Skip to main content

Chitosan-Based Biosensor Fabrication and Biosensing Applications

  • Chapter
  • First Online:
Book cover Chitosan for Biomaterials III

Part of the book series: Advances in Polymer Science ((POLYMER,volume 287))

Abstract

Recent years have seen tremendous interest among researchers in the field of biosensors for the application of medical and agricultural products, processed food, and environmental monitoring. To prepare a stable and reliable biosensor, immobilization of biological responses elements (BRE) plays a critical role. Chitosan, a natural polysaccharide with non-toxic and gellable properties, and the presence of functional groups would act as a suitable substrate material. The presence of functional groups would provide cross-linking moieties increasing the mechanical stability, immobilization of BRE and nanomaterials. Additionally, a chitosan composite/nanocomposite-based biosensor would provide enhanced conductivity and sensitivity of detecting various biological analytes such as glucose, H2O2, antigens, DNA, and biomolecules. This review provides a comprehensive understanding of various strategies of utilizing chitosan as a substrate for various biosensing applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Andryukov BG, Lyapun IN, Matosova EV, Somova LM (2020) Biosensor technologies in medicine: from detection of biochemical markers to research into molecular targets. Sovrem Tehnol Med 12:70–85

    Article  Google Scholar 

  2. Kirsch J, Siltanen C, Zhou Q, Revzin A, Simonian A (2013) Biosensor technology: recent advances in threat agent detection and medicine. Chem Soc Rev 42:8733–8768

    Article  CAS  PubMed  Google Scholar 

  3. Sireesha M, Babu VJ, Kiran ASK, Ramakrishna S (2018) A review on carbon nanotubes in biosensor devices and their applications in medicine. Nano 4:36–57

    CAS  Google Scholar 

  4. Bhavaniramya S, Vanajothi R, Vishnupriya S, Premkumar K, Al-Aboody MS, Vijayakumar R, Baskaran D (2019) Enzyme immobilization on nanomaterials for biosensor and biocatalyst in food and biomedical industry. Curr Pharm Des 25:2661–2676

    Article  CAS  PubMed  Google Scholar 

  5. Bougadi ET, Kalogianni DP (2020) Paper-based DNA biosensor for food authenticity testing. Food Chem 322:126758

    Article  CAS  PubMed  Google Scholar 

  6. Lu YC, Yang QQ, Wu J (2020) Recent advances in biosensor-integrated enrichment methods for preconcentrating and detecting the low-abundant analytes in agriculture and food samples. Trac-Trend Anal Chem 128:115914

    Article  CAS  Google Scholar 

  7. Nakamura H (2018) Current status of water environment and their microbial biosensor techniques – part II: recent trends in microbial biosensor development. Anal Bioanal Chem 410:3967–3989

    Article  CAS  PubMed  Google Scholar 

  8. Uniyal S, Sharma RK (2018) Technological advancement in electrochemical biosensor based detection of organophosphate pesticide chlorpyrifos in the environment: a review of status and prospects. Biosens Bioelectron 116:37–50

    Article  CAS  PubMed  Google Scholar 

  9. Kumar H, Kumari N, Sharma R (2020) Nanocomposites (conducting polymer and nanoparticles) based electrochemical biosensor for the detection of environment pollutant: its issues and challenges. Environ Impact Asses 85:106438

    Article  Google Scholar 

  10. Gu N, Liu SQ (2020) Introduction to biosensors. J Mater Chem B 8:3168–3170

    Article  CAS  PubMed  Google Scholar 

  11. Lei JP, Ju HX (2012) Signal amplification using functional nanomaterials for biosensing. Chem Soc Rev 41:2122–2134

    Article  CAS  PubMed  Google Scholar 

  12. Lowe CR (1985) An introduction to the concepts and technology of biosensors. Biosensors 1:3–16

    Article  CAS  PubMed  Google Scholar 

  13. Clark LC (1956) Monitor and control of blood and tissue oxygen tensions. T Am Soc Art Int Org 2:41–48

    Google Scholar 

  14. Clark Jr LC, Lyons C (1962) Electrode systems for continuous monitoring in cardiovascular surgery. Ann N Y Acad Sci 102:29–45

    Article  CAS  PubMed  Google Scholar 

  15. Huggett AS, Nixon DA (1957) Use of glucose oxidase, peroxidase, and O-dianisidine in determination of blood and urinary glucose. Lancet 273:368–370

    Article  CAS  PubMed  Google Scholar 

  16. Chon KH, McManus DD (2018) Detection of atrial fibrillation using a smartwatch. Nat Rev Cardiol 15:657–658

    Article  PubMed  PubMed Central  Google Scholar 

  17. Zhang ZX, He TYY, Zhu ML, Sun ZD, Shi QF, Zhu JX, Dong BW, Yuce MR, Lee CK (2020) Deep learning-enabled triboelectric smart socks for IoT-based gait analysis and VR applications. NPJ Flex Electron 4:29

    Article  CAS  Google Scholar 

  18. Kim J, Kim M, Lee MS, Kim K, Ji S, Kim YT, Park J, Na K, Bae KH, Kim HK, Bien F, Lee CY, Park JU (2017) Wearable smart sensor systems integrated on soft contact lenses for wireless ocular diagnostics. Nat Commun 8:14997

    Article  PubMed  PubMed Central  Google Scholar 

  19. Suginta W, Khunkaewla P, Schulte A (2013) Electrochemical biosensor applications of polysaccharides chitin and chitosan. Chem Rev 113:5458–5479

    Article  CAS  PubMed  Google Scholar 

  20. Wang Y, Huang XW, Li H, Guo LL (2017) Sensitive impedimetric DNA biosensor based on (Nb,V) codoped TiO2 for breast cancer susceptible gene detection. Mater Sci Eng C 77:867–873

    Article  CAS  Google Scholar 

  21. Li GB, Xue Q, Feng JJ, Sui WP (2015) Electrochemical biosensor based on nanocomposites film of thiol graphene-thiol chitosan/nano gold for the detection of carcinoembryonic antigen. Electroanalysis 27:1245–1252

    Article  CAS  Google Scholar 

  22. Shi WT, Ma ZF (2010) Amperometric glucose biosensor based on a triangular silver nanoprisms/chitosan composite film as immobilization matrix. Biosens Bioelectron 26:1098–1103

    Article  CAS  PubMed  Google Scholar 

  23. Yoo EH, Lee SY (2010) Glucose biosensors: an overview of use in clinical practice. Sensors-Basel 10:4558–4576

    Article  PubMed  PubMed Central  Google Scholar 

  24. Jiang Y, Wu J (2019) Recent development in chitosan nanocomposites for surface-based biosensor applications. Electrophoresis 40:2084–2097

    Article  CAS  PubMed  Google Scholar 

  25. Nguyen HH, Kim M (2017) An overview of techniques in enzyme immobilization. Appl Sci Converg Tech 26:157–163

    Article  Google Scholar 

  26. Qian P, Ai SY, Yin HS, Li JH (2010) Evaluation of DNA damage and antioxidant capacity of sericin by a DNA electrochemical biosensor based on dendrimer-encapsulated au-pd/chitosan composite. Microchim Acta 168:347–354

    Article  CAS  Google Scholar 

  27. Shen W, Li SQ, Park MK, Zhang ZW, Cheng ZY, Petrenko VA, Chin BA (2012) Blocking agent optimization for nonspecific binding on phage based magnetoelastic biosensors. J Electrochem Soc 159:B818–B823

    Article  CAS  Google Scholar 

  28. de Avila BEF, Watkins HM, Pingarron JM, Plaxco KW, Palleschi G, Ricci F (2013) Determinants of the detection limit and specificity of surface-based biosensors. Anal Chem 85:6593–6597

    Article  CAS  Google Scholar 

  29. Trilling AK, Beekwilder J, Zuilhof H (2013) Antibody orientation on biosensor surfaces: a minireview. Analyst 138:1619–1627

    Article  CAS  PubMed  Google Scholar 

  30. Svorc L, Jambrec D, Vojs M, Barwe S, Clausmeyer J, Michniak P, Marton M, Schuhmann W (2015) Doping level of boron-doped diamond electrodes controls the grafting density of functional groups for DNA assays. Acs Appl Mater Inter 7:18949–18956

    Article  CAS  Google Scholar 

  31. Xiao XQ, Kuang ZF, Slocik JM, Tadepalli S, Brothers M, Kim S, Mirau PA, Butkus C, Farmer BL, Singamaneni S, Hall CK, Naik RR (2018) Advancing peptide-based biorecognition elements for biosensors using in-silico evolution. Acs Sens 3:1024–1031

    Article  CAS  PubMed  Google Scholar 

  32. Shukla SK, Mishra AK, Arotiba OA, Mamba BB (2013) Chitosan-based nanomaterials: a state-of-the-art review. Int J Biol Macromol 59:46–58

    Article  CAS  PubMed  Google Scholar 

  33. Kumar MNVR (2000) A review of chitin and chitosan applications. React Funct Polym 46:1–27

    Article  CAS  Google Scholar 

  34. Anitha A, Sowmya S, Kumar PTS, Deepthi S, Chennazhi KP, Ehrlich H, Tsurkan M, Jayakumar R (2014) Chitin and chitosan in selected biomedical applications. Prog Polym Sci 39:1644–1667

    Article  CAS  Google Scholar 

  35. Sivashanmugam A, Charoenlarp P, Deepthi S, Rajendran A, Nair SV, Iseki S, Jayakumar R (2017) Injectable shear-thinning CaSO4/FGF-18-incorporated chitin PLGA hydrogel enhances bone regeneration in mice cranial bone defect model. ACS Appl Mater Inter 9:42639–42652

    Article  CAS  Google Scholar 

  36. Kumar RA, Sivashanmugam A, Deepthi S, Iseki S, Chennazhi KP, Nair SV, Jayakumar R (2015) Injectable chitin-poly(ε-caprolactone)/nanohydroxyapatite composite microgels prepared by simple regeneration technique for bone tissue engineering. ACS Appl Mater Inter 7:9399–9409

    Article  CAS  Google Scholar 

  37. Sionkowska A (2011) Current research on the blends of natural and synthetic polymers as new biomaterials: review. Prog Polym Sci 36:1254–1276

    Article  CAS  Google Scholar 

  38. Ferreira NN, Granja S, Boni FI, Prezotti FG, Ferreira LMB, Cury BSF, Reis RM, Baltazar F, Gremiao MPD (2020) Modulating chitosan-PLGA nanoparticle properties to design a co-delivery platform for glioblastoma therapy intended for nose-to-brain route. Drug Deliv Trans Res 10:1729–1747

    Article  CAS  Google Scholar 

  39. Vignesh S, Sivashanmugam A, Mohandas A, Janarthanan R, Iyer S, Nair SV, Jayakumar R (2018) Injectable deferoxamine nanoparticles loaded chitosan-hyaluronic acid coacervate hydrogel for therapeutic angiogenesis. Coll Surf B 161:129–138

    Article  CAS  Google Scholar 

  40. Sundaram MN, Deepthi S, Mony U, Shalumon KT, Chen JP, Jayakumar R (2019) Chitosan hydrogel scaffold reinforced with twisted poly(l lactic acid) aligned microfibrous bundle to mimic tendon extracellular matrix. Int J Biol Macromol 122:37–44

    Article  CAS  Google Scholar 

  41. Deepthi S, Venkatesan J, Kim SK, Bumgardner JD, Jayakumar R (2016) An overview of chitin or chitosan/nano ceramic composite scaffolds for bone tissue engineering. Int J Biol Macromol 93:1338–1353

    Article  CAS  PubMed  Google Scholar 

  42. Deepthi S, Gafoor AAA, Sivashanmugam A, Nair SV, Jayakumar R (2016) Nanostrontium ranelate incorporated injectable hydrogel enhanced matrix production supporting chondrogenesis in vitro. J Mater Chem B 4:4092–4103

    Article  CAS  PubMed  Google Scholar 

  43. Raveendran NT, Mohandas A, Menon RR, Menon AS, Biswas R, Jayakumar R (2019) Ciprofloxacin- and fluconazole-containing fibrin-nanoparticle-incorporated chitosan bandages for the treatment of polymicrobial wound infections. ACS Appl Bio Mater 2:243–254

    Article  CAS  Google Scholar 

  44. Rajitha P, Gopinath D, Biswas R, Sabitha M, Jayakumar R (2016) Chitosan nanoparticles in drug therapy of infectious and inflammatory diseases. Expert Opin Drug Del 13:1177–1194

    Article  CAS  Google Scholar 

  45. Sundaram MN, Amirthalingam S, Mony U, Varma PK, Jayakumar R (2019) Injectable chitosan-nano bioglass composite hemostatic hydrogel for effective bleeding control. Int J Biol Macromol 129:936–943

    Article  CAS  PubMed  Google Scholar 

  46. Pillai NSM, Eswar K, Amirthalingam S, Mony U, Varma PK, Jayakumar R (2019) Injectable nano whitlockite incorporated chitosan hydrogel for effective hemostasis. ACS Appl Bio Mater 2:865–873

    Article  CAS  Google Scholar 

  47. Sundaram MN, Mony U, Varma PK, Rangasamy J (2021) Vasoconstrictor and coagulation activator entrapped chitosan based composite hydrogel for rapid bleeding control. Carbohydr Polym 258:117634

    Article  CAS  PubMed  Google Scholar 

  48. Zargar V, Asghari M, Dashti A (2015) A review on chitin and chitosan polymers: structure, chemistry, solubility, derivatives, and applications. Chembioeng Rev 2:204–226

    Article  Google Scholar 

  49. Jayakumar R, Menon D, Manzoor K, Nair SV, Tamura H (2010) Biomedical applications of chitin and chitosan based nanomaterials-a short review. Carbohyd Polym 82:227–232

    Article  CAS  Google Scholar 

  50. Tavakoli J, Tang YH (2017) Hydrogel based sensors for biomedical applications: an updated review. Polym Basel 9:364

    Google Scholar 

  51. Madihally SV, Matthew HWT (1999) Porous chitosan scaffolds for tissue engineering. Biomaterials 20:1133–1142

    Article  CAS  PubMed  Google Scholar 

  52. Madhumathi K, Shalumon KT, Rani VVD, Tamura H, Furuike T, Selvamurugan N, Nair SV, Jayakumar R (2009) Wet chemical synthesis of chitosan hydrogel-hydroxyapatite composite membranes for tissue engineering applications. Int J Biol Macromol 45:12–15

    Article  CAS  PubMed  Google Scholar 

  53. Zhang D, Sun Y, Wu Q, Ma PY, Zhang H, Wang YP, Song DQ (2016) Enhancing sensitivity of surface plasmon resonance biosensor by Ag nanocubes/chitosan composite for the detection of mouse IgG. Talanta 146:364–368

    Article  CAS  PubMed  Google Scholar 

  54. Pedano ML, Martel L, Desbrieres J, Defrancq E, Dumy P, Coche-Guerente L, Labbe P, Legrand JF, Calemczuk R, Rivas GA (2004) Layer-by-layer deposition of chitosan derivatives and DNA on gold surfaces for the development of biorecognition layers. Anal Lett 37:2235–2250

    Article  CAS  Google Scholar 

  55. Koev ST, Dykstra PH, Luo X, Rubloff GW, Bentley WE, Payne GF, Ghodssi R (2010) Chitosan: an integrative biomaterial for lab-on-a-chip devices. Lab Chip 10:3026–3042

    Article  CAS  PubMed  Google Scholar 

  56. Wu LQ, Gadre AP, Yi HM, Kastantin MJ, Rubloff GW, Bentley WE, Payne GF, Ghodssi R (2002) Voltage-dependent assembly of the polysaccharide chitosan onto an electrode surface. Langmuir 18:8620–8625

    Article  CAS  Google Scholar 

  57. Gupta KC, Jabrail FH (2006) Effects of degree of deacetylation and cross-linking on physical characteristics, swelling and release behavior of chitosan microspheres. Carbohyd Polym 66:43–54

    Article  CAS  Google Scholar 

  58. Yuan Y, Chesnutt BM, Utturkar G, Haggard WO, Yang Y, Ong JL, Bumgardner JD (2007) The effect of cross-linking of chitosan microspheres with genipin on protein release. Carbohyd Polym 68:561–567

    Article  CAS  Google Scholar 

  59. Szymanska E, Winnicka K (2015) Stability of chitosan-a challenge for pharmaceutical and biomedical applications. Mar Drugs 13:1819–1846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Yang WJ, Fu J, Wang T, He NY (2009) Chitosan/sodium tripolyphosphate nanoparticles: preparation, characterization and application as drug carrier. J Biomed Nanotechnol 5:591–595

    Article  CAS  PubMed  Google Scholar 

  61. No HK, Meyers SP (2000) Application of chitosan for treatment of wastewaters. Rev Environ Contam T 163:1–27

    CAS  Google Scholar 

  62. Wu LQ, Yi HM, Li S, Rubloff GW, Bentley WE, Ghodssi R, Payne GF (2003) Spatially selective deposition of a reactive polysaccharide layer onto a patterned template. Langmuir 19:519–524

    Article  CAS  Google Scholar 

  63. Buckhout-White SL, Rubloff GW (2009) Spatial resolution in chitosan-based programmable biomolecular scaffolds. Soft Mater 5:5044–5044

    Article  CAS  Google Scholar 

  64. Gray KM, Liba BD, Wang YF, Cheng Y, Rubloff GW, Bentley WE, Montembault A, Royaud I, David L, Payne GF (2012) Electrodeposition of a biopolymeric hydrogel: potential for one-step protein electroaddressing. Biomacromolecules 13:1181–1189

    Article  CAS  PubMed  Google Scholar 

  65. Geng ZH, Wang X, Guo XC, Zhang Z, Chen YJ, Wang YF (2016) Electrodeposition of chitosan based on coordination with metal ions in situ-generated by electrochemical oxidation. J Mater Chem B 4:3331–3338

    Article  CAS  PubMed  Google Scholar 

  66. Islam M, Arya N, Weidler PG, Korvink JG, Badilita V (2020) Electrodeposition of chitosan enables synthesis of copper/carbon composites for H2O2 sensing. Mater Today Chem 17

    Google Scholar 

  67. Salman S, Soundararajan S, Safina G, Satoh I, Danielsson B (2008) Hydroxyapatite as a novel reversible in situ adsorption matrix for enzyme thermistor-based FIA. Talanta 77:490–493

    Article  CAS  Google Scholar 

  68. Alsarra IA, Betigeri SS, Zhang H, Evans BA, Neau SH (2002) Molecular weight and degree of deacetylation effects on lipase-loaded chitosan bead characteristics. Biomaterials 23:3637–3644

    Article  CAS  PubMed  Google Scholar 

  69. Wang QX, Zhang B, Lin XQ, Weng W (2011) Hybridization biosensor based on the covalent immobilization of probe DNA on chitosan-mutiwalled carbon nanotubes nanocomposite by using glutaraldehyde as an arm linker. Sensor Actuat B 156:599–605

    Article  CAS  Google Scholar 

  70. Singh R, Verma R, Kaushik A, Sumana G, Sood S, Gupta RK, Malhotra BD (2011) Chitosan-iron oxide nano-composite platform for mismatch-discriminating DNA hybridization for neisseria gonorrhoeae detection causing sexually transmitted disease. Biosens Bioelectron 26:2967–2974

    Article  CAS  PubMed  Google Scholar 

  71. Taufik S, Yusof NA, Tee TW, Ramli I (2011) Bismuth oxide nanoparticles/chitosan/modified electrode as biosensor for DNA hybridization. Int J Electrochem Sci 6:1880–1891

    CAS  Google Scholar 

  72. Ates M (2013) A review study of (bio)sensor systems based on conducting polymers. Mater Sci Eng C 33:1853–1859

    Article  CAS  Google Scholar 

  73. Hassanein A, Salahuddin N, Matsuda A, Kawamura G, Elfiky M (2017) Fabrication of biosensor based on chitosan-ZnO/polypyrrole nanocomposite modified carbon paste electrode for electroanalytical application. Mater Sci Eng C 80:494–501

    Article  CAS  Google Scholar 

  74. Mahtouk K, Hose D, De Vos J, Moreaux J, Jourdan M, Rossi JF, Reme T, Goldschmidt H, Klein B (2007) Input of DNA microarrays to identify novel mechanisms in multiple myeloma biology and therapeutic applications. Clin Cancer Res 13:7289–7295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Staege MS, Hattenhorst UE, Neumann I, Hutter C, Foja S, Burdach S (2003) DNA-microarrays as tools for the identification of tumor specific gene expression profiles: applications in tumor biology, diagnosis and therapy. Klin Padiatr 215:135–138

    Article  CAS  PubMed  Google Scholar 

  76. Stoughton RB (2005) Applications of DNA microarrays in biology. Annu Rev Biochem 74:53–82

    Article  CAS  PubMed  Google Scholar 

  77. Hai X, Li YF, Zhu CZ, Song WL, Cao JY, Bi S (2020) DNA-based label-free electrochemical biosensors: from principles to applications. Trac-Trend Anal Chem:133

    Google Scholar 

  78. Kowalczyk A (2020) Trends and perspectives in DNA biosensors as diagnostic devices. Curr Opin Electrochem 23:36–41

    Article  CAS  Google Scholar 

  79. Leonardo S, Toldra A, Campas M (2021) Biosensors based on isothermal DNA amplification for bacterial detection in food safety and environmental monitoring. Sensors-Basel 21:602

    Article  CAS  PubMed Central  Google Scholar 

  80. Sun YH, Kong RM, Lu DQ, Zhang XB, Meng HM, Tan WH, Shen GL, Yu RQ (2011) A nanoscale DNA-Au dendrimer as a signal amplifier for the universal design of functional DNA-based Sers biosensors. Chem Commun 47:3840–3842

    Article  CAS  Google Scholar 

  81. Xu SC, Zhan J, Man BY, Jiang SZ, Yue WW, Gao SB, Guo CG, Liu HP, Li ZH, Wang JH, Zhou YQ (2017) Real-time reliable determination of binding kinetics of DNA hybridization using a multi-channel graphene biosensor. Nat Commun 8:14902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Hills KD, Oliveira DA, Cavallaro ND, Gomes CL, McLamore ES (2018) Actuation of chitosan-aptamer nanobrush borders for pathogen sensing. Analyst 143:1650–1661

    Article  CAS  PubMed  Google Scholar 

  83. Tiwari I, Singh M, Pandey CM, Sumana G (2015) Electrochemical detection of a pathogenic escherichia coli specific DNA sequence based on a graphene oxide-chitosan composite decorated with nickel ferrite nanoparticles. RSC Adv 5:67115–67124

    Article  CAS  Google Scholar 

  84. Heydarzadeh S, Roshanfekr H, Peyman H, Kashanian S (2020) Modeling of ultrasensitive DNA hybridization detection based on gold nanoparticles/carbon-nanotubes/chitosan-modified electrodes. Coll Surf A 587:124219

    Article  CAS  Google Scholar 

  85. Xu SC, Zhang YY, Dong K, Wen JN, Zheng CM, Zhao SH (2017) Electrochemical DNA biosensor based on graphene oxide-chitosan hybrid nanocomposites for detection of escherichia coli o157:H7. Int J Electrochem Sci 12:3443–3458

    Article  CAS  Google Scholar 

  86. Zuo LM, Qu Q, Li L, Ran X, Gui JW, Wang Q, Cui XH, Jiang CL (2018) Electrochemical DNA biosensor based on magnetite/multiwalled carbon nanotubes/chitosan nanocomposite for bacillus cereus detection of potential marker for gold prospecting. Electroanalysis 30:910–920

    Article  CAS  Google Scholar 

  87. Qian XC, Qu Q, Li L, Ran X, Zuo LM, Huang R, Wang Q (2018) Ultrasensitive electrochemical detection of clostridium perfringens DNA based morphology-dependent DNA adsorption properties of ceo2 nanorods in dairy products. Sensors 18:1878

    Article  CAS  PubMed Central  Google Scholar 

  88. Ambrico M, Ambrico PF, Minafra A, De Stradis A, Vona D, Cicco SR, Palumbo F, Favia P, Ligonzo T (2016) Highly sensitive and practical detection of plant viruses via electrical impedance of droplets on textured silicon-based devices. Sensors 16:1946

    Article  PubMed Central  CAS  Google Scholar 

  89. Choi YJ, Takahashi T, Taki M, Sawada K, Takahashi K (2021) Label-free attomolar protein detection using a mems optical interferometric surface-stress immunosensor with a freestanding PMMA/parylene-C nanosheet. Biosens Bioelectron 172:112778

    Article  CAS  PubMed  Google Scholar 

  90. Wu XL, Gao FL, Xu LG, Kuang H, Wang LB, Xu CL (2015) A fluorescence active gold nanorod-quantum dot core-satellite nanostructure for sub-attomolar tumor marker biosensing. RSC Adv 5:97898–97902

    Article  CAS  Google Scholar 

  91. George SM, Tandon S, Kandasubramanian B (2020) Advancements in hydrogel-functionalized immunosensing platforms. ACS Omega 5:2060–2068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Sharafeldin M, McCaffrey K, Rusling JF (2019) Influence of antibody immobilization strategy on carbon electrode immunoarrays. Analyst 144:5108–5116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Devarakonda S, Singh R, Bhardwaj J, Jang J (2017) Cost-effective and handmade paper-based immunosensing device for electrochemical detection of influenza virus. Sensors-Basel 17:2597

    Article  PubMed Central  CAS  Google Scholar 

  94. Sarkar T, Bohidar HB, Solanki PR (2018) Carbon dots-modified chitosan based electrochemical biosensing platform for detection of vitamin D. Int J Biol Macromol 109:687–697

    Article  CAS  PubMed  Google Scholar 

  95. Soares AC, Soares JC, Rodrigues VC, Oliveira ON, Mattoso LHC (2020) Controlled molecular architectures in microfluidic immunosensors for detecting staphylococcus aureus. Analyst 145:6014–6023

    Article  CAS  PubMed  Google Scholar 

  96. Choosang J, Khumngern S, Thavarungkul P, Kanatharana P, Numnuam A (2021) An ultrasensitive label-free electrochemical immunosensor based on 3D porous chitosan-graphene-ionic liquid-ferrocene nanocomposite cryogel decorated with gold nanoparticles for prostate-specific antigen. Talanta 224:121787

    Article  CAS  PubMed  Google Scholar 

  97. Cotchim S, Thavarungkul P, Kanatharana P, Limbut W (2020) Multiplexed label-free electrochemical immunosensor for breast cancer precision medicine. Anal Chim Acta 1130:60–71

    Article  CAS  PubMed  Google Scholar 

  98. Lipinska W, Siuzdak K, Karczewski J, Dolega A, Grochowska K (2021) Electrochemical glucose sensor based on the glucose oxidase entrapped in chitosan immobilized onto laser-processed au-ti electrode. Sensor Actuat B 330:129409

    Article  CAS  Google Scholar 

  99. Juska VB, Pemble ME (2020) A dual-enzyme, micro-band array biosensor based on the electrodeposition of carbon nanotubes embedded in chitosan and nanostructured au-foams on microfabricated gold band electrodes. Analyst 145:402–414

    Article  CAS  PubMed  Google Scholar 

  100. Kim HS, Lee JS, Il Kim M (2020) Poly-gamma-glutamic acid/chitosan hydrogel nanoparticles entrapping glucose oxidase and magnetic nanoparticles for glucose biosensing. J Nanosci Nanotechnol 20:5333–5337

    Article  CAS  PubMed  Google Scholar 

  101. Devaraj M, Rajendran S, Jebaranjitham JN, Ranjithkumar D, Sathiyaraj M, Manokaran J, Sundaravadivel E, Santhanalakshmi J, Ponce LC (2020) Horseradish peroxidase-immobilized graphene oxide-chitosan gold nanocomposites as highly sensitive electrochemical biosensor for detection of hydrogen peroxide. J Electrochem Soc 167:147517

    Article  CAS  Google Scholar 

  102. El-Moghazy AY, Soliman EA, Ibrahim HZ, Marty JL, Istamboulie G, Noguer T (2016) Biosensor based on electrospun blended chitosan-poly (vinyl alcohol) nanofibrous enzymatically sensitized membranes for pirimiphosmethyl detection in olive oil. Talanta 155:258–264

    Article  CAS  PubMed  Google Scholar 

  103. Pavinatto A, Mercante LA, Facure MHM, Pena RB, Sanfelice RC, Mattoso LHC, Correa DS (2018) Ultrasensitive biosensor based on polyvinylpyrrolidone/chitosan/reduced graphene oxide electrospun nanofibers for 17 α-ethinylestradiol electrochemical detection. Appl Surf Sci 458:431–437

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jayakumar Rangasamy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Amirthalingam, S., Rangasamy, J. (2021). Chitosan-Based Biosensor Fabrication and Biosensing Applications. In: Jayakumar, R., Prabaharan, M. (eds) Chitosan for Biomaterials III. Advances in Polymer Science, vol 287. Springer, Cham. https://doi.org/10.1007/12_2021_85

Download citation

Publish with us

Policies and ethics