Skip to main content

Fabrication of Textile-Based Scaffolds Using Electrospun Nanofibers for Biomedical Applications

  • Chapter
  • First Online:
Book cover Electrospun Polymeric Nanofibers

Part of the book series: Advances in Polymer Science ((POLYMER,volume 291))

Abstract

Even with its simplicity, ease of use, and wide variety of applications, the ELS technique has gained in popularity. The characteristics of EFs fibres (FBs) can be affected by changing process variables or polymeric solution (PLs) conditions. Many of the elements that impact ELS, however, are linked. An ideal ELS method keeps these parameters constant and consistently creates NFs with consistent physicochemical properties. The PLs might be aqueous, polymeric melt, or emulsion, resulting in NF production in various forms. Inverting the polarity and altering the collector design can also change the NF characteristics. Blending, surface functionalization, and emulsion generation are all methods for incorporating the active moiety into polymeric FBs. The multilayer polymer covering permits the incorporated active moiety to be released constantly, and the NFs may be modified to carry a variety of medications. Polymer (PLY)-derived EFs and NFs are utilized for DD, ANC, WH, BS, SiRNA delivery, stem cell treatment, and growth factors. This review compiles papers concerning the utilization of EFs and NFs in biomedical applications (BMA).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Huang ZM, Zhang YZ, Kotaki M, Ramakrishna S (2003) A review on polymer nanoFBs by electrospinning and their applications in nanocomposites. Compos Sci Technol 63(15):2223–2253

    CAS  Google Scholar 

  2. Li D, Xia Y (2004) Electrospinning of nanoFBs: reinventing the wheel? Adv Mater 16(14):1151–1170

    CAS  Google Scholar 

  3. Park WH, Jeong L, Yoo DI, Hudson S (2004) Effect of chitosan on morphology and conformation of electrospun silk fibroin nanoFBs. Polymer 45(21):7151–7157

    CAS  Google Scholar 

  4. Venugopal J, Ramakrishna S (2005) Applications of polymer nanoFBs in biomedicine and biotechnology. Appl Biochem Biotechnol 125(3):147–157

    CAS  Google Scholar 

  5. Ji Y, Ghosh K, Shu XZ, Li B, Sokolov JC, Prestwich GD et al (2006) Electrospun three-dimensional hyaluronic acid nanofibrous scaffolds. Biomaterials 27(20):3782–3792

    CAS  Google Scholar 

  6. Park S, Park K, Yoon H, Son J, Min T, Kim G (2007) Apparatus for preparing electrospun nanoFBs: designing an electrospinning process for nanofiber fabrication. Polym Int 56(11):1361–1366

    CAS  Google Scholar 

  7. Agarwal S, Wendorff JH, Greiner A (2008) Use of electrospinning technique for BMA. Polymer 49(26):5603–5621

    CAS  Google Scholar 

  8. Sill TJ, Von Recum HA (2008) Electrospinning: applications in drug delivery and tissue engineering. Biomaterials 29(13):1989–2006

    CAS  Google Scholar 

  9. Bhardwaj N, Kundu SC (2010) Electrospinning: a fascinating fiber fabrication technique. Biotechnol Adv 28(3):325–347

    CAS  Google Scholar 

  10. Zahedi P, Rezaeian I, Ranaei-Siadat SO, Jafari SH, Supaphol P (2010) A review on wound dressings with an emphasis on electrospun nanofibrous polymeric bandages. Polym Adv Technol 21(2):77–95

    CAS  Google Scholar 

  11. Sun K, Li ZH (2011) Preparations, properties and applications of chitosan based nanoFBs fabricated by electrospinning. Express Polym Lett 5(4)

    Google Scholar 

  12. Rieger KA, Birch NP, Schiffman JD (2013) Designing electrospun nanofiber mats to promote wound healing – a review. J Mater Chem B 1(36):4531–4541

    CAS  Google Scholar 

  13. Nosar MN, Salehi M, Ghorbani S, Beiranvand SP, Goodarzi A, Azami M (2016) Characterization of wet-electrospun cellulose acetate based 3-dimensional scaffolds for skin tissue engineering applications: influence of cellulose acetate concentration. Cellul 23(5):3239–3248

    CAS  Google Scholar 

  14. Alavarse AC, de Oliveira Silva FW, Colque JT, da Silva VM, Prieto T, Venancio EC, Bonvent JJ (2017) Tetracycline hydrochloride-loaded electrospun nanoFBs mats based on PVA and chitosan for wound dressing. Mater Sci Eng C 77:271–281

    CAS  Google Scholar 

  15. Maver T, Smrke DM, Kurečič M, Gradišnik L, Maver U, Kleinschek KS (2018) Combining 3D printing and electrospinning for preparation of pain-relieving wound-dressing materials. J Sol-Gel Sci Technol 88(1):33–48

    CAS  Google Scholar 

  16. Samadian H, Salehi M, Farzamfar S, Vaez A, Ehterami A, Sahrapeyma H et al (2018) In vitro and in vivo evaluation of electrospun cellulose acetate/gelatin/hydroxyapatite nanocomposite mats for wound dressing applications. Artif Cells Nanomed Biotechnol 46(sup1):964–974

    CAS  Google Scholar 

  17. Dodero A, Scarfi S, Pozzolini M, Vicini S, Alloisio M, Castellano M (2019) Alginate-based electrospun membranes containing ZnO nanoparticles as potential wound healing patches: biological, mechanical, and physicochemical characterization. ACS Appl Mater Interfaces 12(3):3371–3381

    Google Scholar 

  18. Yang S, Zhang X, Zhang D (2019) Electrospun chitosan/poly (vinyl alcohol)/graphene oxide nanofibrous membrane with ciprofloxacin antibiotic drug for potential wound dressing application. Int J Mol Sci 20(18):4395

    CAS  Google Scholar 

  19. Hadisi Z, Farokhi M, Bakhsheshi-Rad HR, Jahanshahi M, Hasanpour S, Pagan E et al (2020) Hyaluronic acid (HA)-based silk fibroin/zinc oxide core–shell electrospun dressing for burn wound management. Macromol Biosci 20(4):1900328

    CAS  Google Scholar 

  20. Samadian H, Zamiri S, Ehterami A, Farzamfar S, Vaez A, Khastar H et al (2020) Electrospun cellulose acetate/gelatin nanofibrous wound dressing containing berberine for diabetic foot ulcer healing: in vitro and in vivo studies. Sci Rep 10(1):1–12

    Google Scholar 

  21. Wang F, Hu S, Jia Q, Zhang L (2020) Advances in electrospinning of natural biomaterials for wound dressing. J Nanomater 2020

    Google Scholar 

  22. Alven S, Buyana B, Feketshane Z, Aderibigbe BA (2021) Electrospun nanoFBs/nanofibrous scaffolds loaded with silver nanoparticles as effective antibacterial wound dressing materials. Pharmaceutics 13(7):964

    CAS  Google Scholar 

  23. de Castro KC, Campos MGN, Mei LHI (2021) Hyaluronic acid electrospinning: challenges, applications in wound dressings and new perspectives. Int J Biol Macromol 173:251–266

    CAS  Google Scholar 

  24. Liang W, Jiang M, Zhang J, Dou X, Zhou Y, Jiang Y et al (2021) Novel antibacterial cellulose diacetate-based composite 3D scaffold as potential wound dressing. J Mater Sci Technol 89:225–232

    CAS  Google Scholar 

  25. Su S, Bedir T, Kalkandelen C, Başar AO, Şaşmazel HT, Ustundag CB et al (2021) Coaxial and emulsion electrospinning of extracted hyaluronic acid and keratin based nanoFBs for wound healing applications. Eur Polym J 142:110158

    CAS  Google Scholar 

  26. Yeh CT, Chen CY (2017) pH-responsive and pyrene based electrospun nanoFBs for DNA adsorption and detection. RSC Adv 7(10):6023–6030

    CAS  Google Scholar 

  27. Shahidi S (2014) Novel method for ultraviolet protection and flame retardancy of cotton fabrics by low-temperature plasma. Cellul 21(1):757–768

    CAS  Google Scholar 

  28. Ju J, Shi Z, Deng N, Liang Y, Kang W, Cheng B (2017) Designing waterproof breathable material with moisture unidirectional transport characteristics based on a TPU/TBAC tree-like and TPU nanofiber double-layer membrane fabricated by electrospinning. RSC Adv 7(51):32155–32163

    CAS  Google Scholar 

  29. Wu S, Zhang Y, Liu P, Qin X (2016) Polyacrylonitrile nanofiber yarns and fabrics produced using a novel electrospinning method combined with traditional textile techniques. Text Res J 86(16):1716–1727

    CAS  Google Scholar 

  30. Jeong SI, Krebs MD, Bonino CA, Khan SA, Alsberg E (2010) Electrospun alginate NanoFBs with controlled cell adhesion for tissue engineering a. Macromol Biosci 10(8):934–943

    CAS  Google Scholar 

  31. An J, Zhang H, Zhang J, Zhao Y, Yuan X (2009) Preparation and antibacterial activity of electrospun chitosan/poly (ethylene oxide) membranes containing silver nanoparticles. Colloid Polym Sci 287(12):1425–1434

    CAS  Google Scholar 

  32. Fazli Y, Shariatinia Z (2017) Controlled release of cefazolin sodium antibiotic drug from electrospun chitosan-polyethylene oxide nanofibrous Mats. Mater Sci Eng C 71:641–652

    CAS  Google Scholar 

  33. Li H, Yang W (2016) Electrospinning technology in non-woven fabric manufacturing. Non-woven Fabrics 33

    Google Scholar 

  34. Zhang Y, Ouyang H, Lim CT, Ramakrishna S, Huang ZM (2005) Electrospinning of gelatin FBs and gelatin/PCL composite fibrous scaffolds. J Biomed Mater Res B Appl Biomater 72(1):156–165

    Google Scholar 

  35. Li D, Tao L, Shen Y, Sun B, Xie X, Ke Q et al (2020) Fabrication of multilayered nanofiber scaffolds with a highly aligned nanofiber yarn for anisotropic tissue regeneration. ACS Omega 5(38):24340–24350

    CAS  Google Scholar 

  36. Ko F, Gogotsi Y, Ali A, Naguib N, Ye H, Yang GL et al (2003) Electrospinning of continuous carbon nanotube-filled nanofiber yarns. Adv Mater 15(14):1161–1165

    CAS  Google Scholar 

  37. Yan H, Liu L, Zhang Z (2011) Continually fabricating staple yarns with aligned electrospun polyacrylonitrile nanoFBs. Mater Lett 65(15–16):2419–2421

    CAS  Google Scholar 

  38. Matsumoto H, Imaizumi S, Konosu Y, Ashizawa M, Minagawa M, Tanioka A et al (2013) Electrospun composite nanofiber yarns containing oriented graphene nanoribbons. ACS Appl Mater Interfaces 5(13):6225–6231

    CAS  Google Scholar 

  39. Maleki H, Gharehaghaji AA, Moroni L, Dijkstra PJ (2013) Influence of the solvent type on the morphology and mechanical properties of electrospun PLLA yarns. Biofabrication 5(3):035014

    CAS  Google Scholar 

  40. Afifi AM, Nakano S, Yamane H, Kimura Y (2010) Electrospinning of continuous aligning yarns with a ‘funnel’ target. Macromol Mater Eng 295(7):660–665

    CAS  Google Scholar 

  41. Wu Y, Wang L, Guo B, Ma PX (2017) Interwoven aligned conductive nanofiber yarn/hydrogel composite scaffolds for engineered 3D cardiac anisotropy. ACS Nano 11(6):5646–5659

    CAS  Google Scholar 

  42. Montolio S, Abarca G, Porcar R, Dupont J, Burguete MI, García-Verdugo E, Luis SV (2017) Hierarchically structured polymeric ionic liquids and polyvinylpyrrolidone mat-FBs fabricated by electrospinning. J Mater Chem A 5(20):9733–9744

    CAS  Google Scholar 

  43. Stanković SB, Popović D, Poparić GB (2008) Thermal properties of textile fabrics made of natural and regenerated cellulose FBs. Polym Test 27(1):41–48

    Google Scholar 

  44. Zhou Y, He J, Wang H, Nan N, Qi K, Cui S (2017) Fabrication of superhydrophobic nanofiber fabric with hierarchical nanofiber structure. E-Polymers 17(3):249–254

    CAS  Google Scholar 

  45. Yao C, Li X, Song T (2009) Preparation and characterization of zein and zein/poly-L-lactide nanofiber yarns. J Appl Polym Sci 114(4):2079–2086

    CAS  Google Scholar 

  46. Sun F, Yao C, Song T, Li X (2011) Fabrication of poly (vinylidenefluoride-co-hexafluoropropylene) nanofiber yarns by conjugate electrospinning. J Text Inst 102(7):633–638

    CAS  Google Scholar 

  47. Ventura H, Sorrentino L, Laguna-Gutierrez E, Rodriguez-Perez MA, Ardanuy M (2018) Gas dissolution foaming as a novel approach for the production of lightweight biocomposites of PHB/natural fibre fabrics. Polymers 10:249

    Google Scholar 

  48. Sambaer W, Zatloukal M, Kimmer D (2011) 3D modeling of filtration process via polyurethane nanofiber based nonwoven filters prepared by electrospinning process. Chem Eng Sci 66(4):613–623

    CAS  Google Scholar 

  49. Vitchuli N, Shi Q, Nowak J, Kay K, Caldwell JM, Breidt F et al (2011) Multifunctional ZnO/nylon 6 nanofiber mats by an electrospinning–electrospraying hybrid process for use in protective applications. Sci Technol Adv Mater

    Google Scholar 

  50. Moon S, Ku BC, Emrick T, Coughlin BE, Farris RJ (2009) Flame resistant electrospun polymer nanoFBs from deoxybenzoin-based polymers. J Appl Polym Sci 111(1):301–307

    CAS  Google Scholar 

  51. Uğur ŞS, Sarıışık M, Aktaş AH, Uçar MÇ, Erden E (2010) Modifying of cotton fabric surface with nano-ZnO multilayer films by layer-by-layer deposition method. Nanoscale Res Lett 5(7):1204–1210

    Google Scholar 

  52. Becheri A, Dürr M, Nostro PL, Baglioni P (2008) Synthesis and characterization of zinc oxide nanoparticles: application to textiles as UV-absorbers. J Nanopart Res 10(4):679–689

    CAS  Google Scholar 

  53. Abd El-Hady MM, Farouk A, Sharaf S (2013) Flame retardancy and UV protection of cotton based fabrics using nano ZnO and polycarboxylic acids. Carbohydr Polym 92(1):400–406

    CAS  Google Scholar 

  54. Pant HR, Bajgai MP, Nam KT, Seo YA, Pandeya DR, Hong ST, Kim HY (2011) Electrospun nylon-6 spider-net like nanofiber mat containing TiO2 nanoparticles: a multifunctional nanocomposite textile material. J Hazard Mater 185(1):124–130

    CAS  Google Scholar 

  55. Lee E, Song Y, Lee S (2019) Crosslinking of lignin/poly (vinyl alcohol) nanocomposite fiber webs and their antimicrobial and ultraviolet-protective properties. Text Res J 89(1):3–12

    CAS  Google Scholar 

  56. Baji A, Agarwal K, Oopath SV (2020) Emerging developments in the use of electrospun FBs and membranes for protective clothing applications. Polymers 12(2):492

    CAS  Google Scholar 

  57. Wang N, Yang Y, Al-Deyab SS, El-Newehy M, Yu J, Ding B (2015) Ultra-light 3D nanofibre-nets binary structured nylon 6–polyacrylonitrile membranes for efficient filtration of fine particulate matter. J Mater Chem A 3(47):23946–23954

    CAS  Google Scholar 

  58. Zhang M, Li X, Li S, Liu Y, Hao L (2016) Electrospun poly (l-lactide)/zein nanofiber mats loaded with Rana chensinensis skin peptides for wound dressing. J Mater Sci Mater Med 27(9):1–12

    Google Scholar 

  59. Parangusan H, Ponnamma D, Hassan MK, Adham S, Al-Maadeed MAA (2019) Designing carbon nanotube-based oil absorbing membranes from gamma irradiated and electrospun polystyrene nanocomposites. Materials 12(5):709

    CAS  Google Scholar 

  60. Abbas JA, Said IA, Mohamed MA, Yasin SA, Ali ZA, Ahmed IH (2018) Electrospinning of polyethylene terephthalate (PET) nanoFBs: optimization study using taguchi design of experiment. In: IOP conference series: materials science and engineering, vol 454(1), IOP Publishing, p 012130

    Google Scholar 

  61. Salva JM, Gutierrez DD, Ching LA, Ucab PM, Cascon H, Tan NP (2018) Solution blow spinning (SBS)-assisted synthesis of well-defined carboxymethyl cellulose (CMC) nanowhiskers. Nanotechnology 29(50):50LT01

    Google Scholar 

  62. Zhuang X, Yang X, Shi L, Cheng B, Guan K, Kang W (2012) Solution blowing of submicron-scale cellulose FBs. Carbohydr Polym 90(2):982–987

    CAS  Google Scholar 

  63. Jahangiri M, Adl J, Shahtaheri SJ, Rashidi A, Ghorbanali A, Kakooe H et al (2013) Preparation of a new adsorbent from activated carbon and carbon nanofiber (AC/CNF) for manufacturing organic-vacbpour respirator cartridge. Iranian J Environ Health Sci Eng 10(1):1–8

    Google Scholar 

  64. Lee S, Cho AR, Park D, Kim JK, Han KS, Yoon IJ et al (2019) Reusable polybenzimidazole nanofiber membrane filter for highly breathable PM2. 5 dust proof mask. ACS Appl Mater Interfaces 11(3):2750–2757

    CAS  Google Scholar 

  65. Shanmugam V, Babu K, Garrison TF, Capezza AJ, Olsson RT, Ramakrishna S et al (2021) Potential natural polymer-based nanofibres for the development of facemasks in countering viral outbreaks. J Appl Polym Sci 138(27):50658

    CAS  Google Scholar 

  66. Li H, Wang Z, Zhang H, Pan Z (2018) Nanoporous PLA/(chitosan nanoparticle) composite fibrous membranes with excellent air filtration and antibacterial performance. Polymers 10(10):1085

    Google Scholar 

  67. Karunanidhi A, David PS, Fathima NN (2020) Electrospun keratin-polysulfone blend membranes for treatment of tannery effluents. Water Air Soil Pollut 231:1–11

    Google Scholar 

  68. Kadam V, Truong YB, Schutz J, Kyratzis IL, Padhye R, Wang L (2021) Gelatin/β–cyclodextrin bio–NanoFBs as respiratory filter media for filtration of aerosols and volatile organic compounds at low air resistance. J Hazard Mater 403:123841

    CAS  Google Scholar 

  69. Min K, Kim S, Kim S (2018) Silk protein nanoFBs for highly efficient, eco-friendly, optically translucent, and multifunctional air filters. Sci Rep 8:9598

    Google Scholar 

  70. Khandaker M, Progri H, Arasu DT, Nikfarjam S, Shamim N (2021) Use of polycaprolactone electrospun nanofiber mesh in a face mask. Materials 14(15):4272

    CAS  Google Scholar 

  71. Nguyen NQ, Chen TF, Lo CT (2021) Confined crystallization and chain conformational change in electrospun poly (ethylene oxide) nanoFBs. Polym J:1–11

    Google Scholar 

  72. Esmaeili A, Haseli M (2017) Optimization, synthesis, and characterization of coaxial electrospun sodium carboxymethyl cellulose-graft-methyl acrylate/poly (ethylene oxide) nanoFBs for potential drug-delivery applications. Carbohydr Polym 173:645–653

    CAS  Google Scholar 

  73. Jung HS, Kim MH, Shin JY, Park SR, Jung JY, Park WH (2018) Electrospinning and wound healing activity of β-chitin extracted from cuttlefish bone. Carbohydr Polym 193:205–211

    CAS  Google Scholar 

  74. Fonseca LM, de Oliveira JP, de Oliveira PD, da Rosa Zavareze E, Dias ARG, Lim LT (2019) Electrospinning of native and anionic corn starch FBs with different amylose contents. Food Res Int 116:1318–1326

    CAS  Google Scholar 

  75. Qin ZY, Jia XW, Liu Q, Kong BH, Wang H (2019) Fast dissolving oral films for drug delivery prepared from chitosan/pullulan electrospinning nanoFBs. Int J Biol Macromol 137:224–231

    CAS  Google Scholar 

  76. Tebyetekerwa M, Xu Z, Yang S, Ramakrishna S (2020) Electrospun nanoFBs-based face masks. Adv Fiber Mater 2(3):161–166

    CAS  Google Scholar 

  77. Erben J, Jencova V, Chvojka J, Blazkova L, Strnadova K, Modrak M, Kostakova EK (2016) The combination of meltblown technology and electrospinning–the influence of the ratio of micro and nanoFBs on cell viability. Mater Lett 173:153–157

    CAS  Google Scholar 

  78. Al-Hazeem N (2021) Manufacture of fibroustructure facemask to protect against coronavirus using electrospinning. Medico Res Chronicles 8(2):103–110

    Google Scholar 

  79. Lyons FG, Al-Munajjed AA, Kieran SM, Toner ME, Murphy CM, Duffy GP, O’Brien FJ (2010) The healing of bony defects by cell-free collagen-based scaffolds compared to stem cell-seeded tissue engineered constructs. Biomaterials 31:9232–9243

    CAS  Google Scholar 

  80. Maisani M, Ziane S, Ehret C, Levesque L, Siadous R, Le Meins JF et al (2018) A new composite hydrogel combining the biological properties of collagen with the mechanical properties of a supramolecular scaffold for bone tissue engineering. J Tissue Eng Regen Med 12(3):e1489–e1500

    CAS  Google Scholar 

  81. Frasca S, Norol F, Le Visage C, Collombet JM, Letourneur D, Holy X, Ali ES (2017) Calcium-phosphate ceramics and polysaccharide-based hydrogel scaffolds combined with mesenchymal stem cell differently support bone repair in rats. J Mater Sci Mater Med 28(2):35

    Google Scholar 

  82. Rong D, Chen P, Yang Y, Li Q, Wan W, Fang X et al (2016) Fabrication of gelatin/PCL electrospun fiber mat with bone powder and the study of its biocompatibility. J Funct Biomater 7(1):6

    Google Scholar 

  83. Arakawa C, Ng R, Tan S, Kim S, Wu B, Lee M (2017) Photopolymerizable chitosan–collagen hydrogels for bone tissue engineering. J Tissue Eng Regen Med 11(1):164–174

    CAS  Google Scholar 

  84. Salifu AA, Lekakou C, Labeed FH (2017) Electrospun oriented gelatin-hydroxyapatite fiber scaffolds for bone tissue engineering. J Biomed Mater Res A 105(7):1911–1926

    CAS  Google Scholar 

  85. Uebersax L, Apfel T, Nuss KM, Vogt R, Kim HY, Meinel L et al (2013) Biocompatibility and osteoconduction of macroporous silk fibroin implants in cortical defects in sheep. Eur J Pharm Biopharm 85(1):107–118

    CAS  Google Scholar 

  86. Chang HM, Huang CC, Parasuraman VR, Jhu JJ, Tsai CY, Chao HY et al (2017) In vivo degradation of poly (ε-caprolactone) films in gastro intestinal (GI) tract. Mater Today Commun 11:18–25

    CAS  Google Scholar 

  87. Cengiz F, Jirsak O (2009) The effect of salt on the roller electrospinning of polyurethane nanoFBs. FBs Polym 10(2):177–184

    CAS  Google Scholar 

  88. Geng X, Kwon OH, Jang J (2005) Electrospinning of chitosan dissolved in concentrated acetic acid solution. Biomaterials 26(27):5427–5432

    CAS  Google Scholar 

  89. Jarusuwannapoom T, Hongrojjanawiwat W, Jitjaicham S, Wannatong L, Nithitanakul M, Pattamaprom C et al (2005) Effect of solvents on electro-spinnability of polystyrene solutions and morphological appearance of resulting electrospun polystyrene FBs. Eur Polym J 41(3):409–421

    CAS  Google Scholar 

  90. Zeng J, Haoqing H, Schaper A, Wendorff JH, Greiner A (2003) Poly-L-lactide nanoFBs by electrospinning – influence of solution viscosity and electrical conductivity on fiber diameter and fiber morphology. e-Polymers 3(1)

    Google Scholar 

  91. Cicala G, Latteri A, Mannino S, Ognibene G, Blanco I (2018) Influence of soluble electrospun co-polyethersulfone veils on dynamic mechanical and morphological properties of epoxy composites: effect of polymer molar mass. Adv Polym Technol 37(3):798–809

    CAS  Google Scholar 

  92. Liu M, Zeng X, Ma C, Yi H, Ali Z, Mou X et al (2017) Injectable hydrogels for cartilage and bone tissue engineering. Bone Res 5(1):1–20

    Google Scholar 

  93. Costa F, Silva R, Boccaccini AR (2018) Fibrous protein-based biomaterials (silk, keratin, elastin, and resilin proteins) for tissue regeneration and repair. Peptides Proteins Biomater Tissue Regeneration Repair:175–204

    Google Scholar 

  94. Gulati K, Meher MK, Poluri KM (2017) Glycosaminoglycan-based resorbable polymer composites in tissue refurbishment. Regen Med 12(4):431–457

    CAS  Google Scholar 

  95. Kirker-Head C, Karageorgiou V, Hofmann S, Fajardo R, Betz O, Merkle HP et al (2007) BMP-silk composite matrices heal critically sized femoral defects. Bone 41(2):247–255

    CAS  Google Scholar 

  96. Gao Y, Shao W, Qian W, He J, Zhou Y, Qi K et al (2018) Biomineralized poly (l-lactic-co-glycolic acid)-tussah silk fibroin nanofiber fabric with hierarchical architecture as a scaffold for bone tissue engineering. Mater Sci Eng C 84:195–207

    CAS  Google Scholar 

  97. Ekaputra AK, Prestwich GD, Cool SM, Hutmacher DW (2011) The three- dimensional vascularization of growth factor-releasing hybrid scaffold of poly (ɛ-caprolactone)/collagen FBs and hyaluronic acid hydrogel. Biomaterials 32(32):8108–8117

    CAS  Google Scholar 

  98. Athanasiou KA, Niederauer GG, Agrawal CM (1996) Sterilization, toxicity, biocompatibility and clinical applications of polylactic acid/polyglycolic acid copolymers. Biomaterials 17(2):93–102

    CAS  Google Scholar 

  99. Chai Y, Lin D, Ma Y, Yuan Y, Liu C (2017) RhBMP-2 loaded MBG/PEGylated poly (glycerol sebacate) composite scaffolds for rapid bone regeneration. J Mater Chem B 5(24):4633–4647

    CAS  Google Scholar 

  100. Eslami H, Lisar HA, Kashi TSJ, Tahriri M, Ansari M, Rafiei T et al (2018) Poly (lactic-co-glycolic acid)(PLGA)/TiO2 nanotube bioactive composite as a novel scaffold for bone tissue engineering: in vitro and in vivo studies. Biologicals 53:51–62

    CAS  Google Scholar 

  101. Gentile P, Chiono V, Carmagnola I, Hatton PV (2014) An overview of poly (lactic- co-glycolic) acid (PLGA)-based biomaterials for bone tissue engineering. Int J Mol Sci 15(3):3640–3659

    CAS  Google Scholar 

  102. Jose MV, Thomas V, Johnson KT, Dean DR, Nyairo E (2009) Aligned PLGA/HA nanofibrous nanocomposite scaffolds for bone tissue engineering. Acta Biomater 5(1):305–315

    CAS  Google Scholar 

  103. Liu H, Slamovich EB, Webster TJ (2006) Less harmful acidic degradation of poly (lactic-co-glycolic acid) bone tissue engineering scaffolds through titania nanoparticle addition. Int J Nanomedicine 1(4):541

    CAS  Google Scholar 

  104. Pham HN, Pham THG, Nguyen DT, Phan QT, Le TTH, Ha PT et al (2017) Magnetic inductive heating of organs of mouse models treated by copolymer coated Fe3O4 nanoparticles. Adv Nat Sci Nanosci Nanotechnol 8(2):025013

    Google Scholar 

  105. Zhu Y, Wang Z, Zhou H, Li L, Zhu Q, Zhang P (2017) An injectable hydroxyapatite/poly (lactide-co-glycolide) composite reinforced by micro/nano-hybrid poly (glycolide) FBs for bone repair. Mater Sci Eng C 80:326–334

    CAS  Google Scholar 

  106. Rezk AI, Mousa HM, Lee J, Park CH, Kim CS (2019) Composite PCL/HA/simvastatin electrospun nanofiber coating on biodegradable Mg alloy for orthopedic implant application. J Coat Technol Res 16(2):477–489

    CAS  Google Scholar 

  107. Shrestha BK, Shrestha S, Tiwari AP, Kim JI, Ko SW, Kim HJ et al (2017) Bio-inspired hybrid scaffold of zinc oxide-functionalized multi-wall carbon nanotubes reinforced polyurethane nanoFBs for bone tissue engineering. Mater Des 133:69–81

    CAS  Google Scholar 

  108. Baumgarten PK (1971) Electrostatic spinning of acrylic microFBs. J Colloid Interface Sci 36(1):71–79

    CAS  Google Scholar 

  109. Zhang YZ, Wang X, Feng Y, Li J, Lim CT, Ramakrishna S (2006) Coaxial electrospinning of (fluorescein isothiocyanate-conjugated bovine serum albumin)- encapsulated poly (ε-caprolactone) nanoFBs for sustained release. Biomacromolecules 7(4):1049–1057

    CAS  Google Scholar 

  110. Bergshoef MM, Vancso GJ (1999) Transparent nanocomposites with ultrathin, electrospun nylon-4, 6 fiber reinforcement. Adv Mater 11(16):1362–1365

    CAS  Google Scholar 

  111. Ozdemir Z, Ozdemir A, Basim GB (2016) Application of chemical mechanical polishing process on titanium based implants. Mater Sci Eng C 68:383–396

    CAS  Google Scholar 

  112. Aziz S, Sabzi M, Fattahi A, Arkan E (2017) Electrospun silk fibroin/PAN double- layer nanofibrous membranes containing polyaniline/TiO 2 nanoparticles for anionic dye removal. J Polym Res 24(9):1–7

    CAS  Google Scholar 

  113. Bang S, Ko YG, Kim WI, Cho D, Park WH, Kwon OH (2017) Preventing postoperative tissue adhesion using injectable carboxymethyl cellulose-pullulan hydrogels. Int J Biol Macromol 105:886–893

    CAS  Google Scholar 

  114. Bi B, Liu H, Kang W, Zhuo R, Jiang X (2019) An injectable enzymatically crosslinked tyramine-modified carboxymethyl chitin hydrogel for BMA. Colloids Surf B Biointerfaces 175:614–624

    CAS  Google Scholar 

  115. Bidgoli MR, Alemzadeh I, Tamjid E, Khafaji M, Vossoughi M (2019) Fabrication of hierarchically porous silk fibroin-bioactive glass composite scaffold via indirect 3D printing: effect of particle size on physico-mechanical properties and in vitro cellular behavior. Mater Sci Eng C 103:109688

    CAS  Google Scholar 

  116. Frauchiger DA, Tekari A, Wöltje M, Fortunato G, Benneker LM, Gantenbein B (2017) A review of the application of reinforced hydrogels and silk as biomaterials for intervertebral disc repair. Eur Cells Mater eCM 34:271–290

    CAS  Google Scholar 

  117. Han J, Su H, Dong Q, Zhang D, Ma X, Zhang C (2010) Patterning and photoluminescence of CdS nanocrystallites on silk fibroin fiber. J Nanopart Res 12(1):347–356

    CAS  Google Scholar 

  118. Kim JS, Reneker DH (1999) Polybenzimidazole nanofiber produced by electrospinning. Polym Eng Sci 39(5):849–854

    CAS  Google Scholar 

  119. Fong H, Reneker DH (1999) Elastomeric nanoFBs of styrene–butadiene–styrene triblock copolymer. J Polym Sci B 37(24):3488–3493

    CAS  Google Scholar 

  120. Kim KW, Lee KH, Khil MS, Ho YS, Kim HY (2004) The effect of molecular weight and the linear velocity of drum surface on the properties of electrospun poly (ethylene terephthalate) nonwovens. FBs and Polymers 5(2):122–127

    CAS  Google Scholar 

  121. Zhou Y, Freitag M, Hone J, Staii C, Johnson Jr AT, Pinto NJ, MacDiarmid AG (2003) Fabrication and electrical characterization of polyaniline-based nanoFBs with diameter below 30 nm. Appl Phys Lett 83(18):3800–3802

    CAS  Google Scholar 

  122. Liao IC, Chen S, Liu JB, Leong KW (2009) Sustained viral gene delivery through core-shell FBs. J Control Release 139(1):48–55

    CAS  Google Scholar 

  123. Liao IC, Leong KW (2011) Efficacy of engineered FVIII-producing skeletal muscle enhanced by growth factor-releasing co-axial electrospun FBs. Biomaterials 32(6):1669–1677

    CAS  Google Scholar 

  124. Xu CY, Inai R, Kotaki M, Ramakrishna S (2004) Aligned biodegradable nanofibrous structure: a potential scaffold for blood vessel engineering. Biomaterials 25(5):877–886

    CAS  Google Scholar 

  125. Kim HS, Yoo HS (2010) MMPs-responsive release of DNA from electrospun nanofibrous matrix for local gene therapy: in vitro and in vivo evaluation. J Control Release 145(3):264–271

    CAS  Google Scholar 

  126. Kim HS, Yoo HS (2013) Matrix metalloproteinase-inspired suicidal treatments of diabetic ulcers with siRNA-decorated nanofibrous meshes. Gene Ther 20(4):378–385

    CAS  Google Scholar 

  127. Luu YK, Kim K, Hsiao BS, Chu B, Hadjiargyrou M (2003) Development of a nanostructured DNA delivery scaffold via electrospinning of PLGA and PLA–PEG block copolymers. J Control Release 89(2):341–353

    CAS  Google Scholar 

  128. Im JS, Bai BC, Lee YS (2010) The effect of carbon nanotubes on drug delivery in an electro-sensitive transdermal drug delivery system. Biomaterials 31(6):1414–1419

    CAS  Google Scholar 

  129. Taepaiboon P, Rungsardthong U, Supaphol P (2007) Vitamin-loaded electrospun cellulose acetate nanofiber mats as transdermal and dermal therapeutic agents of vitamin A acid and vitamin E. Eur J Pharm Biopharm 67(2):387–397

    CAS  Google Scholar 

  130. Liu S, Zhou G, Liu D, Xie Z, Huang Y, Wang X et al (2013) Inhibition of orthotopic secondary hepatic carcinoma in mice by doxorubicin-loaded electrospun polylactide nanoFBs. J Mater Chem B 1(1):101–109

    CAS  Google Scholar 

  131. Gupta S (2011) Biocompatible microemulsion systems for drug encapsulation and delivery. Curr Sci:174–188

    Google Scholar 

  132. Chen P, Wu QS, Ding YP, Chu M, Huang ZM, Hu W (2010) A controlled release system of titanocene dichloride by electrospun fiber and its antitumor activity in vitro. Eur J Pharm Biopharm 76(3):413–420

    CAS  Google Scholar 

  133. Zahedi P, Karami Z, Rezaeian I, Jafari SH, Mahdaviani P, Abdolghaffari AH, Abdollahi M (2012) Preparation and performance evaluation of tetracycline hydrochloride loaded wound dressing mats based on electrospun nanofibrous poly (lactic acid)/poly (ϵ-caprolactone) blends. J Appl Polym Sci 124(5):4174–4183

    CAS  Google Scholar 

  134. He CL, Huang ZM, Han XJ (2009) Fabrication of drug-loaded electrospun aligned fibrous threads for suture applications. J Biomed Mater Res A 89(1):80–95

    Google Scholar 

  135. Gilchrist SE, Lange D, Letchford K, Bach H, Fazli L, Burt HM (2013) Fusidic acid and rifampicin co-loaded PLGA nanoFBs for the prevention of orthopedic implant associated infections. J Control Release 170(1):64–73

    CAS  Google Scholar 

  136. Zamani M, Morshed M, Varshosaz J, Jannesari M (2010) Controlled release of metronidazole benzoate from poly ε-caprolactone electrospun nanoFBs for periodontal diseases. Eur J Pharm Biopharm 75(2):179–185

    CAS  Google Scholar 

  137. Jiang YN, Mo HY, Yu DG (2012) Electrospun drug-loaded core–sheath PVP/zein nanoFBs for biphasic drug release. Int J Pharm 438(1–2):232–239

    CAS  Google Scholar 

  138. Liu D, Liu S, Jing X, Li X, Li W, Huang Y (2012) Necrosis of cervical carcinoma by dichloroacetate released from electrospun polylactide mats. Biomaterials 33(17):4362–4369

    CAS  Google Scholar 

  139. Schneider A, Wang XY, Kaplan DL, Garlick JA, Egles C (2009) Biofunctionalized electrospun silk mats as a topical bioactive dressing for accelerated wound healing. Acta Biomater 5(7):2570–2578

    CAS  Google Scholar 

  140. Zhang X, Shi Z, Fu W, Liu Z, Fang Z, Lu W et al (2012) In vitro biocompatibility study of electrospun copolymer ethylene carbonate-ɛ-caprolactone and vascular endothelial growth factor blended nanofibrous scaffolds. Appl Surf Sci 258(7):2301–2306

    CAS  Google Scholar 

  141. Kuchler-Bopp S, Larrea A, Petry L, Idoux-Gillet Y, Sebastian V, Ferrandon A et al (2017) Promoting bioengineered tooth innervation using nanostructured and hybrid scaffolds. Acta Biomater 50:493–501

    CAS  Google Scholar 

  142. Sezer UA, Ozturk K, Aru B, Demirel GY, Sezer S, Bozkurt MR (2017) Zero valent zinc nanoparticles promote neuroglial cell proliferation: A biodegradable and conductive filler candidate for nerve regeneration. J Mater Sci Mater Med 28(1):1–11

    Google Scholar 

  143. Khalil IS, Abdel-Kader RM, Gomaa IE, Serag N, Klingner A, Elwi M (2016) Targeting of cancer cells using controlled nanoparticles and robotics sperms. Int J Adv Robot Syst 13:123

    Google Scholar 

  144. Sudakaran SV, Venugopal JR, Vijayakumar GP, Abisegapriyan S, Grace AN, Ramakrishna S (2017) Sequel of MgO nanoparticles in PLACL nanoFBs for anti-cancer therapy in synergy with curcumin/β-cyclodextrin. Mater Sci Eng C 71:620–628

    CAS  Google Scholar 

  145. Zhang E, Zhu C, Yang J, Sun H, Zhang X, Li S et al (2016) Electrospun PDLLA/PLGA composite membranes for potential application in guided tissue regeneration. Mater Sci Eng C 58:278–285

    CAS  Google Scholar 

  146. Chew SY, Mi R, Hoke A, Leong KW (2007) Aligned protein–polymer composite FBs enhance nerve regeneration: a potential tissue-engineering platform. Adv Funct Mater 17(8):1288–1296

    CAS  Google Scholar 

  147. Chen M, Gao S, Dong M, Song J, Yang C, Howard KA et al (2012) Chitosan/siRNA nanoparticles encapsulated in PLGA nanoFBs for siRNA delivery. ACS Nano 6(6):4835–4844

    CAS  Google Scholar 

  148. Nie H, Wang CH (2007) Fabrication and characterization of PLGA/HAp composite scaffolds for delivery of BMP-2 plasmid DNA. J Control Release 120(1–2):111–121

    CAS  Google Scholar 

  149. Chen G, Lv Y (2015) Immobilization and application of electrospun nanofiber scaffold- based growth factor in bone tissue engineering. Curr Pharm Des 21(15):1967–1978

    CAS  Google Scholar 

  150. Liu Z, Ramakrishna S, Liu X (2020) Electrospinning and emerging healthcare and medicine possibilities. APL Bioeng 4(3):030901

    CAS  Google Scholar 

  151. Petersen DK, Naylor TM, Halen JPV (2014) Current and future applications of nanotechnology in plastic and reconstructive surgery. Plast Aesthetic Res 1:43–50

    Google Scholar 

  152. Nelson MT, Short A, Cole SL, Gross AC, Winter J, Eubank TD, Lannutti JJ (2014) Preferential, enhanced breast cancer cell migration on biomimetic electrospun nanofiber ‘cell highways’. BMC Cancer 14(1):1–16

    Google Scholar 

  153. Wang A, Xu C, Zhang C, Gan Y, Wang B (2015) Experimental investigation of the properties of electrospun nanoFBs for potential medical application. J Nanomater 2015

    Google Scholar 

  154. Seo SJ, Kim HW, Lee JH (2016) Electrospun nanoFBs applications in dentistry. J Nanomater 2016

    Google Scholar 

  155. Zamani M, Shakhssalim N, Ramakrishna S, Naji M (2020) Electrospinning: application and prospects for urologic tissue engineering. Frontiers in Bioengineering and Biotechnology, p 8

    Google Scholar 

  156. Kharaghani D, Qamar Khan M, Kim IS (2019) Application of nanoFBs in ophthalmic tissue engineering. In: Handbook of NanoFBs. Springer, Cham, pp 649–664

    Google Scholar 

  157. Kim PH, Cho JY (2016) Myocardial tissue engineering using electrospun nanofiber composites. BMB Rep 49(1):26

    Google Scholar 

  158. Eatemadi A, Daraee H, Zarghami N, Melat Yar H, Akbarzadeh A (2016) Nanofiber: synthesis and BMA. Artif Cells Nanomed Biotechnol 44(1):111–121

    CAS  Google Scholar 

  159. Blakney AK, Jiang Y, Woodrow KA (2017) Application of electrospun FBs for female reproductive health. Drug Deliv Transl Res 7(6):796–804

    CAS  Google Scholar 

  160. Topuz F, Uyar T (2019) Electrospinning of cyclodextrin functional nanoFBs for drug delivery applications. Pharmaceutics 11(1):6

    CAS  Google Scholar 

  161. Lee YS, Livingston Arinzeh T (2011) Electrospun nanofibrous materials for neural tissue engineering. Polymers 3(1):413–426

    CAS  Google Scholar 

  162. Ordikhani F, Mohandes F, Simchi A (2017) Nanostructured coatings for biomaterials. In: Nanobiomaterials science, development and evaluation. Woodhead Publishing, pp 191–210

    Google Scholar 

  163. Sathiyavimal S, Vasantharaj S, Bharathi D, Saravanan M, Manikandan E, Kumar SS, Pugazhendhi A (2018) Biogenesis of copper oxide nanoparticles (CuONPs) using Sida acuta and their incorporation over cotton fabrics to prevent the pathogenicity of gram negative and gram positive bacteria. J Photochem Photobiol B Biol 188:126–134

    CAS  Google Scholar 

  164. Vasantharaj S, Sathiyavimal S, Saravanan M, Senthilkumar P, Gnanasekaran K, Shanmugavel M et al (2019) Synthesis of ecofriendly copper oxide nanoparticles for fabrication over textile fabrics: characterization of antibacterial activity and dye degradation potential. J Photochem Photobiol B Biol 191:143–149

    CAS  Google Scholar 

  165. Dabiri G, Damstetter E, Phillips T (2016) Choosing a wound dressing based on common wound characteristics. Adv Wound Care 5(1):32–41

    Google Scholar 

  166. Ghorbani S, Eyni H, Tiraihi T, Salari Asl L, Soleimani M, Atashi A et al (2018) Combined effects of 3D bone marrow stem cell-seeded wet-electrospun poly lactic acid scaffolds on full-thickness skin wound healing. Int J Polym Mater Polym Biomater 67(15):905–912

    CAS  Google Scholar 

  167. Abudula T, Mohammed H, Joshi Navare K, Colombani T, Bencherif S, Memic A (2019) Latest progress in electrospun NanoFBs for wound healing applications. ACS Appl Bio Mater

    Google Scholar 

  168. Chen Q, Wu J, Liu Y, Li Y, Zhang C, Qi W et al (2019) Electrospun chitosan/PVA/bioglass nanofibrous membrane with spatially designed structure for accelerating chronic wound healing. Mater Sci Eng C 105:110083

    CAS  Google Scholar 

  169. Cui S, Sun X, Li K, Gou D, Zhou Y, Hu J, Liu Y (2019) Polylactide nanoFBs delivering doxycycline for chronic wound treatment. Mater Sci Eng C 104:109745

    CAS  Google Scholar 

  170. Zhu Z, Liu Y, Xue Y, Cheng X, Zhao W, Wang J et al (2019) Tazarotene released from aligned electrospun membrane facilitates cutaneous wound healing by promoting angiogenesis. ACS Appl Mater Interfaces 11(39):36141–36153

    CAS  Google Scholar 

  171. Gizaw M, Thompson J, Faglie A, Lee SY, Neuenschwander P, Chou SF (2018) Electrospun FBs as a dressing material for drug and biological agent delivery in wound healing applications. Bioengineering 5(1):9

    Google Scholar 

  172. Arbeev KG, Ukraintseva SV, Akushevich I, Kulminski AM, Arbeeva LS, Akushevich L et al (2011) Age trajectories of physiological indices in relation to healthy life course. Mech Ageing Dev 132(3):93–102

    Google Scholar 

  173. Madison KC (2003) Barrier function of the skin:“la raison d'etre” of the epidermis. J Investig Dermatol 121(2):231–241

    CAS  Google Scholar 

  174. Enoch S, Leaper DJ (2005) Basic science of wound healing. Surgery (Oxford) 23(2):37–42

    Google Scholar 

  175. Sen CK, Gordillo GM, Roy S, Kirsner R, Lambert L, Hunt TK et al (2009) Human skin wounds: a major and snowballing threat to public health and the economy. Wound Repair Regen 17(6):763–771

    Google Scholar 

  176. Vos T, Barber RM, Bell B, Bertozzi-Villa A, Biryukov S, Bolliger I et al (2015) Global, regional, and national incidence, prevalence, and years lived with disability for 301 acute and chronic diseases and injuries in 188 countries, 1990–2013: a systematic analysis for the global burden of disease study 2013. Lancet 386(9995):743–800

    Google Scholar 

  177. Chen S, Liu B, Carlson MA, Gombart AF, Reilly DA, Xie J (2017) Recent advances in electrospun nanoFBs for wound healing. Nanomedicine 12(11):1335–1352

    Google Scholar 

  178. Samadian H, Zakariaee SS, Faridi-Majidi R (2019) Evaluation of effective needleless electrospinning parameters controlling polyacrylonitrile nanoFBs diameter via modeling artificial neural networks. The Journal of The Textile Institute 110(4):477–486

    CAS  Google Scholar 

  179. Samadian H, Mobasheri H, Hasanpour S, Faridi-Majid R (2017) Needleless electrospinning system, an efficient platform to fabricate carbon nanoFBs. J Nano Res 50:78–89. Trans Tech Publications Ltd.

    CAS  Google Scholar 

  180. Massoumi B, Massoumi R, Aali N, Jaymand M (2016) Novel nanostructured star- shaped polythiophene, and its electrospun nanoFBs with gelatin. J Polym Res 23(7):1–11

    CAS  Google Scholar 

  181. Vicente ACB, Medeiros GB, do Carmo Vieira D, Garcia FP, Nakamura CV, Muniz EC, Corradini E (2019) Influence of process variables on the yield and diameter of zein-poly (N-isopropylacrylamide) fiber blends obtained by electrospinning. J Mol Liq 292:109971

    CAS  Google Scholar 

  182. Sun Y, Cheng S, Lu W, Wang Y, Zhang P, Yao Q (2019) Electrospun FBs and their application in drug controlled release, biological dressings, tissue repair, and enzyme immobilization. RSC Adv 9(44):25712–25729

    CAS  Google Scholar 

  183. Nikmaram N, Roohinejad S, Hashemi S, Koubaa M, Barba FJ, Abbaspourrad A, Greiner R (2017) Emulsion-based systems for fabrication of electrospun nanoFBs: food, pharmaceutical and BMA. RSC Adv 7(46):28951–28964

    CAS  Google Scholar 

  184. Hassiba AJ, El Zowalaty ME, Nasrallah GK, Webster TJ, Luyt AS, Abdullah AM, Elzatahry AA (2016) Review of recent research on BMA of electrospun polymer nanoFBs for improved wound healing. Nanomedicine 11(6):715–737

    CAS  Google Scholar 

  185. Vatankhah E, Prabhakaran MP, Jin G, Mobarakeh LG, Ramakrishna S (2014) Development of nanofibrous cellulose acetate/gelatin skin substitutes for variety wound treatment applications. J Biomater Appl 28(6):909–921

    Google Scholar 

  186. Farzamfar S, Naseri-Nosar M, Samadian H, Mahakizadeh S, Tajerian R, Rahmati M et al (2018) Taurine-loaded poly (ε-caprolactone)/gelatin electrospun mat as a potential wound dressing material: in vitro and in vivo evaluation. J Bioact Compat Polym 33(3):282–294

    CAS  Google Scholar 

  187. Samadian H, Ehterami A, Sarrafzadeh A, Khastar H, Nikbakht M, Rezaei A et al (2020) Sophisticated polycaprolactone/gelatin nanofibrous nerve guided conduit containing platelet-rich plasma and citicoline for peripheral nerve regeneration: in vitro and in vivo study. Int J Biol Macromol 150:380–388

    CAS  Google Scholar 

  188. Rajendran S, Anand SC (2011) Hi-tech textiles for interactive wound therapies. In: Handbook of medical textiles. Woodhead Publishing, pp 38–79

    Google Scholar 

  189. Unnithan AR, Gnanasekaran G, Sathishkumar Y, Lee YS, Kim CS (2014) Electrospun antibacterial polyurethane–cellulose acetate–zein composite mats for wound dressing. Carbohydr Polym 102:884–892

    CAS  Google Scholar 

  190. Song J, Remmers SJ, Shao J, Kolwijck E, Walboomers XF, Jansen JA et al (2016) Antibacterial effects of electrospun chitosan/poly (ethylene oxide) nanofibrous membranes loaded with chlorhexidine and silver. Nanomedicine 12(5):1357–1364

    CAS  Google Scholar 

  191. Levengood SL, Erickson AE, Chang FC, Zhang M (2017) Chitosan–poly (caprolactone) nanoFBs for skin repair. J Mater Chem B 5(9):1822–1833

    CAS  Google Scholar 

  192. Pilehvar-Soltanahmadi Y, Dadashpour M, Mohajeri A, Fattahi A, Sheervalilou R, Zarghami N (2018) An overview on application of natural substances incorporated with electrospun nanofibrous scaffolds to development of innovative wound dressings. Mini Rev Med Chem 18(5):414–427

    CAS  Google Scholar 

  193. Balusamy B, Senthamizhan A, Uyar T (2017) In vivo safety evaluations of electrospun nanoFBs for BMA. In: Electrospun materials for tissue engineering and BMA. Woodhead Publishing, pp 101–113

    Google Scholar 

  194. Balusamy B, Senthamizhan A, Tamer UYAR (2020) Electrospun NanoFBs for wound dressing and tissue engineering applications. Hacettepe J Biol Chem 48(5):459–481

    Google Scholar 

  195. Homaeigohar S, Boccaccini AR (2020) Antibacterial biohybrid nanoFBs for wound dressings. Acta Biomater 107:25–49

    CAS  Google Scholar 

  196. Deepthi S, Jeevitha K, Sundaram MN, Chennazhi KP, Jayakumar R (2015) Chitosan–hyaluronic acid hydrogel coated poly (caprolactone) multiscale bilayer scaffold for ligament regeneration. Chem Eng J 260:478–485

    CAS  Google Scholar 

  197. Badylak SF, Taylor D, Uygun K (2011) Whole-organ tissue engineering: decellularization and recellularization of three-dimensional matrix scaffolds. Annu Rev Biomed Eng 13:27–53

    CAS  Google Scholar 

  198. Dvir T, Timko BP, Kohane DS, Langer R (2011) Nanotechnological strategies for engineering complex tissues. Nat Nanotechnol 6(1):13–22

    CAS  Google Scholar 

  199. Liu W, Thomopoulos S, Xia Y (2012) Electrospun nanoFBs for regenerative medicine. Adv Healthc Mater 1(1):10–25

    CAS  Google Scholar 

  200. El Khatib M, Mauro A, Di Mattia M, Wyrwa R, Schweder M, Ancora M et al (2020) Electrospun PLGA fiber diameter and alignment of tendon biomimetic fleece potentiate tenogenic differentiation and immunomodulatory function of amniotic epithelial stem cells. Cell 9(5):1207

    Google Scholar 

  201. Uysal CA, Tobita M, Hyakusoku H, Mizuno H (2012) Adipose-derived stem cells enhance primary tendon repair: biomechanical and immunohistochemical evaluation. J Plast Reconstr Aesthet Surg 65(12):1712–1719

    Google Scholar 

  202. Mora MV, Antuña SA, Arranz MG, Carrascal MT, Barco R (2014) Application of adipose tissue-derived stem cells in a rat rotator cuff repair model. Injury 45:S22–S27

    Google Scholar 

  203. Mauro A, Russo V, Di Marcantonio L, Berardinelli P, Martelli A, Muttini A et al (2016) M1 and M2 macrophage recruitment during tendon regeneration induced by amniotic epithelial cell allotransplantation in ovine. Res Vet Sci 105:92–102

    CAS  Google Scholar 

  204. Russo V, El Khatib M, di Marcantonio L, Ancora M, Wyrwa R, Mauro A et al (2020) Tendon biomimetic electrospun PLGA fleeces induce an early epithelial-mesenchymal transition and tenogenic differentiation on amniotic epithelial stem cells. Cell 9(2):303

    CAS  Google Scholar 

  205. Domingues RM, Gonçalves AI, Costa-Almeida R, Rodrigues MT, Reis RL, Gomes ME (2015) Fabrication of hierarchical and biomimetic fibrous structures to support the regeneration of tendon tissues. In: Tendon regeneration. Academic Press, pp 259–280

    Google Scholar 

  206. Mendis S, Puska P, Norrving B, World Health Organization (2011) Global atlas on cardiovascular disease prevention and control. World Health Organization

    Google Scholar 

  207. Shahriar SM, Mondal J, Hasan MN, Revuri V, Lee DY, Lee YK (2019) Electrospinning nanoFBs for therapeutics delivery. Nanomaterials 9(4):532

    CAS  Google Scholar 

  208. Singh B, Garg T, Goyal AK, Rath G (2016) Development, optimization, and characterization of polymeric electrospun nanofiber: a new attempt in sublingual delivery of nicorandil for the management of angina pectoris. Artificial cells, nanomedicine, and biotechnology 44(6):1498–1507

    CAS  Google Scholar 

  209. Potrˇc T, Baumgartner S, Roškar R, Planinšek O, Lavriˇc Z, Kristl J, Kocbek P (2015) Electrospun polycaprolactone nanoFBs as a potential oromucosal delivery system for poorly water-soluble drugs. Eur J Pharm Sci 75:101–113

    Google Scholar 

  210. Kamaly N, He JC, Ausiello DA, Farokhzad OC (2016) Nanomedicines for renal disease: current status and future applications. Nat Rev Nephrol 12(12):738–753

    CAS  Google Scholar 

  211. Farokhzad OC, Langer R (2009) Impact of nanotechnology on drug delivery. ACS Nano 3(1):16–20

    CAS  Google Scholar 

  212. Choi CHJ, Zuckerman JE, Webster P, Davis ME (2011) Targeting kidney mesangium by nanoparticles of defined size. Proc Natl Acad Sci 108(16):6656–6661

    CAS  Google Scholar 

  213. Eftekhari A, Maleki Dizaj S, Ahmadian E, Przekora A, Hosseiniyan Khatibi SM, Ardalan M et al (2021) Application of advanced nanomaterials for kidney failure treatment and regeneration. Materials 14(11):2939

    CAS  Google Scholar 

  214. Pouton CW, Porter CJ (2008) Formulation of lipid-based delivery systems for oral administration: materials, methods and strategies. Adv Drug Deliv Rev 60(6):625–637

    CAS  Google Scholar 

  215. Akhgari A, Shakib Z, Sanati S (2017) A review on electrospun nanoFBs for oral drug delivery. Nanomed J 4(4):197–207

    CAS  Google Scholar 

  216. Pérez-González GL, Villarreal-Gómez LJ, Serrano-Medina A, Torres-Martínez EJ, Cornejo-Bravo JM (2019) Mucoadhesive electrospun nanoFBs for drug delivery systems: applications of polymers and the parameters’ roles. Int J Nanomedicine 14:5271

    Google Scholar 

  217. Sotome S, Ae K, Okawa A, Ishizuki M, Morioka H, Matsumoto S et al (2016) Efficacy and safety of porous hydroxyapatite/type 1 collagen composite implantation for bone regeneration: a randomized controlled study. J Orthop Sci 21(3):373–380

    Google Scholar 

  218. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131(5):861–872

    CAS  Google Scholar 

  219. Okita K, Ichisaka T, Yamanaka S (2007) Generation of germline-competent induced pluripotent stem cells. Nature 448(7151):313–317

    CAS  Google Scholar 

  220. Hayashi K, Ochiai-Shino H, Shiga T, Onodera S, Saito A, Shibahara T, Azuma T (2016) Transplantation of human-induced pluripotent stem cells carried by self-assembling peptide nanofiber hydrogel improves bone regeneration in rat calvarial bone defects. Bdj Open 2(1):1–7

    Google Scholar 

  221. Xie J, Peng C, Zhao Q, Wang X, Yuan H, Yang L et al (2016) Osteogenic differentiation and bone regeneration of iPSC-MSCs supported by a biomimetic nanofibrous scaffold. Acta Biomater 29:365–379

    CAS  Google Scholar 

  222. Tara S, Kurobe H, Rocco KA, Maxfield MW, Best CA, Yi T et al (2014) Well-organized neointima of large-pore poly (L-lactic acid) vascular graft coated with poly (L-lactic-co-ε-caprolactone) prevents calcific deposition compared to small-pore electrospun poly (L-lactic acid) graft in a mouse aortic implantation model. Atherosclerosis 237(2):684–691

    CAS  Google Scholar 

  223. Zhang Z, Tang J, Wang H, Xia Q, Xu S, Han CC (2015) Controlled antibiotics release system through simple blended electrospun FBs for sustained antibacterial effects. ACS Appl Mater Interfaces 7(48):26400–26404

    CAS  Google Scholar 

  224. Thurman AR, Clark MR, Hurlburt JA, Doncel GF (2013) Intravaginal rings as delivery systems for microbicides and multipurpose prevention technologies. Int J Womens Health 5:695

    Google Scholar 

  225. Kelly L, Carr D, Clark MR (2011) In vivo release in sheep of a dual loaded microbicide polyurethane vaginal ring. In: American Association of Pharmaceutical Scientists Annual Meeting and Exposition

    Google Scholar 

  226. Andrews C, Gettie A, Russell-Lodrigue K, Moss L, Mohri H, Spreen W et al (2013) Long-acting parenteral formulation of GSK1265744 protects macaques against repeated intrarectal challenges with SHIV. In: 20th conference on retroviruses and opportunistic infections, pp 3–6

    Google Scholar 

  227. Kizima L, Rodriguez A, Kenney J, Derby N, Mizenina O, Menon R et al (2014) A potent combination microbicide that targets SHIV-RT, HSV-2 and HPV. PLoS One 9(4):e94547

    Google Scholar 

  228. Mantovani A (2009) Inflaming metastasis. Nature 457(7225):36–37

    CAS  Google Scholar 

  229. Thakor AS, Gambhir SS (2013) Nanooncology: the future of cancer diagnosis and therapy. CA Cancer J Clin 63(6):395–418

    Google Scholar 

  230. Aslam MS, Naveed S, Ahmed A, Abbas Z, Gull I, Athar MA (2014) Side effects of chemotherapy in cancer patients and evaluation of patients opinion about starvation based differential chemotherapy. J Cancer Ther 2014

    Google Scholar 

  231. Liu H, Lin J, Roy K (2006) Effect of 3D scaffold and dynamic culture condition on the global gene expression profile of mouse embryonic stem cells. Biomaterials 27(36):5978–5989

    CAS  Google Scholar 

  232. Zamani M, Prabhakaran MP, Ramakrishna S (2013) Advances in drug delivery via electrospun and electrosprayed nanomaterials. Int J Nanomedicine 8:2997

    Google Scholar 

  233. Vakkalanka SK, Brazel CS, Peppas NA (1997) Temperature-and pH-sensitive terpolymers for modulated delivery of streptokinase. J Biomater Sci Polym Ed 8(2):119–129

    Google Scholar 

  234. Doiron AL, Homan KA, Emelianov S, Brannon-Peppas L (2009) Poly (lactic-co-glycolic) acid as a carrier for imaging contrast agents. Pharm Res 26(3):674–682

    CAS  Google Scholar 

  235. Hong Y, Fujimoto K, Hashizume R, Guan J, Stankus JJ, Tobita K, Wagner WR (2008) Generating elastic, biodegradable polyurethane/poly (lactide-co-glycolide) fibrous sheets with controlled antibiotic release via two-stream electrospinning. Biomacromolecules 9(4):1200–1207

    CAS  Google Scholar 

  236. Xu X, Chen X, Wang X, Jing X (2008) The release behavior of doxorubicin hydrochloride from medicated FBs prepared by emulsion-electrospinning. Eur J Pharm Biopharm 70(1):165–170

    CAS  Google Scholar 

  237. Gatti JW, Smithgall MC, Paranjape SM, Rolfes RJ, Paranjape M (2013) Using electrospun poly (ethylene-oxide) nanoFBs for improved retention and efficacy of bacteriolytic antibiotics. Biomed Microdevices 15(5):887–893

    CAS  Google Scholar 

  238. Ma Y, Wang X, Zong S, Zhang Z, Xie Z, Huang Y et al (2015) Local, combination chemotherapy in prevention of cervical cancer recurrence after surgery by using nanoFBs co-loaded with cisplatin and curcumin. RSC Adv 5(129):106325–106332

    CAS  Google Scholar 

  239. Ramachandran R, Junnuthula VR, Gowd GS, Ashokan A, Thomas J, Peethambaran R et al (2017) Theranostic 3-dimensional nano brain-implant for prolonged and localized treatment of recurrent glioma. Sci Rep 7(1):1–16

    CAS  Google Scholar 

  240. Cavo M, Serio F, Kale NR, D'Amone E, Gigli G, Loretta L (2020) Electrospun nanoFBs in cancer research: from engineering of in vitro 3D cancer models to therapy. Biomater Sci 8(18):4887–4905

    CAS  Google Scholar 

  241. Chakrabartty S, Alam MI, Bhagat S, Alam A, Dhyani N, Khan GA, Alam MS (2019) Inhibition of snake venom induced sterile inflammation and PLA2 activity by titanium dioxide nanoparticles in experimental animals. Sci Rep 9(1):1–10

    CAS  Google Scholar 

  242. Chippaux JP (1998) Snake-bites: appraisal of the global situation. Bull World Health Organ 76(5):515

    CAS  Google Scholar 

  243. Gutiérrez JM, Calvete JJ, Habib AG, Harrison RA, Williams DJ, Warrell D (2017) Snakebite envenoming. Nat Rev Dis Primers

    Google Scholar 

  244. Longbottom J, Shearer FM, Devine M, Alcoba G, Chappuis F, Weiss DJ et al (2018) Vulnerability to snakebite envenoming: a global mapping of hotspots. Lancet 392(10148):673–684

    Google Scholar 

  245. Sutherland SK (1977) Serum reactions an analysis of commercial antivenoms and the possible role of anticomplementary activity in de-novo reactions to antivenoms and antitoxins. Med J Aust 1(17):613–615

    CAS  Google Scholar 

  246. Cai W, Chen X (2007) Nanoplatforms for targeted molecular imaging in living subjects. Small 3(11):1840–1854

    CAS  Google Scholar 

  247. Baker BM, Gee AO, Metter RB, Nathan AS, Marklein RA, Burdick JA, Mauck RL (2008) The potential to improve cell infiltration in composite fiber-aligned electrospun scaffolds by the selective removal of sacrificial FBs. Biomaterials 29(15):2348–2358

    CAS  Google Scholar 

  248. Patlolla A, Collins G, Arinzeh TL (2010) Solvent-dependent properties of electrospun fibrous composites for bone tissue regeneration. Acta Biomater 6(1):90–101

    CAS  Google Scholar 

  249. Blakeney BA, Tambralli A, Anderson JM, Andukuri A, Lim DJ, Dean DR, Jun HW (2011) Cell infiltration and growth in a low density, uncompressed three-dimensional electrospun nanofibrous scaffold. Biomaterials 32(6):1583–1590

    CAS  Google Scholar 

  250. Lai HJ, Kuan CH, Wu HC, Tsai JC, Chen TM, Hsieh DJ, Wang TW (2014) Tailored design of electrospun composite nanoFBs with staged release of multiple angiogenic growth factors for chronic wound healing. Acta Biomater 10(10):4156–4166

    CAS  Google Scholar 

  251. Senturk B, Mercan S, Delibasi T, Guler MO, Tekinay AB (2016) Angiogenic peptide nanoFBs improve wound healing in STZ-induced diabetic rats. ACS Biomater Sci Eng 2(7):1180–1189

    CAS  Google Scholar 

  252. Stendahl JC, Wang LJ, Chow LW, Kaufman DB, Stupp SI (2008) Growth factor delivery from self-assembling nanoFBs to facilitate islet transplantation. Transplantation 86(3):478

    CAS  Google Scholar 

  253. Liu S, Zhang L, Cheng J, Lu Y, Liu J (2016) Sustained release of hepatocyte growth factor by cationic self-assembling peptide/heparin hybrid hydrogel improves β-cell survival and function through modulating inflammatory response. Int J Nanomedicine 11:4875

    CAS  Google Scholar 

  254. Uzunalli G, Tumtas Y, Delibasi T, Yasa O, Mercan S, Guler MO, Tekinay AB (2015) Improving pancreatic islet in vitro functionality and transplantation efficiency by using heparin mimetic peptide nanofiber gels. Acta Biomater 22:8–18

    CAS  Google Scholar 

  255. Choi JS, Choi SH, Yoo HS (2011) Coaxial electrospun nanoFBs for treatment of diabetic ulcers with binary release of multiple growth factors. J Mater Chem 21(14):5258–5267

    CAS  Google Scholar 

  256. Choi JS, Leong KW, Yoo HS (2008) In vivo wound healing of diabetic ulcers using electrospun nanoFBs immobilized with human epidermal growth factor (EGF). Biomaterials 29(5):587–596

    CAS  Google Scholar 

  257. Lee CH, Liu KS, Cheng CW, Chan EC, Hung KC, Hsieh MJ et al (2020) Codelivery of sustainable antimicrobial agents and platelet-derived growth factor via biodegradable nanoFBs for repair of diabetic infectious wounds. ACS Infect Dis 6(10):2688–2697

    CAS  Google Scholar 

  258. Yang Y, Xia T, Zhi W, Wei L, Weng J, Zhang C, Li X (2011) Promotion of skin regeneration in diabetic rats by electrospun core-sheath FBs loaded with basic fibroblast growth factor. Biomaterials 32(18):4243–4254

    CAS  Google Scholar 

  259. Zheng Z, Liu Y, Huang W, Mo Y, Lan Y, Guo R, Cheng B (2018) Neurotensin-loaded PLGA/CNC composite nanofiber membranes accelerate diabetic wound healing. Artif Cells Nanomed Biotechnol 46(Suppl 2):493–501

    CAS  Google Scholar 

  260. Augustine R, Rehman SRU, Ahmed R, Zahid AA, Sharifi M, Falahati M, Hasan A (2020) Electrospun chitosan membranes containing bioactive and therapeutic agents for enhanced wound healing. Int J Biol Macromol 156:153–170

    CAS  Google Scholar 

  261. Loiacono C, Palermi S, Massa B, Belviso I, Romano V, Di Gregorio A et al (2019) Tendinopathy: pathophysiology, therapeutic options, and role of nutraceutics. A narrative literature review. Medicina 55(8):447

    Google Scholar 

  262. Adeli H, Khorasani MT, Parvazinia M (2019) Wound dressing based on electrospun PVA/chitosan/starch nanofibrous mats: fabrication, antibacterial and cytocompatibility evaluation and in vitro healing assay. Int J Biol Macromol 122:238–254

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ashok, K. et al. (2022). Fabrication of Textile-Based Scaffolds Using Electrospun Nanofibers for Biomedical Applications. In: Jayakumar, R. (eds) Electrospun Polymeric Nanofibers. Advances in Polymer Science, vol 291. Springer, Cham. https://doi.org/10.1007/12_2022_135

Download citation

Publish with us

Policies and ethics