Skip to main content

Dual Crosslink Hydrogels with Metal-Ligand Coordination Bonds: Tunable Dynamics and Mechanics Under Large Deformation

  • Chapter
  • First Online:
Self-Healing and Self-Recovering Hydrogels

Part of the book series: Advances in Polymer Science ((POLYMER,volume 285))

Abstract

Introducing additional physical and reversible crosslinks to a chemically crosslinked hydrogel is an interesting and viable alternative to increase the toughness of a hydrogel. Yet while in general the physical crosslink points provide dissipative mechanisms, there are still many details that are unknown in particular on the role that physical crosslinks play on the large strain behavior. We explore the mechanical properties in small and large strain of two dual crosslink gels made from a random copolymer of poly(acrylamide-co-vinylimidazole) with a range of elastic moduli in the tens of kPa. The interaction between vinylimidazole groups and metal ions (Zn2+ and Ni2+) results in physical crosslink points and in a markedly stretch-rate-dependent mechanical behavior. While a main relaxation process is clearly visible in linear rheology and controls the small and intermediate strain properties, we find that the strain hardening behavior at stretches of λ > 4 and the stretch at break λb are controlled by an additional longer-lived physical crosslinking mechanism that could be due to a clustering of physical crosslinks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Calvert P (2009) Adv Mater 21:743–756

    Article  CAS  Google Scholar 

  2. Creton C (2017) Macromolecules 50:8297–8316

    Article  CAS  Google Scholar 

  3. Sun TL, Kurokawa T, Kuroda S, Ihsan AB, Akasaki T, Sato K, Haque MA, Nakajima T, Gong JP (2013) Nat Mater 12:932–937

    Article  CAS  Google Scholar 

  4. Gong JP (2010) Soft Matter 6:2583–2590

    Article  CAS  Google Scholar 

  5. Sun J-Y, Zhao X, Illeperuma WRK, Chaudhuri O, Oh KH, Mooney DJ, Vlassak JJ, Suo Z (2012) Nature 489:133–136

    Article  CAS  Google Scholar 

  6. Zhao X (2014) Soft Matter 10:672–687

    Article  CAS  Google Scholar 

  7. Okumura Y, Ito K (2001) Adv Mater 13:485–487

    Article  CAS  Google Scholar 

  8. Haraguchi K, Takehisa T (2002) Adv Mater 14:1120–1124

    Article  CAS  Google Scholar 

  9. Gong JP, Katsuyama Y, Kurokawa T, Osada Y (2003) Adv Mater 15:1155–1158

    Article  CAS  Google Scholar 

  10. Webber RE, Creton C, Brown HR, Gong JP (2007) Macromolecules 40:2919–2927

    Article  CAS  Google Scholar 

  11. Lin WC, Fan W, Marcellan A, Hourdet D, Creton C (2010) Macromolecules 43:2554–2563

    Article  CAS  Google Scholar 

  12. Tito NB, Creton C, Storm C, Ellenbroek WG (2019) Soft Matter 15:2190–2203

    Article  CAS  Google Scholar 

  13. Tuncaboylu DC, Sari M, Oppermann W, Okay O (2011) Macromolecules 44:4997–5005

    Article  CAS  Google Scholar 

  14. Zhang J, Wang N, Liu W, Zhao X, Lu W (2013) Soft Matter 9:6331–6337

    Article  CAS  Google Scholar 

  15. Tang L, Liu W, Liu G (2010) Adv Mater 22:2652–2656

    Article  CAS  Google Scholar 

  16. Haque MA, Kurokawa T, Kamita G, Gong JP (2011) Macromolecules 44:8916–8924

    Article  CAS  Google Scholar 

  17. Henderson KJ, Zhou TC, Otim KJ, Shull KR (2010) Macromolecules 43:6193–6201

    Article  CAS  Google Scholar 

  18. Mayumi K, Marcellan A, Ducouret G, Creton C, Narita T (2013) ACS Macro Lett 2:1065–1068

    Article  CAS  Google Scholar 

  19. Guo J, Long R, Mayumi K, Hui C-Y (2016) Macromolecules 49:3497–3507

    Article  CAS  Google Scholar 

  20. Mayumi K, Guo J, Narita T, Hui CY, Creton C (2016) Extreme Mech Lett 6:52–59

    Article  Google Scholar 

  21. Guo J, Liu ML, Zehnder AT, Zhao J, Narita T, Creton C, Hui CY (2018) J Mech Phys Solids 120:79–95

    Article  CAS  Google Scholar 

  22. Narita T, Mayumi K, Ducouret G, Hebraud P (2013) Macromolecules 46:4174–4183

    Article  CAS  Google Scholar 

  23. Long R, Mayumi K, Creton C, Narita T, Hui C-Y (2014) Macromolecules 47:7243–7250

    Article  CAS  Google Scholar 

  24. Long R, Mayumi K, Creton C, Narita T, Hui C-Y (2015) J Rheol (1978-present) 59:643–665

    Article  CAS  Google Scholar 

  25. Zhao J, Mayumi K, Creton C, Narita T (2017) J Rheol 61:1371–1383

    Article  CAS  Google Scholar 

  26. Guo J, Liu ML, Zehnder AT, Zhao J, Narita T, Creton C, Hui CY (2018) J Rheol 62:991

    Article  Google Scholar 

  27. Holten-Andersen N, Harrington MJ, Birkedal H, Lee BP, Messersmith PB, Lee KYC, Waite JH (2011) Proc Natl Acad Sci 108:2651–2655

    Article  CAS  Google Scholar 

  28. Fullenkamp DE, He L, Barrett DG, Burghardt WR, Messersmith PB (2013) Macromolecules 46:1167–1174

    Article  CAS  Google Scholar 

  29. Menyo MS, Hawker CJ, Waite JH (2015) ACS Macro Lett 4:1200–1204

    Article  CAS  Google Scholar 

  30. Xu Z, Li J, Gao G, Wang Z, Cong Y, Chen J, Yin J, Nie L, Fu J (2018) J Polym Sci B 56:865–876

    Article  CAS  Google Scholar 

  31. Lin P, Ma S, Wang X, Zhou F (2015) Adv Mater 27:2054–2059

    Article  CAS  Google Scholar 

  32. Zhang H, Sun L, Yang B, Zhang Y, Zhu S (2016) RSC Adv 6:63848–63854

    Article  CAS  Google Scholar 

  33. Yi X, He J, Wang X, Zhang Y, Tan G, Zhou Z, Chen J, Chen D, Wang R, Tian W, Yu P, Zhou L, Ning C (2018) ACS Appl Mater Interfaces 10:6190–6198

    Article  CAS  Google Scholar 

  34. Kean ZS, Hawk JL, Lin S, Zhao X, Sijbesma RP, Craig SL (2014) Adv Mater 26:6013–6018

    Article  CAS  Google Scholar 

  35. Trabelsi S, Albouy PA, Rault J (2003) Macromolecules 36:7624–7639

    Article  CAS  Google Scholar 

  36. Deplace F, Carelli C, Mariot S, Retsos H, Chateauminois A, Ouzineb K, Creton C (2009) J Adhes 85:18–54

    Article  CAS  Google Scholar 

  37. Treloar LRG (1973) Rep Prog Phys 36:755–826

    Article  CAS  Google Scholar 

  38. Creton C, Ciccotti M (2016) Rep Prog Phys 79:046601

    Article  Google Scholar 

Download references

Acknowledgments

Jingwen Zhao has benefitted from a scholarship from the Chinese Scholarship Council. This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program under grant agreement AdG No 695351.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tetsuharu Narita or Costantino Creton .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhao, J., Narita, T., Creton, C. (2020). Dual Crosslink Hydrogels with Metal-Ligand Coordination Bonds: Tunable Dynamics and Mechanics Under Large Deformation. In: Creton, C., Okay, O. (eds) Self-Healing and Self-Recovering Hydrogels. Advances in Polymer Science, vol 285. Springer, Cham. https://doi.org/10.1007/12_2020_62

Download citation

Publish with us

Policies and ethics