed  Google Scholar 

  79. Grothey A, Tabernero J, Arnold D, De Gramont A, Ducreux MP, O'Dwyer PJ et al (2018) LBA19 - Fluoropyrimidine (FP) + bevacizumab (BEV) + atezolizumab vs FP/BEV in BRAFwt metastatic colorectal cancer (mCRC): findings from Cohort 2 of MODUL—a multicentre, randomized trial of biomarker-driven maintenance treatment following first-line induction therapy. Ann Oncol 29:viii714–viii715. https://doi.org/10.1093/annonc/mdy424.020

    Article  Google Scholar 

  80. Antoniotti C, Borelli B, Rossini D, Pietrantonio F, Morano F, Salvatore L et al (2020) AtezoTRIBE: a randomised phase II study of FOLFOXIRI plus bevacizumab alone or in combination with atezolizumab as initial therapy for patients with unresectable metastatic colorectal cancer. BMC Cancer 20(1):683. https://doi.org/10.1186/s12885-020-07169-6

    Article  PubMed  PubMed Central  Google Scholar 

  81. Aranda E, Viéitez JM, Gómez-España A, Gil Calle S, Salud-Salvia A, Graña B et al (2020) FOLFOXIRI plus bevacizumab versus FOLFOX plus bevacizumab for patients with metastatic colorectal cancer and ≥3 circulating tumour cells: the randomised phase III VISNÚ-1 trial. ESMO Open 5(6). https://doi.org/10.1136/esmoopen-2020-000944

  82. Lwin Z, Gomez-Roca C, Saada-Bouzid E, Yanez E, Muñoz FL, Im SA et al (2020) LBA41 LEAP-005: Phase II study of lenvatinib (len) plus pembrolizumab (pembro) in patients (pts) with previously treated advanced solid tumours. Ann Oncol 31:S1170. https://doi.org/10.1016/j.annonc.2020.08.2271

    Article  Google Scholar 

  83. Gomez-Roca C, Yanez E, Im S-A, Castanon Alvarez E, Senellart H, Doherty M, et al. LEAP-005: a phase II multicohort study of lenvatinib plus pembrolizumab in patients with previously treated selected solid tumors—results from the colorectal cancer cohort. J Clin Oncol 2021;39(3_suppl):94-. https://doi.org/10.1200/JCO.2021.39.3_suppl.94

  84. Fukuoka S, Hara H, Takahashi N, Kojima T, Kawazoe A, Asayama M et al (2020) Regorafenib Plus Nivolumab in patients with advanced gastric or colorectal cancer: an open-label, dose-escalation, and dose-expansion phase Ib trial (REGONIVO, EPOC1603). J Clin Oncol 38(18):2053–2061. https://doi.org/10.1200/jco.19.03296

    Article  PubMed  Google Scholar 

  85. Grothey A, Van Cutsem E, Sobrero A, Siena S, Falcone A, Ychou M et al (2013) Regorafenib monotherapy for previously treated metastatic colorectal cancer (CORRECT): an international, multicentre, randomised, placebo-controlled, phase 3 trial. Lancet (London, England) 381(9863):303–312. https://doi.org/10.1016/s0140-6736(12)61900-x

    Article  PubMed  Google Scholar 

  86. Wang C, Chevalier D, Saluja J, Sandhu J, Lau C, Fakih M (2020) Regorafenib and nivolumab or pembrolizumab combination and circulating tumor DNA response assessment in refractory microsatellite stable colorectal cancer. Oncologist 25(8):e1188–e1e94. https://doi.org/10.1634/theoncologist.2020-0161

    Article  PubMed  PubMed Central  Google Scholar 

  87. MacDonald F, Zaiss DMW (2017) The immune system's contribution to the clinical efficacy of EGFR antagonist treatment. Front Pharmacol 8:575. https://doi.org/10.3389/fphar.2017.00575

    Article  PubMed  PubMed Central  Google Scholar 

  88. Ferris RL, Lenz HJ, Trotta AM, García-Foncillas J, Schulten J, Audhuy F et al (2018) Rationale for combination of therapeutic antibodies targeting tumor cells and immune checkpoint receptors: harnessing innate and adaptive immunity through IgG1 isotype immune effector stimulation. Cancer Treat Rev 63:48–60. https://doi.org/10.1016/j.ctrv.2017.11.008

    Article  PubMed  Google Scholar 

  89. Cremolini C, Antoniotti C, Lonardi S, Aprile G, Bergamo F, Masi G et al (2018) Activity and safety of cetuximab plus modified FOLFOXIRI followed by maintenance with cetuximab or bevacizumab for RAS and BRAF wild-type metastatic colorectal cancer: a randomized phase 2 clinical trial. JAMA Oncol 4(4):529–536. https://doi.org/10.1001/jamaoncol.2017.5314

    Article  PubMed  PubMed Central  Google Scholar 

  90. Holubec L, Polivka J Jr, Safanda M, Karas M, Liska V (2016) The role of cetuximab in the induction of anticancer immune response in colorectal cancer treatment. Anticancer Res 36(9):4421–4426. https://doi.org/10.21873/anticanres.10985

    Article  PubMed  Google Scholar 

  91. Boland PM, Hutson A, Maguire O, Minderman H, Fountzilas C, Iyer RV (2018) A phase Ib/II study of cetuximab and pembrolizumab in RAS-wt mCRC. J Clin Oncol 36(Suppl. 4):834. https://doi.org/10.1200/JCO.2018.36.4_suppl.834

    Article  Google Scholar 

  92. Stutvoet TS, Kol A, de Vries EG, de Bruyn M, Fehrmann RS, Terwisscha van Scheltinga AG et al (2019) MAPK pathway activity plays a key role in PD-L1 expression of lung adenocarcinoma cells. J Pathol 249(1):52–64. https://doi.org/10.1002/path.5280

    Article  PubMed  PubMed Central  Google Scholar 

  93. Hatzivassiliou G, Haling JR, Chen H, Song K, Price S, Heald R et al (2013) Mechanism of MEK inhibition determines efficacy in mutant KRAS- versus BRAF-driven cancers. Nature 501(7466):232–236. https://doi.org/10.1038/nature12441

    Article  PubMed  Google Scholar 

  94. Hellmann MD, Kim TW, Lee CB, Goh BC, Miller WH Jr, Oh DY et al (2019) Phase Ib study of atezolizumab combined with cobimetinib in patients with solid tumors. Ann Oncol 30(7):1134–1142. https://doi.org/10.1093/annonc/mdz113

    Article  PubMed  PubMed Central  Google Scholar 

  95. Eng C, Kim TW, Bendell J, Argilés G, Tebbutt NC, Di Bartolomeo M et al (2019) Atezolizumab with or without cobimetinib versus regorafenib in previously treated metastatic colorectal cancer (IMblaze370): a multicentre, open-label, phase 3, randomised, controlled trial. Lancet Oncol 20(6):849–861. https://doi.org/10.1016/s1470-2045(19)30027-0

    Article  PubMed  Google Scholar 

  96. Guerra J, Pinto C, Pinto D, Pinheiro M, Silva R, Peixoto A et al (2017) POLE somatic mutations in advanced colorectal cancer. Cancer Med 6(12):2966–2971. https://doi.org/10.1002/cam4.1245

    Article  PubMed  PubMed Central  Google Scholar 

  97. Domingo E, Freeman-Mills L, Rayner E, Glaire M, Briggs S, Vermeulen L et al (2016) Somatic POLE proofreading domain mutation, immune response, and prognosis in colorectal cancer: a retrospective, pooled biomarker study. Lancet Gastroenterol Hepatol 1(3):207–216. https://doi.org/10.1016/s2468-1253(16)30014-0

    Article  PubMed  Google Scholar 

  98. Gong J, Wang C, Lee PP, Chu P, Fakih M (2017) Response to PD-1 Blockade in microsatellite stable metastatic colorectal cancer harboring a POLE mutation. J Natl Comp Cancer Netw 15(2):142–147. https://doi.org/10.6004/jnccn.2017.0016

    Article  Google Scholar 

  99. Moffett JR, Namboodiri MA (2003) Tryptophan and the immune response. Immunol Cell Biol 81(4):247–265. https://doi.org/10.1046/j.1440-1711.2003.t01-1-01177.x

    Article  PubMed  Google Scholar 

  100. Munn DH, Shafizadeh E, Attwood JT, Bondarev I, Pashine A, Mellor AL (1999) Inhibition of T cell proliferation by macrophage tryptophan catabolism. J Exp Med 189(9):1363–1372. https://doi.org/10.1084/jem.189.9.1363

    Article  PubMed  PubMed Central  Google Scholar 

  101. Brandacher G, Perathoner A, Ladurner R, Schneeberger S, Obrist P, Winkler C et al (2006) Prognostic value of indoleamine 2,3-dioxygenase expression in colorectal cancer: effect on tumor-infiltrating T cells. Clin Cancer Res 12(4):1144–1151. https://doi.org/10.1158/1078-0432.ccr-05-1966

    Article  PubMed  Google Scholar 

  102. Ciardiello D, Vitiello PP, Cardone C, Martini G, Troiani T, Martinelli E et al (2019) Immunotherapy of colorectal cancer: challenges for therapeutic efficacy. Cancer Treatment Rev 76:22–32. https://doi.org/10.1016/j.ctrv.2019.04.003

    Article  Google Scholar 

  103. Beatty GL, O'Dwyer PJ, Clark J, Shi JG, Bowman KJ, Scherle PA et al (2017) First-in-human phase I study of the oral inhibitor of indoleamine 2,3-dioxygenase-1 epacadostat (INCB024360) in patients with advanced solid malignancies. Clin Cancer Res 23(13):3269–3276. https://doi.org/10.1158/1078-0432.ccr-16-2272

    Article  PubMed  PubMed Central  Google Scholar 

  104. Duffy MJ (2001) Carcinoembryonic antigen as a marker for colorectal cancer: is it clinically useful? Clin Chem 47(4):624–630

    Article  PubMed  Google Scholar 

  105. Bacac M, Fauti T, Sam J, Colombetti S, Weinzierl T, Ouaret D et al (2016) A Novel Carcinoembryonic Antigen T-Cell Bispecific Antibody (CEA TCB) for the treatment of solid tumors. Clin Cancer Res 22(13):3286–3297. https://doi.org/10.1158/1078-0432.ccr-15-1696

    Article  PubMed  Google Scholar 

  106. Tabernero J, Melero I, Ros W, Argiles G, Marabelle A, Rodriguez-Ruiz ME et al (2017) Phase Ia and Ib studies of the novel carcinoembryonic antigen (CEA) T-cell bispecific (CEA CD3 TCB) antibody as a single agent and in combination with atezolizumab: preliminary efficacy and safety in patients with metastatic colorectal cancer (mCRC). J Clin Oncol 35(Suppl. 15):3002. https://doi.org/10.1200/JCO.2017.35.15_suppl.3002

    Article  Google Scholar 

  107. Chuang YC, Tseng JC, Huang LR, Huang CM, Huang CF, Chuang TH (2020) Adjuvant effect of toll-like receptor 9 activation on cancer immunotherapy using checkpoint blockade. Front Immunol 11:1075. https://doi.org/10.3389/fimmu.2020.01075

    Article  PubMed  PubMed Central  Google Scholar 

  108. Kamath P, Darwin E, Arora H, Nouri K (2018) A review on imiquimod therapy and discussion on optimal management of basal cell carcinomas. Clin Drug Investig 38(10):883–899. https://doi.org/10.1007/s40261-018-0681-x

    Article  PubMed  Google Scholar 

  109. Kobold S, Wiedemann G, Rothenfußer S, Endres S (2014) Modes of action of TLR7 agonists in cancer therapy. Immunotherapy 6(10):1085–1095. https://doi.org/10.2217/imt.14.75

    Article  PubMed  Google Scholar 

  110. Gowda NM, Wu X, Gowda DC (2012) TLR9 and MyD88 are crucial for the development of protective immunity to malaria. J Immunol (Baltimore, MD: 1950) 188(10):5073–5085. https://doi.org/10.4049/jimmunol.1102143

    Article  Google Scholar 

  111. Chen M, Hu S, Li Y, Jiang TT, Jin H, Feng L (2020) Targeting nuclear acid-mediated immunity in cancer immune checkpoint inhibitor therapies. Signal Transduct Target Ther 5(1):270. https://doi.org/10.1038/s41392-020-00347-9

    Article  PubMed  PubMed Central  Google Scholar 

  112. Schmoll HJ, Wittig B, Arnold D, Riera-Knorrenschild J, Nitsche D, Kroening H et al (2014) Maintenance treatment with the immunomodulator MGN1703, a Toll-like receptor 9 (TLR9) agonist, in patients with metastatic colorectal carcinoma and disease control after chemotherapy: a randomised, double-blind, placebo-controlled trial. J Cancer Res Clin Oncol 140(9):1615–1624. https://doi.org/10.1007/s00432-014-1682-7

    Article  PubMed  PubMed Central  Google Scholar 

  113. Schmoll H-J, Riera-Knorrenschild J, Kopp H-G, Mayer F, Kroening H, Nitsche D et al (2015) Maintenance therapy with the TLR-9 agonist MGN1703 in the phase II IMPACT study of metastatic colorectal cancer patients: a subgroup with improved overall survival. J Clin Oncol 33(Suppl. 3):680. https://doi.org/10.1200/jco.2015.33.3_suppl.680

    Article  Google Scholar 

  114. Cunningham D, Zurlo A, Salazar R, Ducreux M, Waddell TS, Stein A et al (2015) IMPALA, a randomized phase III study in patients with metastatic colorectal carcinoma: immunomodulatory maintenance therapy with TLR-9 agonist MGN1703. J Clin Oncol 33(Suppl. 3):TPS791. https://doi.org/10.1200/jco.2015.33.3_suppl.tps791

    Article  Google Scholar 

  115. Cunningham D, Salazar R, Sobrero A, Ducreux MP, Van Cutsem E, Scheithauer W et al (2019) LBA33—Lefitolimod vs standard of care (SOC) for patients with metastatic colorectal cancer (mCRC) responding to first-line standard treatment: results from the randomized phase III IMPALA trial. Ann Oncol 30:v868–v869. https://doi.org/10.1093/annonc/mdz394.022

    Article  Google Scholar 

  116. Postow MA, Callahan MK, Barker CA, Yamada Y, Yuan J, Kitano S et al (2012) Immunologic correlates of the abscopal effect in a patient with melanoma. N Engl J Med 366(10):925–931. https://doi.org/10.1056/NEJMoa1112824

    Article  PubMed  PubMed Central  Google Scholar 

  117. Deng L, Liang H, Burnette B, Beckett M, Darga T, Weichselbaum RR et al (2014) Irradiation and anti-PD-L1 treatment synergistically promote antitumor immunity in mice. J Clin Invest 124(2):687–695. https://doi.org/10.1172/jci67313

    Article  PubMed  PubMed Central  Google Scholar 

  118. Stamell EF, Wolchok JD, Gnjatic S, Lee NY, Brownell I (2013) The abscopal effect associated with a systemic anti-melanoma immune response. Int J Radiat Oncol Biol Phys 85(2):293–295. https://doi.org/10.1016/j.ijrobp.2012.03.017

    Article  PubMed  Google Scholar 

  119. Hiniker SM, Chen DS, Reddy S, Chang DT, Jones JC, Mollick JA et al (2012) A systemic complete response of metastatic melanoma to local radiation and immunotherapy. Transl Oncol 5(6):404–407. https://doi.org/10.1593/tlo.12280

    Article  PubMed  PubMed Central  Google Scholar 

  120. Golden EB, Demaria S, Schiff PB, Chachoua A, Formenti SC (2013) An abscopal response to radiation and ipilimumab in a patient with metastatic non-small cell lung cancer. Cancer Immunol Res 1(6):365–372. https://doi.org/10.1158/2326-6066.cir-13-0115

    Article  PubMed  PubMed Central  Google Scholar 

  121. Rodríguez-Ruiz ME, Vanpouille-Box C, Melero I, Formenti SC, Demaria S (2018) Immunological mechanisms responsible for radiation-induced abscopal effect. Trends Immunol 39(8):644–655. https://doi.org/10.1016/j.it.2018.06.001

    Article  PubMed  PubMed Central  Google Scholar 

  122. Duffy AG, Makarova-Rusher OV, Pratt D, Kleiner DE, Fioravanti S, Walker M et al (2016) A pilot study of AMP-224, a PD-L2 Fc fusion protein, in combination with stereotactic body radiation therapy (SBRT) in patients with metastatic colorectal cancer. J Clin Oncol 34(Suppl. 4):560. https://doi.org/10.1200/jco.2016.34.4_suppl.560

    Article  Google Scholar 

  123. Segal NH, Kemeny NE, Cercek A, Reidy DL, Raasch PJ, Warren P et al (2016) Non-randomized phase II study to assess the efficacy of pembrolizumab (Pem) plus radiotherapy (RT) or ablation in mismatch repair proficient (pMMR) metastatic colorectal cancer (mCRC) patients. J Clin Oncol 34(Suppl. 15):3539. https://doi.org/10.1200/JCO.2016.34.15_suppl.3539

    Article  Google Scholar 

  124. Pardee AD, Wesa AK, Storkus WJ (2009) Integrating costimulatory agonists to optimize immune-based cancer therapies. Immunotherapy 1(2):249–264. https://doi.org/10.2217/1750743x.1.2.249

    Article  PubMed  Google Scholar 

  125. Bansal-Pakala P, Halteman BS, Cheng MH, Croft M (2004) Costimulation of CD8 T cell responses by OX40. J Immunol (Baltimore, MD: 1950) 172(8):4821–4825. https://doi.org/10.4049/jimmunol.172.8.4821

    Article  Google Scholar 

  126. Evans DE, Prell RA, Thalhofer CJ, Hurwitz AA, Weinberg AD (2001) Engagement of OX40 enhances antigen-specific CD4(+) T cell mobilization/memory development and humoral immunity: comparison of alphaOX-40 with alphaCTLA-4. J Immunol (Baltimore, MD: 1950) 167(12):6804–6811. https://doi.org/10.4049/jimmunol.167.12.6804

    Article  Google Scholar 

  127. Curti BD, Kovacsovics-Bankowski M, Morris N, Walker E, Chisholm L, Floyd K et al (2013) OX40 is a potent immune-stimulating target in late-stage cancer patients. Cancer Res 73(24):7189–7198. https://doi.org/10.1158/0008-5472.can-12-4174

    Article  PubMed  PubMed Central  Google Scholar 

  128. Emerson DA, Redmond WL (2018) Overcoming tumor-induced immune suppression: from relieving inhibition to providing costimulation with T cell agonists. BioDrugs 32(3):221–231. https://doi.org/10.1007/s40259-018-0277-2

    Article  PubMed  PubMed Central  Google Scholar 

  129. Narumi K, Miyakawa R, Shibasaki C, Henmi M, Mizoguchi Y, Ueda R et al (2019) Local administration of GITR agonistic antibody induces a stronger antitumor immunity than systemic delivery. Sci Rep 9(1):5562. https://doi.org/10.1038/s41598-019-41724-x

    Article  PubMed  PubMed Central  Google Scholar 

  130. Balmanoukian AS, Infante JR, Aljumaily R, Naing A, Chintakuntlawar AV, Rizvi NA et al (2020) Safety and clinical activity of MEDI1873, a Novel GITR agonist, in advanced solid tumors. Clin Cancer Res 26(23):6196–6203. https://doi.org/10.1158/1078-0432.ccr-20-0452

    Article  PubMed  Google Scholar 

  131. Etxeberria I, Glez-Vaz J, Teijeira Á, Melero I (2020) New emerging targets in cancer immunotherapy: CD137/4-1BB costimulatory axis. ESMO Open 4(Suppl. 3). https://doi.org/10.1136/esmoopen-2020-000733

  132. Curran MA, Kim M, Montalvo W, Al-Shamkhani A, Allison JP (2011) Combination CTLA-4 blockade and 4-1BB activation enhances tumor rejection by increasing T-cell infiltration, proliferation, and cytokine production. PLoS One 6(4):e19499. https://doi.org/10.1371/journal.pone.0019499

    Article  PubMed  PubMed Central  Google Scholar 

  133. Sinicrope FA, Ou F-S, Zemla T, Nixon AB, Mody K, Levasseur A et al (2019) Randomized trial of standard chemotherapy alone or combined with atezolizumab as adjuvant therapy for patients with stage III colon cancer and deficient mismatch repair (ATOMIC, Alliance A021502). J Clin Oncol 37(Suppl. 15):e15169. https://doi.org/10.1200/JCO.2019.37.15_suppl.e15169

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tanios Bekaii-Saab .

Editor information

Editors and Affiliations

Ethics declarations

Conflict of Interest: Puneet Raman, M.D., declares no conflicts of interest that might be relevant to the contents of this manuscript.

Gehan Botrus, M.D., Ph.D., declares no conflicts of interest that might be relevant to the contents of this manuscript.

Tanios S. Bekaii-Saab, M.D., declares: Research Funding (to institution): Boston Biomedical, Bayer, Amgen, Merck, Celgene, Lilly, Ipsen, Clovis, Seattle Genetics, Array Biopharma, Genentech, Abgenomics, Incyte, and eBMS. Consulting (to institution): Ipsen, Array Biopharma, Seattle Genetics, Bayer, Genentech, Incyte, and Merck. Consulting (to self): Boehringer Ingelheim, TreosBio, and Sobi. IDMC/DSMB (to self): AstraZeneca, Exelixis, Lilly, PanCan, and 1Globe. Scientific Advisory Board: Imugene, Immuneering, and Sun Biopharma. Inventions/Patents: WO/2018/183488 and WO/2019/055687.

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Raman, P., Botrus, G., Bekaii-Saab, T. (2022). Immunotherapy in the Treatment of Advanced Colorectal Cancer. In: Moehler, M., Foerster, F. (eds) Immune Strategies for Gastrointestinal Cancer. Cancer Immunotherapy, vol 2. Springer, Cham. https://doi.org/10.1007/13905_2021_12

Download citation

  • DOI: https://doi.org/10.1007/13905_2021_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-39943-5

  • Online ISBN: 978-3-031-39944-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics