Skip to main content

Physical and Chemical Modification of Chitin/Chitosan for Functional Wound Dressings

  • Chapter
  • First Online:
Chitosan for Biomaterials III

Part of the book series: Advances in Polymer Science ((POLYMER,volume 287))

Abstract

This chapter provides insight into the functionalization of chitin and chitosan for general and specific-purpose wound dressings, such as hemorrhage, infected, burn, and diabetic ulcer wounds. The understanding of different kinds of wounds, wound healing process, and factors affecting wound healing is essential for the design of well-functioning biomaterials as well as the fabrication of wound dressings. Functionalization of chitin/chitosan, including physical and chemical modification to form functional wound dressings for specific purposes, is described in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Epstein FH, Singer AJ, Clark RA (1999) Cutaneous wound healing. N Engl J Med 341:738–746

    Article  Google Scholar 

  2. Korting HC, Schöllmann C, White RJ (2011) Management of minor acute cutaneous wounds: importance of wound healing in a moist environment. J Eur Acad Dematol Venereol 25:130–137

    Article  CAS  Google Scholar 

  3. Robson MC, Steed DL, Franz MG (2001) Wound healing: biologic features and approaches to maximize healing trajectories. Curr Probl Surg 38:72–140

    Article  CAS  PubMed  Google Scholar 

  4. Lazurus GS, Cooper DM, Knighton DR, Margolis DJ, Pecoraro RE, Rodeheaver G, Robson MC (1994) Definitions and guidelines for assessment of wounds and evaluation of healing. Arch Dermatol 130:489–493

    Article  Google Scholar 

  5. Velnar T, Bailey T, Smrkolj V (2009) The wound healing process: an overview of the cellular and molecular mechanisms. J Int Med Res 37:1528–1542

    Article  CAS  PubMed  Google Scholar 

  6. Dreifke MB, Jayasuriya AA, Jayasuriya AC (2015) Current wound healing procedures and potential care. Mater Sci Eng C 48:651–662

    Article  CAS  Google Scholar 

  7. Hinrichs WL, Lommen EL, Wildevuur CR, Feijen J (1992) Fabrication and characterization of an asymmetric polyurethane membrane for use as a wound dressing. J Appl Biomater 3:287–303

    Article  CAS  PubMed  Google Scholar 

  8. Akita S, Akino K, Imaizumi T, Tanaka K, Anraku K, Yano H, Hirano A (2006) A polyurethane dressing is beneficial for split-thickness skin-graft donor wound healing. Burns 32:447–451

    Article  PubMed  Google Scholar 

  9. Joseph B, Augustine R, Kalarikkal N, Thomas S, Seantier B, Grohens Y (2019) Recent advances in electrospun polycaprolactone based scaffolds for wound healing and skin bioengineering applications. Mater Today Commun 19:319–335

    Article  CAS  Google Scholar 

  10. Chen H, Huang J, Yu J, Liu S, Gu P (2011) Electrospun chitosan-graft-poly (ε-caprolactone)/poly (ε-caprolactone) cationic nanofibrous mats as potential scaffolds for skin tissue engineering. Int J Biol Macromol 48:13–19

    Article  PubMed  CAS  Google Scholar 

  11. Gomaa SF, Madkour TM, Moghannem S, El-Sherbiny IM (2017) New polylactic acid/cellulose acetate-based antimicrobial interactive single dose nanofibrous wound dressing mats. Int J Biol Macromol 105:1148–1160

    Article  CAS  PubMed  Google Scholar 

  12. Echeverría C, Muñoz-Bonilla A, Cuervo-Rodríguez R, López D, Fernández-García M (2019) Antibacterial PLA fibers containing Thiazolium groups as wound dressing materials. ACS Appl Bio Mater 2:4714–4719

    Article  CAS  PubMed  Google Scholar 

  13. Chen SL, Fu SH, Liao SF, Liu SP, Lin SZ, Wang YC (2018) A PEG-based hydrogel for effective wound care management. Cell Transplant 27:275–284

    Article  PubMed  PubMed Central  Google Scholar 

  14. Shingel KI, Di Stabile L, Marty JP, Faure MP (2006) Inflammatory inert poly(ethylene glycol)–protein wound dressing improves healing responses in partial- and full-thickness wounds. Int Wound J 3:332–342

    Article  PubMed  PubMed Central  Google Scholar 

  15. Xu R, Luo G, Xia H, He W, Zhao J, Liu B, Tan J, Zhou J, Liu D, Wang Y, Yao Z, Zhan R, Yang S, Wu J (2015) Novel bilayer wound dressing composed of silicone rubber with particular micropores enhanced wound re-epithelialization and contraction. Biomaterials 40:1–11

    Article  PubMed  CAS  Google Scholar 

  16. Pinese C, Jebors S, Stoebner PE, Humblot V, Verdie P, Causse L, Garric X, Taillades H, Martinez J, Mehdi A, Subra G (2017) Bioactive peptides grafted silicone dressings: a simple and specific method. Mater Today Chem 4:73–83

    Article  Google Scholar 

  17. Jayakumar R, Prabaharan M, Sudheesh Kumar PT, Nair SV, Tamura H (2011) Biomaterials based on chitin and chitosan in wound dressing applications. Biotechnol Adv 29:322–337

    Article  CAS  PubMed  Google Scholar 

  18. Moeini A, Pedram P, Makvandi P, Malinconico M, Gomez d'Ayala G (2020) Wound healing and antimicrobial effect of active secondary metabolites in chitosan-based wound dressings: a review. Carbohydr Polym 233:115839

    Article  CAS  PubMed  Google Scholar 

  19. Cunha CS, Castro PJ, Sousa SC, Pullar RC, Tobaldi DM, Piccirillo C, Pintado MM (2020) Films of chitosan and natural modified hydroxyapatite as effective UV-protecting, biocompatible and antibacterial wound dressings. Int J Biol Macromol 159:1177–1185

    Article  CAS  PubMed  Google Scholar 

  20. Graça MFP, Miguel SP, Cabral CSD, Correia IJ (2020) Hyaluronic acid – based wound dressings: a review. Carbohydr Polym 241:116364

    Article  PubMed  CAS  Google Scholar 

  21. Duan Y, Lia K, Wang H, Wu T, Zhao Y, Li H, Tang H, Yang W (2020) Preparation and evaluation of curcumin grafted hyaluronic acid modified pullulan polymers as a functional wound dressing material. Carbohydr Polym 238:116195

    Article  CAS  PubMed  Google Scholar 

  22. Gaspar-Pintiliescu A, Stanciuc A-M, Craciunescu O (2019) Natural composite dressings based on collagen, gelatin and plant bioactive compounds for wound healing: a review. Int J Biol Macromol 138:854–865

    Article  CAS  PubMed  Google Scholar 

  23. Ying H, Zhou J, Wang M, Su D, Ma Q, Lv G, Chen J (2019) In situ formed collagen-hyaluronic acid hydrogel as biomimetic dressing for promoting spontaneous wound healing. Mater Sci Eng C 101:487–498

    Article  CAS  Google Scholar 

  24. Varaprasad K, Jayaramudu T, Kanikireddy V, Toro C, Sadiku ER (2020) Alginate-based composite materials for wound dressing application: a mini review. Carbohydr Polym 236:116025

    Article  CAS  PubMed  Google Scholar 

  25. Zhang M, Zhao X (2020) Alginate hydrogel dressings for advanced wound management. Int J Biol Macromol 162:1414–1428

    Article  CAS  PubMed  Google Scholar 

  26. Radhakumary C, Antonty M, Sreenivasan K (2011) Drug loaded thermoresponsive and cytocompatible chitosan based hydrogel as a potential wound dressing. Carbohydr Polym 83:705–713

    Article  CAS  Google Scholar 

  27. Rinaudo M (2006) Chitin and chitosan: properties and applications. Prog Polym Sci 31:603–632

    Article  CAS  Google Scholar 

  28. Singh DK, Ray AR (2000) Biomedical applications of chitin, chitosan and their derivatives. J Macromol Sci Rev Macromol Chem Phys C 40:69–83

    Article  Google Scholar 

  29. Aiba S (1992) Studies on chitosan: 4. Lysozymic hydrolysis of partially N-acetylated chitosans. Int J Biol Macromol 14:225–228

    Article  CAS  PubMed  Google Scholar 

  30. Pangburn S, Trescony P, Heller J (1982) Lysozyme degradation of partially deacetylated chitin, its films and hydrogels. Biomaterials 3:105–108

    Article  CAS  PubMed  Google Scholar 

  31. Paul W, Sharma CP (2004) Chitin and alginates wound dressings: a short review. Trends Biomater Artif Organs 18:18–23

    Google Scholar 

  32. Guo S, DiPietro LA (2010) Factors affecting wound healing. J Dent Res 89:219–229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bergmeier W, Hynes RO (2012) Extracellular matrix proteins in hemostasis and thrombosis. Cold Spring Harb Perspect Biol 4:a005132

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Lubkowska A, Dolegowska B, Banfi G (2012) Growth factor content in PRP and their applicability in medicine. J Biol Regul Homeost Agents 26(2 Suppl 1):3S–22S

    CAS  PubMed  Google Scholar 

  35. Hart J (2002) Inflammation. 1: its role in the healing of acute wounds. J Wound Care 11:205–209

    Article  CAS  PubMed  Google Scholar 

  36. Mosser DM, Edwards JP (2008) Exploring the full spectrum of macrophage activation. Nat Rev Immunol 8:958–969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Singh S, Young A, McNaught C (2017) The physiology of wound healing. Surgery 35:473–477

    Google Scholar 

  38. Gonzalez AC, Costa TG, Andrade ZA, Medrado ARAP (2016) Wound healing – a literature review. An Bras Dermatol 91:614–620

    Article  PubMed  PubMed Central  Google Scholar 

  39. Ogawa R, Akaishi S (2016) Endothelial dysfunction may play a key role in keloid and hypertrophic scar pathogenesis – keloids and hypertrophic scars may be vascular disorders. Med Hypotheses 96:51–60

    Article  CAS  PubMed  Google Scholar 

  40. Muzzareli RRA (1985) Chitin. In: Mark HF, Bikales NM, Overberger CG, Menges G, Kroschwitz JI (eds) Encyclopedia of polymer science and engineering, vol 3. Wiley, New York, pp 430–440

    Google Scholar 

  41. Li H, Cheng F, Wei X, Yi X, Tang S, Wang Z, Zhang YS, He J, Huang Y (2021) Injectable, self-healing, antibacterial, and hemostatic N,O-carboxymethyl chitosan/oxidized chondroitin sulfate composite hydrogel for wound dressing. Mater Sci Eng C 118:111324

    Article  CAS  Google Scholar 

  42. Balitaan JNI, Hsiao C-D, Yeh J-M, Santiago KS (2020) Santiago innovation inspired by nature: biocompatible self-healing injectable hydrogel based on modified-β-chitin for wound healing. Int J Biol Macromol 162:723–736

    Article  CAS  PubMed  Google Scholar 

  43. Tanodekaew S, Prasitsilp M, Swasdison S, Thavornyutikarn B, Pothsree T, Pateepasen R (2004) Preparation of acrylic grafted chitin for wound dressing application. Biomaterials 25:1453–1460

    Article  CAS  PubMed  Google Scholar 

  44. Ma M, Zhong Y, Jiang X (2020) Thermosensitive and pH-responsive tannin-containing hydroxypropyl chitin hydrogel with long-lasting antibacterial activity for wound healing. Carbohydr Polym 236:116096

    Article  CAS  PubMed  Google Scholar 

  45. Zhang Y, Dang Q, Liu C, Yan J, Cha D, Liang S, Li X, Fan B (2017) Synthetic, characterization, and evaluation of poly(aminoethyl) modified chitosan and its hydrogel used as antibacterial wound dressing. Int J Biol Macromol 102:457–467

    Article  CAS  PubMed  Google Scholar 

  46. Shahzadi L, Bashir M, Tehseen S, Zehra M, Mehmood A, Chaudhry AA, Rehman I, Yar M (2020) Thyroxine impregnated chitosan-based dressing stimulate angiogenesis and support fast wounds healing in rats: potential clinical candidates. Int J Biol Macromol 160:296–306

    Article  CAS  PubMed  Google Scholar 

  47. Cifuentes A, Gómez-Gil V, Ortega MA, Asúnsolo Á, Coca S, Romná JS, Álvarez-Mon M, Buján J, García-Honduvilla N (2020) Chitosan hydrogels functionalized with either unfractionated heparin or bemirin improve diabetic wound healing. Biomed Pharmacother 129:110498

    Article  CAS  PubMed  Google Scholar 

  48. Masood N, Ahmed R, Tariq M, Ahmed Z, Masoud MS, Ali I, Ashar R, Andleeb A, Hasan A (2019) Silver nanoparticle impregnated chitosan-PEG hydrogel enhances wound healing in diabetes induced rabbits. Int J Pharm 559:23–26

    Article  CAS  PubMed  Google Scholar 

  49. Yang J, Chen Y, Zhao L, Feng Z, Peng K, Wei A, Wang Y, Tong Z, Chen B (2020) Preparation of a chitosan/carboxymethyl chitosan/AgNPs polyelectrolyte composites physical hydrogel with self-healing ability, antibacterial properties, and good biosafety simultaneously, and its application as a wound dressing. Compos B Eng 197:108139

    Article  CAS  Google Scholar 

  50. Zhang Y, Jiang M, Zhang Y, Cao Q, Wang X, Han Y, Sun G, Li Y, Zhou J (2019) Novel lignin-chitosan-PVA-composite hydrogel for wound dressing. Mater Sci Eng C 104:110002

    Article  CAS  Google Scholar 

  51. Bukzem AL, Signini R, dos Santos DM, Lião LM, Ascheri DPR (2016) Optimization of carboxymethyl chitosan synthesis using response surface methodology and desirability function. Int J Biol Macromol 85:615–624

    Article  CAS  PubMed  Google Scholar 

  52. Wang D, Zhang N, Meng G, He J, Wu F (2020) The effect of form of carboxymethyl-chitosan dressings on biological properties in wound healing. Colloids Surf B Biointerfaces 194:111191

    Article  CAS  PubMed  Google Scholar 

  53. Singh R, Singh D (2014) Chitin membranes containing silver nanoparticles for wound dressing application. Int Wound J 11:264–268

    Article  PubMed  Google Scholar 

  54. Singh R, Chacharkar MP, Mathur AK (2008) Chitin membrane for wound dressing application – preparation, characterization and toxicological evaluation. Int Wound J 5:665–673

    Article  PubMed  PubMed Central  Google Scholar 

  55. Chakravarty J, Semerdzhiev D, Silby MW, Ferreira T, Brigham CJ (2019) Properties of solvent-cast chitin membranes and exploration of potential applications. Materialia 8:100452

    Article  CAS  Google Scholar 

  56. Miguel SP, Moreica AF, Correia IJ (2019) Chitosan based-asymmetric membranes for wound healing: a review. Int J Biol Macromol 127:460–475

    Article  CAS  PubMed  Google Scholar 

  57. Behera SS, Das U, Kumar A, Bissoyi A, Singh AK (2017) Chitosan/TiO2 composite membrane improves proliferation and survival of L929 fibroblasts cells: application in wound dressing and skin regeneration. Int J Biol Macromol 98:329–340

    Article  CAS  PubMed  Google Scholar 

  58. Kenawy E, Omer AM, Tamer TM, Elmeligy MA, Eldin MSM (2019) Fabrication of biodegradable gelatin/chitosan/cinnamaldehyde crosslinked membranes for antibacterial wound dressing application. Int J Biol Macromol 139:440–448

    Article  CAS  PubMed  Google Scholar 

  59. Mi F-L, Wu Y-B, Shyu S-S, Chao A-C, Lai J-Y, Su C-C (2003) Asymmetric chitosan membranes prepared by dry/wet phase separation: a new type of wound dressing for controlled antibacterial release. J Membr Sci 212:237–254

    Article  CAS  Google Scholar 

  60. Mi F-L, Shyu S-S, Wu Y-B, Lee S-T, Shyong J-Y, Huang R-N (2001) Fabrication and characterization of a sponge-like asymmetric chitosan membrane as a wound dressing. Biomaterials 22:165–173

    Article  CAS  PubMed  Google Scholar 

  61. Morgado PI, Lisboa PF, Ribeiro MP, Miguel SP, Simões PC, Correia IJ, Aguiar-Ricardo A (2014) Poly (vinyl alcohol)/chitosan asymmetrical membranes: highly controlled morphology toward the ideal wound dressing. J Membr Sci 469:262–271

    Article  CAS  Google Scholar 

  62. Yang JM, Yang SJ, Lin HT, Wu T-H, Chen H-J (2008) Chitosan containing PU/poly (NIPPAm) thermosensitive membrane for wound dressing. Mater Sci Eng C 28:150–156

    Article  CAS  Google Scholar 

  63. Lin W-C, Lien C-C, Yeh H-J, Yu C-M, Hsu S-H (2013) Bacterial cellulose and bacterial cellulose-chitosan membranes for wound dressing applications. Carbohydr Polym 94:603–611

    Article  CAS  PubMed  Google Scholar 

  64. Ignatova M, Starbova K, Markova N, Manolova N, Rashkov I (2006) Electrospun nano-fiber mats with antibacterial properties from quanternised chitosan and poly (vinyl alcohol). Carbohydr Res 341:2098–2107

    Article  CAS  PubMed  Google Scholar 

  65. Trinca RB, Wastin CB, Silva JAF, Moraes ÂM (2017) Electrospun multilayer chitosan scaffolds as potential wound dressings for skin lesions. Eur Polym J 88:161–170

    Article  CAS  Google Scholar 

  66. Naseri N, Algan C, Jacobs V, John M, Oksman M, Mathew AP (2014) Electrospun chitosan-based nanocomposite mats reinforce with chitin nanocrystals for wound dressing. Carbohydr Polym 109:7–15

    Article  CAS  PubMed  Google Scholar 

  67. Chen J-P, Chang G-Y, Chen J-K (2008) Electrospun collagen/chitosan nanofibrous membrane as wound dressing. Colloids Surf A Physiochem Eng Aspects 313–314:183–188

    Article  CAS  Google Scholar 

  68. Zou P, Lee W-H, Gao Z, Qin D, Wang Y, Liu J, Sun T, Gao Y (2020) Wound dressing from polyvinyl alcohol/chitosan electrospun fiber membrane loaded with OH-CATH30 nanoparticles. Carbohydr Polym 232:115786

    Article  CAS  PubMed  Google Scholar 

  69. Ignatova M, Manolova N, Rashkov I (2007) Novel antibacterial fibers of quaternized chitosan and poly (vinyl pyrrolidone) prepared by electrospinning. Eur Polym J 43:1112–1122

    Article  CAS  Google Scholar 

  70. Hao Y, Zhao W, Zhang L, Zeng X, Sun Z, Zhang D, Shen P, Li Z, Han Y, Li P, Zhou Q (2020) Bio-multifunctional alginate/chitosan/fucoidan sponges with enhances angiogenesis and hair follicle regeneration for promoting full-thickness wound healing. Mater Des 193:108863

    Article  CAS  Google Scholar 

  71. Berretta J, Bumgardner JD, Jennings JA (2017) Lyophilized chitosan sponges. Chitosan Based Biomater 1:239–253

    Article  CAS  Google Scholar 

  72. Anbazhagan S, Thangavelu KP (2018) Application of tetracycline hydrochloride loaded-fungal chitosan and Aloe vera extract based composite sponges for wound dressing. J Adv Res 14:63–71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Sathiyaseelan A, Shajahan A, Kalaichelvan PT, Kaviyarasan V (2017) Fungal chitosan based nanocomposites sponges – an alternative medicine for wound dressing. Int J Biol Macromol 104:1905–1915

    Article  CAS  PubMed  Google Scholar 

  74. Phaechamud T, Yodkhum K, Charoenteeraboon J, Tabata Y (2015) Chitosan-aluminum monostearate composite sponge dressing containing asiaticoside for wound healing and angiogenesis promotion in chronic wound. Mater Sci Eng C 50:210–225

    Article  CAS  Google Scholar 

  75. Shao W, Wu J, Wang S, Huang M, Liu X, Zhang R (2017) Construction of silver sulfadiazine loaded chitosan composite sponges as potential wound dressings. Carbohydr Polym 157:1963–1970

    Article  CAS  PubMed  Google Scholar 

  76. Chen C, Liu L, Huang T, Wang Q, Fang Y (2013) Bubble template fabrication of chitosan/poly (vinyl alcohol) sponges for wound dressing application. Int J Biol Macromol 62:188–193

    Article  CAS  PubMed  Google Scholar 

  77. Xia G, Zhai D, Sun Y, Hou L, Guo X, Wang L, Li Z, Wang F (2020) Preparation of a novel asymmetric wettable chitosan-based sponge and its role in promotion chronic wound healing. Carbohydr Polym 227:115296

    Article  CAS  PubMed  Google Scholar 

  78. Fang Y, Xu Y, Wang Z, Zhou W, Yan L, Fan X, Liu H (2020) 3D porous chitin sponge with high absorbency, rapid shape recovery, and excellent antibacterial activities for noncompressible wound. Chem Eng J 388:124169

    Article  CAS  Google Scholar 

  79. Barnes HR (1993) Wound care: fact and fiction about hydrocolloid dressings. J Gerontol Nurs 19:23–26

    Article  CAS  PubMed  Google Scholar 

  80. Dumville JC, Deshpande S, O’Meara S, Speak K (2012) Hydrocolloid dressings for healing diabetic foot ulcer (review). Cochrane Collab 2:1–52

    Google Scholar 

  81. Ousey K, Cook L, Young T, Fowler A (2012) Hydrocolloids in practice made easy. Wounds 8(1):1–6

    Google Scholar 

  82. Schoukens G (2019) Bioactive dressings to promote wound healing. Adv Textiles Wound Care 2:135–167

    Article  Google Scholar 

  83. Hiranpattanakul P, Jongjitpissamai T, Aungwerojanawit S, Tachaboonyakiat W (2018) Fabrication of a chitin/chitosan hydrocolloid wound dressing and evaluation of its bioactive properties. Res Chem Intermed 44:4913–4928

    Article  CAS  Google Scholar 

  84. Yanagibayashi S, Kishimoto S, Ishihara M, Murakami K, Aoki H, Takikawa M, Fujita M, Sekido M, Kiyosawa T (2012) Novel hydrocolloid-sheet as wound dressing to stimulate healing-impaired wound healing in diabetic db/db mice. Biomed Mater Eng 22:301–310

    CAS  PubMed  Google Scholar 

  85. Muzzarelli RAA (2009) Chitins and chitosans for the repair of wounded skin, nerve, cartilage and bone. Carbohydr Polym 76:167–182

    Article  CAS  Google Scholar 

  86. Francesko A, Tzanov T (2011) Chitin, chitosan and derivatives for wound healing and tissue engineering. In: Nyanhongo GS, Steiner W, Gübitz GM (eds) Biofunctionalization of polymers and their applications: advances in biochemical engineering biotechnology, vol 125. Springer, Heidelberg, pp 1–28

    Google Scholar 

  87. Liu H, Wang C, Li C, Qin Y, Wang Z, Yang F, Li Z, Wang J (2018) A functional chitosan-based hydrogel as a wound dressing and drug delivery system in the treatment of wound healing. RSC Adv 8:7533–7449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Fischer TH, Connolly R, Thatte HS, Schwaitzberg SS (2004) Comparison of structural and hemostatic properties of the poly-N-acetyl glucosamine Syvek Patch with products containing chitosan. Microsc Res Tech 63:168–174

    Article  CAS  PubMed  Google Scholar 

  89. Burkatovskaya M, Tegos GP, Swietlik E, Demidova TN, Castano AP, Hamblin MR (2006) Use of chitosan bandage to prevent fatal infections developing from highly contaminated wounds in mice. Biomaterials 27:4157–4164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Brown MA, Daya MR, Worley JA (2009) Experience with chitosan dressings in a civilian EMS system. J Emerg Med 37:1–7

    Article  PubMed  Google Scholar 

  91. Arnaud F, Teranishi K, Okada T, Parreño-Sacdalan D, Hupalo D, McNamee G, Carr W, Burris D, McCarron R (2011) Comparison of combat gauze and TraumaStat in two severe groin injury models. J Surg Res 169:92–98

    Article  PubMed  Google Scholar 

  92. Balakrishnan B, Mohanty M, Umshanakar PR, Jayakrishnan A (2005) Evaluation of an in situ forming hydrogel wound dressing based on oxidized alginate and gelatin. Biomaterials 26:6335–6342

    Article  CAS  PubMed  Google Scholar 

  93. Yang X, Liu W, Li N, Wang M, Liang B, Ullah I, Neve AL, Feng Y, Chen H, Shi C (2017) Design and development of polysaccharide hemostatic materials and their hemostatic mechanism. Biomater Sci 5:2357–2368

    Article  CAS  PubMed  Google Scholar 

  94. Devlin JJ, Kircher S, Kozen BG, Littlejohn LF, Johnson AS (2011) Comparison of ChitoFlex®, CELOX™, and QuikClot® in control of hemorrhage. J Emerg Med 41:237–245

    PubMed  Google Scholar 

  95. Kang P-L, Jen Chang S, Manousakas I, Lee CW, Yao C-H, Lin F-H, Kuo SM (2011) Development and assessment of hemostasis chitosan dressings. Carbohydr Polym 85:565–570

    Article  CAS  Google Scholar 

  96. Gu BK, Park SJ, Kim MS, Kang CM, Kim J-I, Kim C-H (2013) Fabrication of sonicated chitosan nanofiber mat with enlarged porosity for use as hemostatic materials. Carbohydr Polym 97:65–73

    Article  CAS  PubMed  Google Scholar 

  97. Ong S-Y, Wu J, Moochhala SM, Tan M-H, Lu J (2008) Development of a chitosan-based wound dressing with improved hemostatic and antimicrobial properties. Biomaterials 29:4323–4332

    Article  CAS  PubMed  Google Scholar 

  98. Yang J, Tian F, Wang Z, Wang Q, Zeng YJ, Chen SQ (2008) Effect of chitosan molecular weight and deacetylation degree on hemostasis. J Biomed Mater Res B Appl Biomater 84:131–137

    Article  CAS  PubMed  Google Scholar 

  99. Chou TC, Fu E, Wu CJ, Yeh JH (2003) Chitosan enhances platelet adhesion and aggregation. Biochem Biophys Res Commun 302:480–483

    Article  CAS  PubMed  Google Scholar 

  100. Smith SA, Mutch NJ, Baskar D, Rohloff P, Docampo R, Morrissey JH (2006) Polyphosphate modulates blood coagulation and fibrinolysis. Proc Natl Acad Sci U S A 103:903–908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Yan D, Hu S, Zhou Z, Zeenat S, Cheng F, Li Y, Feng C, Cheng X, Chen X (2018) Different chemical groups modification on the surface of chitosan nonwoven dressing and the hemostatic properties. Int J Biol Macromol 107:463–469

    Article  CAS  PubMed  Google Scholar 

  102. Hattori H, Amano Y, Nogami Y, Takase B, Ishihara M (2010) Hemostasis for severe hemorrhage with photocrosslinkable chitosan hydrogel and calcium alginate. Ann Biomed Eng 38:3724–3732

    Article  CAS  PubMed  Google Scholar 

  103. Chen Y, Tan HM (2006) Crosslinked carboxymethylchitosan-g-poly(acrylic acid) copolymer as a novel superabsorbent polymer. Carbohydr Res 341:887–896

    Article  CAS  PubMed  Google Scholar 

  104. Chen Y, Zhang Y, Wang F, Meng W, Yang X, Li P, Jiang J, Tan H, Zheng Y (2016) Preparation of porous carboxymethyl chitosan grafted poly(acrylic acid) superabsorbent by solvent precipitation and its application as a hemostatic wound dressing. Mater Sci Eng C 63:18–29

    Article  CAS  Google Scholar 

  105. Wang Y, Beekman J, Hew J, Jackson S, Issler-Fisher AC, Parungao R, Lajevardi SS, Li Z, Maitz P (2018) Burn injury: challenges and advances in burn wound healing, infection, pain and scarring. Adv Drug Deliv Rev 123:3–17

    Article  CAS  PubMed  Google Scholar 

  106. Bowler PG, Duerden BI, Armstrong DG (2001) Wound microbiology and associated approaches to wound management. Clin Microbiol Rev 14:244–269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Tachaboonyakiat W, Sukpaiboon E, Pinyakong O (2014) Development of an antibacterial chitin betainate wound dressing. Polym J 46:505–510

    Article  CAS  Google Scholar 

  108. Chang S-H, Lin H-T V, Wu G-J, Tsai GJ (2015) pH effects on solubility, zeta potential, and correlation between antibacterial activity and molecular weight of chitosan. Carbohydr Polym 134:74–81

    Article  CAS  PubMed  Google Scholar 

  109. Mohandas A, Deepthi S, Biswas R, Jayakumar R (2018) Chitosan based metallic nanocomposite scaffolds as antimicrobial wound dressings. Bioact Mater 3:267–277

    Article  PubMed  Google Scholar 

  110. Rahimi M, Noruzi EB, Sheykhsaran E, Ebadi B, Kariminezhad Z, Molaparast M, Mehrabani MG, Mehramouz B, Yousefi M, Ahmadi R, Yousefi B, Ganbarov K, Kamounah FS, Shafiei-Irannejad V, Kafil HS (2020) Carbohydrate polymer-based silver nanocomposites: recent progress in the antimicrobial wound dressing. Carhohydr Polym 231:115696

    Article  CAS  Google Scholar 

  111. Hebeish A, El-Rafie MH, EL-Sheikh MA, Seleem AA, El-Naggar ME (2014) Antimicrobial wound dressing and anti-inflammatory efficacy of silver nanoparticles. Int J Biol Macromol 65:509–515

    Article  CAS  PubMed  Google Scholar 

  112. Sudheesh Kumar PT, Abhilash S, Manzoor K, Nair SV, Tamura H, Jayakumar R (2010) Preparation and characterization of novel β-chitin/nanosilver composite scaffolds for wound dressing applications. Carbohydr Polym 80:761–767

    Article  CAS  Google Scholar 

  113. Jain J, Arora S, Rajwade JM, Omray P, Khandelwal S, Paknikar KM (2009) Silver nanoparticles in therapeutics: development of an antimicrobial gel formulation for topical use. Mol Pharm 6:1388–1401

    Article  CAS  PubMed  Google Scholar 

  114. Yamanaka M, Hara K, Kudo J (2005) Bactericidal actions of a silver ion solution on Escherichia coli, studied by energy-filtering transmission electron microscopy and proteomic analysis. Appl Environ Microbiol 71:7589–7593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Priyadarshini S, Gopinath V, Meera Priyadharsshini N, MubarakAli D, Velusamy P (2013) Synthesis of anisotropic silver nanoparticles using novel strain, Bacillus flexus and its biomedical application. Colloids Surf B Biointerfaces 102:232–237

    Article  CAS  PubMed  Google Scholar 

  116. Jung WK, Koo HC, Kim KW, Shin S, Kim SH, Park YH (2008) Antibacterial activity and mechanism of action of the silver ion in Staphylococcus aureus and Escherichia coli. Appl Environ Microbiol 74:2171–2178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Li W-R, Sun T-L, Zhou S-L, Ma Y-K, Shi Q-S, Xie X-B, Huang X-M (2017) A comparative analysis of antibacterial activity, dynamics, and effects of silver ions and silver nanoparticles against four bacterial strains. Int Biodeter Biodegr 123:304–310

    Article  CAS  Google Scholar 

  118. Mehrabani MG, Karimian R, Mehramouz B, Rahimi M, Kafil HS (2018) Preparation of biocompatible and biodegradable silk fibroin/chitin/silver nanoparticles 3D scaffolds as a bandage for antimicrobial wound dressing. Int J Biol Macromol 114:961–971

    Article  CAS  PubMed  Google Scholar 

  119. Petkova P, Francesko A, Fernandes MM, Mendoza E, Perelshtein I, Gedanken A, Tzanov T (2014) Sonochemical coating of textiles with hybrid ZnO/chitosan antimicrobial nanoparticles. Appl Mater Interfaces 6:1164–1172

    Article  CAS  Google Scholar 

  120. Applerot G, Lipovsky A, Dror R, Perkas N, Nitzan Y, Lubart R, Gedanken A (2009) Enhanced antibacterial activity of nanocrystalline ZnO due to increased ROS-mediated cell injury. Adv Funct Mater 19:842–852

    Article  CAS  Google Scholar 

  121. Tao Y, Qian L-H, Xie J (2011) Effect of chitosan on membrane permeability and cell morphology of Pseudomonas aeruginosa and Staphylococcus aureus. Carbohydr Polym 86:969–974

    Article  CAS  Google Scholar 

  122. He G, Wang Z, Zheng H, Yin Y, Xiong X, Lin R (2012) Preparation, characterization and properties of aminoethyl chitin hydrogels. Carbohydr Polym 90:1614–1619

    Article  CAS  PubMed  Google Scholar 

  123. Liang S, Dang Q, Liu C, Zhang Y, Wang Y, Zhu W, Chang G, Sun H, Cha D, Fan B (2018) Characterization and antibacterial mechanism of poly(aminoethyl) modified chitin synthesized via a facile one-step pathway. Carbohydr Polym 195:275–287

    Article  CAS  PubMed  Google Scholar 

  124. Chen Q, Wu Y, Pu Y, Zheng Z, Shi C, Huang X (2010) Synthesis and characterization of quaternized β-chitin. Carbohydr Res 345:1609–1612

    Article  CAS  PubMed  Google Scholar 

  125. Ding F, Shi X, Li X, Cai J, Duan B, Du Y (2012) Homogeneous synthesis and characterization of quaternized chitin in NaOH/urea aqueous solution. Carbohydr Polym 87:422–426

    Article  CAS  PubMed  Google Scholar 

  126. Xu H, Fang Z, Tian W, Wang Y, Ye Q, Zhang L, Cai J (2018) Green fabrication of amphiphilic quaternized β-chitin derivatives with excellent biocompatibility and antibacterial activities for wound healing. Adv Mater 30:1801100

    Article  CAS  Google Scholar 

  127. Morkaew T, Pinyakong O, Tachaboonyakiat W (2017) Structural effect of quaternary ammonium chitin derivatives on their bactericidal activity and specificity. Int J Biol Macromol 101:719–728

    Article  CAS  PubMed  Google Scholar 

  128. Xu T, Xin M, Li M, Huang H, Zhou S (2010) Synthesis, characteristic and antibacterial activity of N,N,N-trimethyl chitosan and its carboxymethyl derivatives. Carbohydr Polym 81:931–936

    Article  CAS  Google Scholar 

  129. Kim JY, Lee JK, Lee TS, Park WH (2003) Synthesis of chitooligosaccharide derivative with quaternary ammonium group and its antimicrobial activity against Streptococcus mutans. Int J Biol Macromol 32:23–27

    Article  CAS  PubMed  Google Scholar 

  130. Lim S-H, Hudson SM (2004) Synthesis and antimicrobial activity of a water-soluble chitosan derivative with a fiber-reactive group. Carbohydr Res 339:313–319

    Article  CAS  PubMed  Google Scholar 

  131. Xu T, Xin M, Li M, Huang H, Zhou S, Liu J (2011) Synthesis, characterization, and antibacterial activity of N,O-quaternary ammonium chitosan. Carbohydr Res 346:2445–2450

    Article  CAS  PubMed  Google Scholar 

  132. Tachaboonyakiat W (2017) Antimicrobial applications of chitosan. In: Jennings JA, Bumgardner JD (eds) Chitosan based biomaterials, vol 2. Woodhead Publishing, Cambridge, pp 245–274

    Chapter  Google Scholar 

  133. Panasci K (2014) Burns and wounds In: Paz JC, West MP (eds) Acute care handbook for physical therapists. 5th edn. W.B. Saunders, St. Louis, pp 283–311

    Google Scholar 

  134. Cho Y-W, Cho Y-N, Chung S-H, Yoo G, Ko S-W (1999) Water-soluble chitin as a wound healing accelerator. Biomaterials 20:2139–2145

    Article  CAS  PubMed  Google Scholar 

  135. Alsarra IA (2009) Chitosan topical gel formulation in the management of burn wounds. Int J Biol Macromol 45:16–21

    Article  CAS  PubMed  Google Scholar 

  136. Alemdaroğlu C, Değim Z, Celebi N, Zor F, Oztürk S, Erdoğan D (2006) An investigation on burn wound healing in rats with chitosan gel formulation containing epidermal growth factor. Burns 32:319–327

    Article  PubMed  Google Scholar 

  137. Wenczak BA, Lynch JB, Nanney LB (1992) Epidermal growth factor receptor distribution in burn wounds. Implications for growth factor-mediated repair. J Clin Invest 90:2392–2401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Dai T, Tegos GP, Burkatovskaya M, Castano AP, Hamblin MR (2009) Chitosan acetate bandage as a topical antimicrobial dressing for infected burns. Antimicrob Agents Chemother 53:393–400

    Article  CAS  PubMed  Google Scholar 

  139. Chang J, Liu W, Han B, Peng S, He B, Gu Z (2013) Investigation of the skin repair and healing mechanism of N-carboxymethyl chitosan in second-degree burn wounds. Wound Repair Regen 21:113–121

    Article  PubMed  Google Scholar 

  140. Moura LIF, Dias AMA, Carvalho E, de Sousa HC (2013) Recent advances on the development of wound dressings for diabetic foot ulcer treatment – a review. Acta Biomater 9:7093–7114

    Article  CAS  PubMed  Google Scholar 

  141. da Silva L, Carvalho E, Cruz MT (2010) Role of neuropeptides in skin inflammation and its involvement in diabetic wound healing. Expert Opin Biol Ther 10:1427–1439

    Article  PubMed  CAS  Google Scholar 

  142. Morbach S, Furchert H, Gröblinghoff U, Hoffmeier H, Kersten K, Klauke GT, Klemp U, Roden T, Icks A, Haastert B, Rümenapf G, Abbas ZG, Bharara M, Armstrong DG (2012) Long-term prognosis of diabetic foot patients and their limbs: amputation and death over the course of a decade. Diabetes Care 35:2021–2027

    Article  PubMed  PubMed Central  Google Scholar 

  143. Clement JL, Jarrett PS (1994) Antibacterial silver. Metal-Based Drugs 1:467–482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Masood N, Ahmed R, Tariq M, Ahmed Z, Masoud MS, Ali I, Asghar R, Andleeb A, Hasan A (2019) Silver nanoparticle impregnated chitosan-PEG hydrogel enhances wound healing in diabetes induced rabbits. Int J Pharm 559:23–36

    Article  CAS  PubMed  Google Scholar 

  145. Lee Y-H, Hong Y-L, Wu T-L (2021) Novel silver and nanoparticle-encapsulated growth factor co-loaded chitosan composite hydrogel with sustained antimicrobility and promoted biological properties for diabetic wound healing. Mater Sci Eng C 118:111385

    Article  CAS  Google Scholar 

  146. Meng B, Li J, Cao H (2013) Antioxidant and antiinflammatory activities of curcumin on diabetes mellitus and its complications. Curr Pharm Des 19:2101–2113

    CAS  PubMed  Google Scholar 

  147. Li F, Shi Y, Liang J, Zhao L (2019) Curcumin-loaded chitosan nanoparticles promote diabetic wound healing via attenuating inflammation in a diabetic rat model. J Biomater Appl 34:476–486

    Article  CAS  PubMed  Google Scholar 

  148. Shen T, Dai K, Yu Y, Wang J, Liu C (2020) Sulfated chitosan rescues dysfunctional macrophages and accelerates wound healing in diabetic mice. Acta Biomater 117:192–203

    Article  CAS  PubMed  Google Scholar 

  149. Lindberger M, Schröder HD, Schultzberg M, Kristensson K, Persson A, Ostman J, Link H (1989) Nerve fibre studies in skin biopsies in peripheral neuropathies. I Immunohistochemical analysis of neuropeptides in diabetes mellitus. J Neurol Sci 93:289–296

    Article  CAS  PubMed  Google Scholar 

  150. Moura LIF, Dias AMA, Leal EC, Carvalho L, de Sousa HC, Carvalho E (2014) Chitosan-based dressings loaded with neurotensin – an efficient strategy to improve early diabetic wound healing. Acta Biomater 10:843–857

    Article  CAS  PubMed  Google Scholar 

  151. Song R, Ren L, Ma H, Hu R, Gao H, Wang L, Chen X, Zhao Z, Liu J (2016) Melatonin promotes diabetic wound healing in vitro by regulating keratinocyte activity. Am J Transl Res 8:4682–4693

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Alghamdi BS (2018) The neuroprotective role of melatonin in neurological disorders. J Neurosci Res 96:1136–1149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Correa VLR, Martins JA, de Souza TR, de Castro Nunes Rincon G, Miguel MP, de Menezes LB, Amaral AC (2020) Melatonin loaded lecithin-chitosan nanoparticles improved the wound healing in diabetic rats. Int J Biol Macromol 162:1465–1475

    Article  CAS  Google Scholar 

  154. Chen K, Tong C, Yang J, Cong P, Liu Y, Shi X, Liu X, Zhang J, Zou R, Xiao K, Ni Y, Xu L, Hou M, Jin H, Liu Y (2021) Injectable melatonin-loaded carboxymethyl chitosan (CMCS)-based hydrogel accelerates wound healing by reducing inflammation and promoting angiogenesis and collagen deposition. J Mater Sci Technol 63:236–245

    Article  Google Scholar 

  155. Reiter RJ, Tan DX, Osuna C, Gitto E (2000) Actions of melatonin in the reduction of oxidative stress: a review. J Biomed Sci 7:444–458

    Article  CAS  PubMed  Google Scholar 

  156. Folkman J, Shing Y (1992) Angiogenesis. J Biol Chem 267:10931–10934

    Article  CAS  PubMed  Google Scholar 

  157. Barrientos S, Brem H, Stojadinovic O, Tomic-Canic M (2014) Clinical application of growth factors and cytokines in wound healing. Wound Repair Regen 22:569–578

    Article  PubMed  PubMed Central  Google Scholar 

  158. Mizuno K, Yamamura K, Yano K, Osada T, Saeki S, Takimoto N, Sakurai T, Nimura Y (2003) Effect of chitosan film containing basic fibroblast growth factor on wound healing in genetically diabetic mice. J Biomed Mater Res 64A:177–181

    Article  CAS  Google Scholar 

  159. Giavazzi R, Sennino B, Coltrini D, Garofalo A, Dossi R, Ronca R, Tosatti MP, Presta M (2003) Distinct role of fibroblast growth factor-2 and vascular endothelial growth factor on tumor growth and angiogenesis. Am J Pathol 162:1913–1926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Wang Y, Fu C, Wu Z, Chen L, Chen X, Wei Y, Zhang P (2017) A chitin film containing basic fibroblast growth factor with a chitin-binding domain as wound dressings. Carbohydr Polym 174:723–730

    Article  CAS  PubMed  Google Scholar 

  161. Trengove NJ, Stacey MC, MacAuley S, Bennett N, Gibson J, Burslem F, Murphy G, Schultz G (1999) Analysis of the acute and chronic wound environments: the role of proteases and their inhibitors. Wound Repair Regen 7:442–452

    Article  CAS  PubMed  Google Scholar 

  162. Mohandas A, Anisha BS, Chennazhi KP, Jayakumar R (2015) Chitosan–hyaluronic acid/VEGF loaded fibrin nanoparticles composite sponges for enhancing angiogenesis in wounds. Colloids Surf B Biointerfaces 127:105–113

    Article  CAS  PubMed  Google Scholar 

  163. Jazwa A, Kucharzewska P, Leja J, Zagorska A, Sierpniowska A, Stepniewski J, Kozakowska M, Taha H, Ochiya T, Derlacz R, Vahakangas E, Yla-Herttuala S, Jozkowicz A, Dulak J (2010) Combined vascular endothelial growth factor-A and fibroblast growth factor 4 gene transfer improves wound healing in diabetic mice. Genet Vaccines Ther 8:6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  164. Muñoz AL, Merchán WH, Resende Pires AL, Moraes ÂM, Gómez LA (2019) Biostimulation of venous chronic ulcers with platelet-rich plasmariaa gel and biocompatible membranes of chitosan and alginate: a pilot study. Wound Med 26:100161

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wanpen Tachaboonyakiat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tachaboonyakiat, W. (2021). Physical and Chemical Modification of Chitin/Chitosan for Functional Wound Dressings. In: Jayakumar, R., Prabaharan, M. (eds) Chitosan for Biomaterials III. Advances in Polymer Science, vol 287. Springer, Cham. https://doi.org/10.1007/12_2021_100

Download citation

Publish with us

Policies and ethics