Skip to main content

Microwave-Assisted Synthesis of Hybrid Polymer Materials and Composites

  • Chapter
  • First Online:
Book cover Microwave-assisted Polymer Synthesis

Part of the book series: Advances in Polymer Science ((POLYMER,volume 274))

Abstract

The fabrication of polymer–inorganic hybrid materials and composites under microwave irradiation benefits from a number of advantages such as reduction in processing time, more uniform heating of materials (i.e., reduced thermal gradient), faster curing of resins, and more efficient crosslinking of composite materials. For polymer hybrid materials, the advantages of microwave-assisted synthesis include smaller particle size, narrower particle size distribution, greater particle density, and higher exfoliation degree, which substantially improve the performance of the final material. A decrease in size of the various components is one of the cornerstones of the push towards improvements in electronic and optical devices, drug delivery, medical scaffolds, biosensors, imaging agents, and analytical technology. This chapter discusses recently published reports on the preparation and characterization of composite materials and polymer hybrids obtained under microwave irradiation using various types of polymer matrix and resins together with inorganic materials such as glass and carbon fibers, carbon black, layered materials (e.g., clays and double hydroxides), metal nanoparticles and nanowires, as well as carbon-based materials (e.g., fullerenes and nanotubes). A survey of past achievements in the preparation of polymer–inorganic hybrid nanocomposites under microwave irradiation can be found in a previously published review paper (Bogdal et al., Curr Org Chem 15:1782, 2011).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

2bpy:

2,2′-Bipyridine

AAEM:

Acetoacetoxyethyl methacrylate

AgNP:

Silver nanoparticle

AIBN:

Azobisisobutyronitrile

AM:

Acrylamide

AP:

p-Aminophenol

APS:

Ammonium persulfate

APTES:

γ-Aminopropyltriethoxysilane

BPA:

Bisphenol A

BPO:

Benzoyl peroxide

CA:

2-Carboxyethyl acrylate

Cloisite® :

Montmorillonite modified with a quaternary ammonium salt

CMC:

Carboxymethyl cellulose

CNT:

Carbon nanotube

CTAB:

Cetyltrimethylammonium bromide

DDM:

Diaminodiphenyl methane

DDS:

4,4′-Diaminodiphenyl sulfone

DGEBA:

Diglycidyl ether of bisphenol A

DMAc:

N,N-Dimethylacetamide

DMT:

Dimethyl terephthalate

DPC:

Diphenyl carbonate

EDA:

Ethylenediamine

EDMA:

Ethylene glycol dimethacrylate

EP:

Epoxy resin

F-FFF:

Flow-field-flow-fractionation

FGM:

Functionally graded materials

HA:

Hydroxyapatite

HDPE:

High-density polyethylene

HTAB:

Hexadecyltrimethyl ammonium bromide

KPS:

Potassium persulfate

LDH:

Layered double hydroxide

LDPE:

Low-density polyethylene

LED:

Light-emitting diode

MA:

Methyl acrylate

MBA:

N,N′-Methylenebisacrylamide

MC:

Microcrystalline cellulose

MMT:

Montmorillonite

MROP:

Microwave-assisted ring-opening polymerization

MSMA:

3-(Trimethoxysilyl) propyl methacrylate

MSTT:

Hybrid poly(acrylic)–SiO2/TiO2 film

MWCNT:

Multiwalled carbon nanotube

Nafion:

Copolymer of tetrafluoroethylene and perfluoro-3,6-dioxa-4-methyl-7-octene-sulfonic acid

PAI:

Poly(amide-imide)

PAMAM:

Polyamidoamine dendrimers

PC:

Polycarbonate

PCL:

Poly(ε-caprolactone)

PCMA:

Polycinnamamide Mg/Al mixed oxide nanocomposite

PDMS VSi-25:

α,ω-Diacrylate poly(dimethyl-siloxane)

PE:

Polyethylene

PEG:

Polyethylene glycol

PEMFC:

Proton exchange membrane fuel cell

PEO:

Poly(ethylene oxide)

PET:

Poly(ethylene terephthalate)

PETI-5/IM7:

Phenylethynyl-terminated polyimide

PMMA:

Poly(methyl methacrylate)

PoPD:

Poly(o-phenylenediamine)

PP:

Poly(propylene)

PS:

Polystyrene

PTFE:

Poly(tetrafluoroethylene)

PU:

Polyurethane

PVP:

Poly(vinylpyrrolidone)

RGO:

Reduced graphene oxide

ST:

Styrene

SWCNT:

Single-walled carbon nanotube

TBAB:

Tetrabutylammonium bromide

TEMPO:

(2,2,6,6-Tetramethylpiperidin-1-yl)oxyl

TIP:

Titanium tetraisopropoxide

TMPTA:

Trimethylolpropane triacrylate

Tween-20:

Polyoxyethylenesorbitan monolaurate

ZSM:

Zeolite Socony Mobil

εCL:

ε-Caprolactone

References

  1. Bogdal D, Prociak A, Michalowski S (2011) Curr Org Chem 15:1782

    Article  Google Scholar 

  2. Lečkov M, Prandzheva S (2009) Encyclopedia of polymer composites: properties, performance and applications. Nova Science, New York

    Google Scholar 

  3. Matras-Postolek K, Bogdal D (2010) Adv Polym Sci 230:221

    Article  CAS  Google Scholar 

  4. Skompska M (2010) Synth Met 160:1

    Article  CAS  Google Scholar 

  5. Mandal B, Bhattacharjee H, Mittal N et al (2013) Nanomed NBM 9:474

    Article  CAS  Google Scholar 

  6. Ge J, Neofytou E, Lei J et al (2012) Small 8:3573

    Article  CAS  Google Scholar 

  7. Roach P, McGarvey DJ, Lees MR, Hoskins C (2013) Int J Mol Sci 14:8585

    Article  Google Scholar 

  8. Iwasaki N, Kasahara Y, Yamane S et al (2011) Polymer 3:100

    Article  CAS  Google Scholar 

  9. Yuan J, Gaponik N, Eychmüller A (2012) Anal Chem 84:5047

    Article  CAS  Google Scholar 

  10. Prakash S, Chakrabarty T, Singh AK, Shahi VK (2013) Biosens Bioelectron 41:43

    Article  CAS  Google Scholar 

  11. Krasia-Christoforou T, Georgiou TK (2013) J Mater Chem B 1:3002–3025

    Google Scholar 

  12. Mok H, Park TG (2012) Macromol Biosci 12:40

    Article  CAS  Google Scholar 

  13. Shu JY, Panganiban B, Xu T (2013) Annu Rev Phys Chem 64:631

    Article  CAS  Google Scholar 

  14. Work WJ, Horie K, Hess M, Stepto RFT (2004) Pure Appl Chem 76:1985

    Article  CAS  Google Scholar 

  15. Gómez-Romero P, Sanchez C (2004) Functional hybrid materials. Wiley-VCH, Weinheim

    Google Scholar 

  16. Judeinstein P, Sanchez C (1996) J Mater Chem 6:511

    Article  CAS  Google Scholar 

  17. Ávila-Orta CA, González-Morones P, Espinoza-González CJ et al (2013) Toward greener chemistry methods for preparation of hybrid polymer materials based on carbon nanotubes. In: Suzuki S (ed) Syntheses and applications of carbon nanotubes and their composites. InTech, Rijeka, p 167

    Google Scholar 

  18. Hussain F, Hojjati M, Okamoto M, Gorga RE (2006) J Compos Mater 40:1511

    Article  CAS  Google Scholar 

  19. Fong H, Sarikaya M, White SN, Snead ML (2000) Mater Sci Eng C 7:119

    Article  Google Scholar 

  20. Zaremba CM (1998) Chem Mater 10:3813

    Article  CAS  Google Scholar 

  21. Bogdal D, Penczek P, Pielichowski J, Prociak A (2003) Adv Polym Sci 163:193

    CAS  Google Scholar 

  22. Wiesbrock F, Hoogenboom R, Schubert US (2004) Macromol Rapid Commun 25:1739

    Article  CAS  Google Scholar 

  23. Hoogenboom R, Schubert US (2007) Macromol Rapid Commun 28:368

    Article  CAS  Google Scholar 

  24. Bogdal D, Pisarek U (2012) Polymer chemistry under microwave irradiation. In: de la Hoz A, Loupy A (eds) Microwaves in organic synthesis. Wiley-VCH, Weinheim, p 1013

    Google Scholar 

  25. Bogdal D, Prociak A (2007) Microwave-enhanced polymer chemistry and technology. Blackwell, Ames

    Book  Google Scholar 

  26. Hanemann T, Szabo DV (2010) Materials 3:3468

    Article  CAS  Google Scholar 

  27. Zhang G, Niu A, Peng S, Jiang M, Tu Y, Li M, Ch W (2001) Acc Chem Res 34:249

    Article  CAS  Google Scholar 

  28. Kojima Y, Usuki A, Kawasumi M et al (1993) J Mater Res 8:1185

    Article  CAS  Google Scholar 

  29. Cao X, Lee LJ, Widya T, Macosko C (2005) Polymer 46:775

    Article  CAS  Google Scholar 

  30. Thostenson ET, Chou T-W (1997) In: Proceedings of 12th annual meeting American Society for Composites, Dearborn

    Google Scholar 

  31. Thostenson ET, Chou T-W (2001) Polym Compos 22:197

    Article  CAS  Google Scholar 

  32. Thostenson ET, Chou T-W (1998) In: Proceedings of the 13th annual meeting American Society for Composites, Baltimore

    Google Scholar 

  33. Liu Y, Xiao Y, Sun X, Scola DA (1999) J Appl Polym Sci 37:2391

    Article  Google Scholar 

  34. Harper JF, Price DM (2005) In: 10th International conference on microwave and RF heating, Modena

    Google Scholar 

  35. Fang X, Scola DA (1999) J Polym Sci Part A Polym Chem 37:4616

    Article  CAS  Google Scholar 

  36. Liu XQ, Wang YS, Zhu JH (2004) J Appl Polym Sci 94:994

    Article  CAS  Google Scholar 

  37. Imholt TJ, Dyke CA, Hasslacher B et al (2003) Chem Mater 15:3969

    Article  CAS  Google Scholar 

  38. Vázquez E, Prato M (2009) ACS Nano 3:3819

    Article  Google Scholar 

  39. Ye Z, Deering WD, Krokhin A, Roberts JA (2006) Phys Rev B 74:75425

    Article  Google Scholar 

  40. Xie R, Wang J, Yang Y et al (2011) Compos Sci Technol 72:85

    Article  CAS  Google Scholar 

  41. Yang L, Li Z, Nie G, Zhang Z, Xiaofeng L, Wang C (2014) Appl Surf Sci 307:601

    Article  CAS  Google Scholar 

  42. Chin IJ, Albrechta TT, Kima HC et al (2001) Polymer 42:5947

    Article  CAS  Google Scholar 

  43. Jiankun L, Yucai K, Zongneng Q, Su YX (2001) J Polym Sci Part B Polym Phys 39:115

    Article  CAS  Google Scholar 

  44. Yoo Y, Choi K-Y, Lee JH (2004) Macromol Chem Phys 205:1863

    Article  CAS  Google Scholar 

  45. Aranda L, Mosqueda Y, Pérez-Cappe E, Ruiz-Hitzky E (2003) J Polym Sci Part B Polym Phys 41:3249

    Article  CAS  Google Scholar 

  46. Urresti O, González A, Fernández-Berridi MJ et al (2011) J Membr Sci 373:173

    Article  CAS  Google Scholar 

  47. Schmidt D, Sinha RS, Bousmina M (2005) Prog Mater Sci 50:962

    Article  Google Scholar 

  48. Karaman VM, Privalko EG, Privalko VP et al (2005) Polymer 46:1943

    Article  CAS  Google Scholar 

  49. Chen B, Evans JRG (2006) Macromolecules 39:747

    Article  CAS  Google Scholar 

  50. Liao L, Zhang C, Gong S (2007) Macromol Rapid Commun 28:1148

    Article  CAS  Google Scholar 

  51. Liao LQ, Liu LJ, Zhang C et al (2002) J Polym Sci Part A Polym Chem 40:1749

    Article  CAS  Google Scholar 

  52. Liao L, Zhang C, Gong S (2007) Macromol Chem Phys 208:1301

    Article  CAS  Google Scholar 

  53. Liao LQ, Liu LJ, Zhang C et al (2003) J Appl Polym Sci 90:2657

    Article  CAS  Google Scholar 

  54. Wypych F, Satyanarayana KG (2004) Clay surfaces: fundamentals and applications. Elsevier, Amsterdam

    Google Scholar 

  55. Lee WD, Im SS (2007) J Polym Sci Part B Polym Phys 45:28

    Article  CAS  Google Scholar 

  56. Martínez-Gallegos S, Herrero M, Rives V (2008) J Appl Polym Sci 109:1388

    Article  Google Scholar 

  57. Uyanik N, Riza Erdem A, Fatih Can M, Çelik MS (2006) Polym Eng Sci 46:1104

    Article  CAS  Google Scholar 

  58. Chang J, Liang G, Gu A et al (2012) Carbon 50:689

    Article  CAS  Google Scholar 

  59. Pokharel P, Truong Q-T, Lee DS (2014) Compos Part B 64:187

    Article  CAS  Google Scholar 

  60. Lin J-S, Chung M-H, Chen C-M et al (2011) J Phys Org Chem 24:193

    Article  CAS  Google Scholar 

  61. Lin J-S, Chung M-H, Chen C-M et al (2010) Curr Appl Phys 10:1331

    Article  Google Scholar 

  62. Wada Y (2007) Polymer 48:1441

    Article  CAS  Google Scholar 

  63. Soumya S, Mohamed AP, Paul L, Mohan K, Ananthakumar S (2014) Sol Energy Mater Sol Cells 125:102

    Article  CAS  Google Scholar 

  64. Chien W-C, Yu Y-Y, Chen P-K, Yu H-H (2011) Thin Solid Films 519:5274

    Article  CAS  Google Scholar 

  65. Khan A, El-Toni AM, Alrokayan S et al (2011) Colloids Surf A 377:356

    Article  CAS  Google Scholar 

  66. Sowntharya L, Subasrin R (2013) Ceram Int 39:4689

    Article  CAS  Google Scholar 

  67. Yu Y-Y, Chen P-K (2013) Thin Solid Films 544:48

    Article  CAS  Google Scholar 

  68. Tyliszczak B, Pielichowski K (2013) J Polym Res 20:191

    Article  Google Scholar 

  69. He R, Qian X-F, Yin J et al (2003) Mater Lett 57:1351

    Article  CAS  Google Scholar 

  70. Riaz U, Ashraf SM, Madan A (2014) New J Chem 38:4219

    Article  CAS  Google Scholar 

  71. Riaz U, Ashraf SM, Kumar S, Ahmad I (2014) Chem Eng J 241:259

    Article  CAS  Google Scholar 

  72. Riaz U, Ashraf SM (2012) J Phys Chem C 116:12366

    Article  CAS  Google Scholar 

  73. Tian ZQ, Wang XL, Zhang HM et al (2006) Electrochem Commun 8:1158

    Article  CAS  Google Scholar 

  74. Hammami R, Ahamed Z, Charradi K et al (2013) Int J Hydrogen Energy 38:11583

    Article  CAS  Google Scholar 

  75. Matos BR, Isidoro RA, Santiago EI, Linardi M, Ferlauto AS, Tavares AC, Fonseca FC (2013) J Phys Chem 117:16863

    CAS  Google Scholar 

  76. Nadagouda MN, Varma RS (2008) Macromol Rapid Commun 29:155

    Article  CAS  Google Scholar 

  77. Li S-M, Jia N, Ma M-G et al (2011) Carbohydr Polym 86:441

    Article  CAS  Google Scholar 

  78. Xu Y, Zuo L, Lin T et al (2014) Polym Compos (in press) doi:10.1002/pc.23134

    Google Scholar 

  79. Kajiwara Y, Chujo Y (2011) Polym Bull 66:1039

    Article  CAS  Google Scholar 

  80. Cao X, Ding B, Yu J, Al-Deyab SS (2013) Carbohydr Polym 92:571

    Article  CAS  Google Scholar 

  81. Breitwieser D, Moghaddam MM, Spirk S et al (2013) Carbohydr Polym 94:677

    Article  CAS  Google Scholar 

  82. Li S-M, Fu L-H, Ma M-G et al (2012) Biomass Bioenergy 47:516

    Article  CAS  Google Scholar 

  83. Jia N, Li S-M, Ma M-G, Sun R-C (2011) Mater Lett 65:918

    Article  CAS  Google Scholar 

  84. Ma M-G, Qing S-J, Li S-M et al (2013) Carbohydr Polym 91:162

    Article  CAS  Google Scholar 

  85. Ma M-G, Dong Y-Y, Fu L-H et al (2013) Carbohydr Polym 92:1669

    Article  CAS  Google Scholar 

  86. Ma M-G, Zhu J-F, Jia N et al (2010) Carbohydr Res 345:1046

    Article  CAS  Google Scholar 

  87. Jia N, Li S-M, Ma M-G, Sun R-C (2012) Mater Lett 68:44

    Article  CAS  Google Scholar 

  88. Kamel S (2012) Carbohydr Polym 90:1538

    Article  CAS  Google Scholar 

  89. Lin S-P, Loira Calvar I, Catchmark JM et al (2013) Cellulose 20:2191

    Article  CAS  Google Scholar 

  90. Stoica-Guzun A, Stroescu M, Jinga SI et al (2013) Ind Crop Prod 50:414

    Article  CAS  Google Scholar 

  91. Shariatzadeh B, Moradi O (2014) Polym Compos 35:2050

    Article  CAS  Google Scholar 

  92. Mahmoodian H, Moradi O (2014) Polym Compos 35:495

    Article  CAS  Google Scholar 

  93. Jesionowski T, Klapiszewski Ł, Milczarek G (2014) J Mater Sci 49:1376

    Article  CAS  Google Scholar 

  94. Li H, Huang D (2013) J Appl Polym Sci 129:86

    Article  CAS  Google Scholar 

  95. Likhitha M, Sailaja RRN, Priyambika VS, Ravibabu MV (2014) Int J Biol Macromol 65:500

    Article  CAS  Google Scholar 

  96. Sharma K, Kaith BS, Kumar V et al (2013) RSC Adv 3:25830

    Article  CAS  Google Scholar 

  97. Huang J, Pen H, Xu Z, Yi C (2008) React Funct Polym 68:332

    Article  CAS  Google Scholar 

  98. Chen L, Tang CY, Ku HS-l, Tsui CP, Chen X (2014) Compos Part B 56:504

    Article  CAS  Google Scholar 

  99. Mallakpour S, Zadehnazari A (2014) Polym Int 63:1203

    Article  CAS  Google Scholar 

  100. Sykam N, Gautam RK, Kar KK (2014) Polym Eng Sci (in press) doi:10.1002/pen.23959

    Google Scholar 

  101. Zhang C, Su P, Umar Farooq M et al (2010) React Funct Polym 70:129

    Article  CAS  Google Scholar 

  102. Islam M, Mishra PC, Patel R (2013) Chem Eng J 230:48

    Article  CAS  Google Scholar 

  103. İnan TY, Karaca BY, Dogan H (2012) J Appl Polym Sci 128:2046

    Google Scholar 

  104. Türke A, Fischer W-J, Adler H-J, Pich A (2010) Polymer 51:4706

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dariusz Bogdal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bogdal, D., Bednarz, S., Matras-Postolek, K. (2014). Microwave-Assisted Synthesis of Hybrid Polymer Materials and Composites. In: Hoogenboom, R., Schubert, U., Wiesbrock, F. (eds) Microwave-assisted Polymer Synthesis. Advances in Polymer Science, vol 274. Springer, Cham. https://doi.org/10.1007/12_2014_296

Download citation

Publish with us

Policies and ethics