Skip to main content

Relaxation Phenomena During Polyelectrolyte Complex Formation

  • Chapter
  • First Online:
Polyelectrolyte Complexes in the Dispersed and Solid State I

Part of the book series: Advances in Polymer Science ((POLYMER,volume 255))

Abstract

Polyelectrolyte complex formation is a well-studied subject in colloid science. Several types of complex formation have been studied, including PEMs, macroscopic polyelectrolyte complexes, soluble complexes and polyelectrolyte complex micelles. The chemical nature of the complex-forming polyelectrolytes and the environmental conditions (e.g., pH, ionic strength and temperature) influence the final structural properties of these complexes. This chapter deals with the kinetics of polyelectrolyte complex formation and discusses how ionic strength, charge density and pH influence the dynamics of the complexes, which can range from glass-like (solid) precipitates to liquid-like phases. The switching between the glass-like and liquid-like phase as a function of the ionic strength has a strong analogy to the phase behaviour of polymer melts as function of temperature.

By performing calorimetry during complex formation it has been found that the enthalpy of complex formation of systems that form glass-like phases has an opposite sign to the enthalpy of systems that form liquid-like phases, i.e., the formation of glass-like phases is exothermic and the formation of liquid-like phases is endothermic. The free energy (Δf G), enthalpy (Δf H) and entropy (Δf S) of polyelectrolyte complex formation and how they vary as a function of the ionic strength will be discussed.

Results from dynamic light scattering (DLS) titrations, Atomic Force Microscopy (AFM), surface force measurements and rheology will be used to illustrate how differences in kinetics show up in experiments on colloidal micellar systems. In the section on DLS titrations, three-component systems containing two oppositely charged polyelectrolytes and protein molecules will be discussed. This chapter concludes with a section dedicated to the complex formation of oppositely charged protein molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lindhoud S (2009) Polyelectrolyte complex micelles as wrapping for enzymes. PhD thesis, University of Wageningen, Wageningen

    Google Scholar 

  2. von Klitzing R (2006) Phys Chem Chem Phys 8(43):5012–5033

    Article  Google Scholar 

  3. Zintchenko A, Rother G, Dautzenberg H (2003) Langmuir 19(6):2507–2513

    Article  CAS  Google Scholar 

  4. Bakeev KN, Izumrudov VA, Kuchanov SI, Zezin AB, Kabanov VA (1992) Macromolecules 25(17):4249–4254

    Article  CAS  Google Scholar 

  5. Hofs B, de Keizer A, Cohen Stuart MA (2007) J Phys Chem B 111(20):5621–5627

    Article  CAS  Google Scholar 

  6. Itano K, Choi JY, Rubner MF (2005) Macromolecules 38(8):3450–3460

    Article  CAS  Google Scholar 

  7. Bungenberg de Jong H (1949) In: Kruyt HR (ed) Complex colloid systems. Colloid science, vol 2. Elsevier, Amsterdam, pp 336–432

    Google Scholar 

  8. Weinbreck F, Tromp RH, de Kruif CG (2004) Biomacromolecules 5(4):1437–1445

    Article  CAS  Google Scholar 

  9. Weinbreck F, Wientjes RHW (2004) J Rheol 48(6):1215–1228

    Article  CAS  Google Scholar 

  10. de Kruif CG, Weinbreck F, de Vries R (2004) Curr Opin Colloid Interface Sci 9(5):340–349

    Article  Google Scholar 

  11. Kaibara K, Okazaki T, Bohidar HB, Dubin PL (2000) Biomacromolecules 1(1):100–107

    Article  CAS  Google Scholar 

  12. Kayitmazer AB, Strand SP, Tribet C, Jaeger W, Dubin PL (2007) Biomacromolecules 8:3568–3577

    Article  CAS  Google Scholar 

  13. Spruijt E, Westphal AH, Borst JW, Cohen Stuart MA, van der Gucht J (2010) Macromolecules 43(15):6476–6484

    Article  CAS  Google Scholar 

  14. Overbeek JTG, Voorn MJ (1957) J Cell Comp Physiol 49(S1):7–26

    Article  CAS  Google Scholar 

  15. Cohen Stuart M, de Vries R, Lyklema H (2005) Polyelectrolytes. In: Lyklema J (ed) Soft colloids. Fundamentals of interface and colloid science, vol 5. Academic, New York, pp 1–84

    Google Scholar 

  16. Nakajima A, Sato H (1972) Biopolymers 11(7):1345–1355

    Article  CAS  Google Scholar 

  17. Castelnove M, Joanny J-F (2001) Eur Phys J E: Soft Matter Biol Phys 6:377–386

    Article  Google Scholar 

  18. Kramarenko E, Khokhlov A (2007) Polym Sci Ser A 49:1053–1063

    Article  Google Scholar 

  19. Biesheuvel PM, Cohen Stuart MA (2004) Langmuir 20(11):4764–4770

    Article  CAS  Google Scholar 

  20. Fuoss RM, Sadek H (1949) Science 110(2865):552–554

    Article  CAS  Google Scholar 

  21. Michaels AS (1965) Ind Eng Chem 57(10):32–40

    Article  CAS  Google Scholar 

  22. Schlenoff JB, Ly H, Li M (1998) J Am Chem Soc 120(30):7626–7634

    Article  CAS  Google Scholar 

  23. Steitz R, Jaeger W, von Klitzing R (2001) Langmuir 17(15):4471–4474

    Article  CAS  Google Scholar 

  24. Glinel K, Moussa A, Jonas AM, Laschewsky A (2002) Langmuir 18(4):1408–1412

    Article  CAS  Google Scholar 

  25. Schoeler B, Kumaraswamy G, Caruso F (2002) Macromolecules 35(3):889–897

    Article  CAS  Google Scholar 

  26. Voigt U, Jaeger W, Findenegg GH, Klitzing RV (2003) J Phys Chem B 107(22):5273–5280

    Article  CAS  Google Scholar 

  27. Lavalle P, Gergely C, Cuisinier FJG, Decher G, Schaaf P, Voegel JC, Picart C (2002) Macromolecules 35(11):4458–4465

    Article  CAS  Google Scholar 

  28. Lavalle P, Picart C, Mutterer J, Gergely C, Reiss H, Voegel JC, Senger B, Schaaf P (2004) J Phys Chem B 108(2):635–648

    Article  CAS  Google Scholar 

  29. Hubsch E, Ball V, Senger B, Decher G, Voegel JC, Schaaf P (2004) Langmuir 20(5):1980–1985

    Article  Google Scholar 

  30. Shiratori SS, Rubner MF (2000) Macromolecules 33(11):4213–4219

    Article  CAS  Google Scholar 

  31. Kovacevic D, van der Burgh S, de Keizer A, Cohen Stuart MA (2002) Langmuir 18(14):5607–5612

    Article  CAS  Google Scholar 

  32. Picart C, Mutterer J, Richert L, Luo Y, Prestwich GD, Schaaf P, Voegel JC, Lavalle P (2002) Proc Natl Acad Sci USA 99(20):12531–12535

    Article  CAS  Google Scholar 

  33. Lavalle P, Vivet V, Jessel N, Decher G, Voegel JC, Mesini P, Schaaf P (2004) Macromolecules 37:1159–1162

    Article  CAS  Google Scholar 

  34. Sui ZJ, Salloum D, Schlenoff JB (2003) Langmuir 19(6):2491–2495

    Article  CAS  Google Scholar 

  35. Burke SE, Barrett CJ (2003) Langmuir 19(8):3297–3303

    Article  CAS  Google Scholar 

  36. Burke SE, Barrett CJ (2004) Pure Appl Chem 76(7–8):1387–1398

    Article  CAS  Google Scholar 

  37. Yoo D, Shiratori SS, Rubner MF (1998) Macromolecules 31(13):4309–4318

    Article  CAS  Google Scholar 

  38. Petrov AI, Antipov AA, Sukhorukov GB (2003) Macromolecules 36(26):10079–10086

    Article  CAS  Google Scholar 

  39. Xie AF, Granick S (2002) Macromolecules 35(5):1805–1813

    Article  CAS  Google Scholar 

  40. Izumrudov V, Sukhishvili SA (2003) Langmuir 19(13):5188–5191

    Article  CAS  Google Scholar 

  41. Porcel C, Lavalle P, Ball V, Decher G, Senger B, Voegel JC, Schaaf P (2006) Langmuir 22(9):4376–4383

    Article  CAS  Google Scholar 

  42. Porcel C, Lavalle P, Decher G, Senger B, Voegel JC, Schaaf P (2007) Langmuir 23(4):1898–1904

    Article  CAS  Google Scholar 

  43. Spruijt E, Sprakel J, Lemmers M, Cohen Stuart MA, van der Gucht J (2010) Phys Rev Lett 105(20):208301

    Article  Google Scholar 

  44. Jomaa HW, Schlenoff JB (2005) Macromolecules 38(20):8473–8480

    Article  CAS  Google Scholar 

  45. Büscher K, Graf K, Ahrens H, Helm CA (2002) Langmuir 18(9):3585–3591

    Article  Google Scholar 

  46. Tan HL, McMurdo MJ, Pan G, Van Patten PG (2003) Langmuir 19(22):9311–9314

    Article  CAS  Google Scholar 

  47. Laugel N, Betscha C, Winterhalter M, Voegel J-C, Schaaf P, Ball V (2006) J Phys Chem B 110(39):19443–19449

    Article  CAS  Google Scholar 

  48. Hofs B, Voets IK, de Keizer A, Cohen Stuart MA (2006) Phys Chem Chem Phys 8(36):4242–4251

    Article  CAS  Google Scholar 

  49. Ou ZY, Muthukumar M (2006) J Chem Phys 124(15):154902

    Article  Google Scholar 

  50. Lindhoud S, Norde W, Cohen Stuart MA (2009) J Phys Chem B 113(16):5431–5439

    Article  CAS  Google Scholar 

  51. Lindhoud S, de Vries R, Schweins R, Cohen Stuart MA, Norde W (2009) Soft Matter 5:242–250

    Article  CAS  Google Scholar 

  52. Schönhoff M, Ball V, Bausch AR, Dejugnat C, Delorme N, Glinel K, Klitzing RV, Steitz R (2007) Colloids Surf A Physicochem Eng Asp 303(1–2):14–29

    Article  Google Scholar 

  53. Farhat T, Yassin G, Dubas ST, Schlenoff JB (1999) Langmuir 15(20):6621–6623

    Article  CAS  Google Scholar 

  54. Jaber JA, Schlenoff JB (2007) Langmuir 23(2):896–901

    Article  CAS  Google Scholar 

  55. Glinel K, Prevot M, Krustev R, Sukhorukov GB, Jonas AM, Mohwald H (2004) Langmuir 20(12):4898–4902

    Article  CAS  Google Scholar 

  56. Halthur TJ, Elofsson UM (2004) Langmuir 20(5):1739–1745

    Article  CAS  Google Scholar 

  57. Kabanov AV, Bronich TK, Kabanov VA, Yu K, Eisenberg A (1996) Macromolecules 29(21):6797–6802

    Article  CAS  Google Scholar 

  58. Harada A, Kataoka K (1995) Macromolecules 28(15):5294–5299

    Article  CAS  Google Scholar 

  59. Cohen Stuart MA, Besseling NAM, Fokkink RG (1998) Langmuir 14(24):6846–6849

    Article  Google Scholar 

  60. Voets IK, de Keizer A, Cohen Stuart MA (2009) Adv Colloid Interface Sci 147–148:300–318

    Google Scholar 

  61. van der Burgh S, de Keizer A, Cohen Stuart MA (2004) Langmuir 20(4):1073–1084

    Article  Google Scholar 

  62. Lindhoud S, de Vries R, Norde W, Cohen Stuart MA (2007) Biomacromolecules 8(7):2219–2227

    Article  CAS  Google Scholar 

  63. Biesheuvel PM, Cohen Stuart MA (2004) Langmuir 20(7):2785–2791

    Article  CAS  Google Scholar 

  64. Harada A, Kataoka K (1998) Macromolecules 31(2):288–294

    Article  CAS  Google Scholar 

  65. Galisteo F, Norde W (1995) Colloids Surf B Biointerfaces 4(6):389–400

    Article  CAS  Google Scholar 

  66. Lindhoud S, Voorhaar L, de Vries R, Schweins R, Cohen Stuart MA, Norde W (2009) Langmuir 25:11425–11430

    Google Scholar 

  67. Yan Y, de Keizer A, Cohen Stuart MA, Drechsler M, Besseling NAM (2008) J Phys Chem B 112(35):10908–10914

    Article  CAS  Google Scholar 

  68. Lemmers M, Voets IK, Cohen Stuart MA, van der Gucht J (2011) Soft Matter 7:1378–1389

    Article  CAS  Google Scholar 

  69. Lindhoud S, Norde W, Cohen Stuart MA (2010) Langmuir 26(12):9802–9808

    Article  CAS  Google Scholar 

  70. Lindhoud S, Cohen Stuart MA, Norde W, Leermakers FAM (2009) Phys Rev E 80(5):051406

    Article  Google Scholar 

  71. Mjahed H, Voegel J-C, Chassepot A, Senger B, Schaaf P, Boulmedais F, Ball V (2010) J Colloid Interface Sci 346(1):163–171

    Article  CAS  Google Scholar 

  72. Spruijt E, Cohen Stuart MA, van der Gucht J (2010) Macromolecules 43(3):1543–1550

    Article  CAS  Google Scholar 

  73. Johansson E, Blomberg E, Lingström R, Wågberg L (2009) Langmuir 25(5):2887–2894

    Article  CAS  Google Scholar 

  74. Creton C, Kramer EJ, Hui CY, Brown HR (1992) Macromolecules 25(12):3075–3088

    Article  CAS  Google Scholar 

  75. Spruijt E, Sprakel J, Cohen Stuart MA, van der Gucht J (2010) Soft Matter 6(1):172–178

    Article  CAS  Google Scholar 

  76. de Ruiter L, de Bungenberg de Jong H (1947) Proc Sect Sci (Koninklijke Nederlandse Akademie van Wetenschappen) 50:836–848

    Google Scholar 

  77. Sprakel J, Besseling NAM, Leermakers FAM, Cohen Stuart MA (2007) Phys Rev Lett 99:104504

    Article  CAS  Google Scholar 

  78. van der Gucht J, Spruijt E, Lemmers M, Cohen Stuart MA (2011) J Colloid Interface Sci 361(2):407–422

    Article  Google Scholar 

  79. Lemmers M, Sprakel J, Voets IK, van der Gucht J, Cohen Stuart MA (2010) Angew Chem Int Ed 49(4):708–711

    Article  CAS  Google Scholar 

  80. Lemmers M, Spruijt E, Beun L, Fokkink R, Leermakers F, Portale G, Cohen Stuart MA, van der Gucht J (2012) Soft Matter 8:104–117

    Google Scholar 

  81. van der Veen M, Norde W, Cohen Stuart MA (2004) Colloids Surf B Biointerfaces 35(1):33–40

    Article  Google Scholar 

  82. Biesheuvel PM, Lindhoud S, de Vries R, Cohen Stuart MA (2006) Langmuir 22(3):1291–1300

    Article  CAS  Google Scholar 

  83. Alexander S, Chaikin PM, Grant P, Morales GJ, Pincus P, Hone D (1984) J Chem Phys 80(11):5776–5781

    Article  CAS  Google Scholar 

  84. Hansson P (2001) Langmuir 17(14):4167–4180

    Article  CAS  Google Scholar 

  85. Allen RJ, Warren PB (2004) Langmuir 20(5):1997–2009

    Article  CAS  Google Scholar 

  86. Biesheuvel PM, Wittemann A (2005) J Phys Chem B 109(9):4209–4214

    Article  CAS  Google Scholar 

  87. Carnahan NF, Starling KE (1972) AIChE J 18(6):1184–1189

    Article  CAS  Google Scholar 

  88. Biesheuvel PM, Lindhoud S, Cohen Stuart MA, de Vries R (2006) Phys Rev E 73(4):041408

    Article  Google Scholar 

  89. Nigen M, Croguennec T, Madec MN, Bouhallab S (2007) FEBS J 274(23):6085–6093

    Article  CAS  Google Scholar 

  90. Nigen M, Croguennec T, Bouhallab S (2009) Food Hydrocolloids 23(2):510–518

    Article  CAS  Google Scholar 

  91. Nigen M, Gaillard C, Croguennec T, Madec MN, Bouhallab S (2010) Biophys Chem 146(1):30–35

    Article  CAS  Google Scholar 

  92. Salvatore D, Croguennec T, Bouhallab S, Forge V, Nicolai T (2011) Biomacromolecules 12(5):1920–1926

    Article  CAS  Google Scholar 

  93. Desfougeres Y, Croguennec T, Lechevalier V, Bouhallab S, Nau F (2010) J Phys Chem B 114(12):4138–4144

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saskia Lindhoud .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lindhoud, S., Stuart, M.A.C. (2012). Relaxation Phenomena During Polyelectrolyte Complex Formation. In: Müller, M. (eds) Polyelectrolyte Complexes in the Dispersed and Solid State I. Advances in Polymer Science, vol 255. Springer, Berlin, Heidelberg. https://doi.org/10.1007/12_2012_178

Download citation

Publish with us

Policies and ethics