Skip to main content

Short-Range Cut-Off of the Summed-Up van der Waals Series: Rare-Gas Dimers

  • Chapter
  • First Online:
Density Functionals

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 365))

Abstract

van der Waals interactions are important in typical van der Waals-bound systems such as noble gas, hydrocarbon, and alkaline earth dimers. The summed-up van der Waals series of Perdew et al. 2012 works well and is asymptotically correct at large separation between two atoms. However, as with the Hamaker 1937 expression, it has a strong singularity at short non-zero separation, where the two atoms touch. In this work we remove that singularity (and most of the short-range contribution) by evaluating the summed-up series at an effective distance between the atom centers. Only one fitting parameter is introduced for this short-range cut-off. The parameter in our model is optimized for each system, and a system-averaged value is used to make the final binding energy curves. This method is applied to different noble gas dimers such as Ar–Ar, Kr–Kr, Ar–Kr, Ar–Xe, Kr–Xe, Xe–Xe, Ne–Ne, He–He, and also to the Be2 dimer. When this correction is added to the binding energy curve from the semilocal density functional meta-GGA-MS2, we get a vdW-corrected binding energy curve. These curves are compared with the results of other vdW-corrected methods such as PBE-D2 and vdW-DF2, and found to be typically better. Binding energy curves are in reasonable agreement with those from experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140:A1133–A1138

    Article  Google Scholar 

  2. Perdew JP, Kurth S (2003) A primer in density functional theory, Lecture notes in physics. Springer, Berlin

    Google Scholar 

  3. Perdew JP, Wang Y (1992) Accurate and simple analytic representation of the electron-gas correlation energy. Phys Rev B 45:13244–13249

    Article  Google Scholar 

  4. Sun J, Perdew JP, Seidl M (2010) Correlation energy of the uniform electron gas from an interpolation between high- and low-density limits. Phys Rev B 81(8):085123

    Article  Google Scholar 

  5. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868

    Article  CAS  Google Scholar 

  6. Becke AD (1993) Density functional thermochemistry, III. The role of exact exchange. J Chem Phys 98(7):5648–5652

    Article  CAS  Google Scholar 

  7. Heyd J, Scuseria GE, Ernzerhof M (2003) Hybrid functionals based on a screened Coulomb potential. J Chem Phys 118(18):8207–8215

    Article  CAS  Google Scholar 

  8. Paier J, Marsman M, Hummer K, Kresse G, Gerber IC, Ángyán JG (2006) Screened hybrid density functionals applied to solids. J Chem Phys 124(15):154709

    Article  CAS  Google Scholar 

  9. Burke K (2012) Perspective on density functional theory. J Chem Phys 136(139):150901

    Article  Google Scholar 

  10. Perdew JP, Schmidt K (2001) Jacob’s ladder of density functional approximations for the exchange-correlation energy. AIP Conf Proc 577(1):1–20

    CAS  Google Scholar 

  11. Tao J, Perdew JP, Staroverov VN, Scuseria GE (2003) Climbing the density functional ladder: nonempirical meta-generalized gradient approximation designed for molecules and solids. Phys Rev Lett 91:146401

    Article  Google Scholar 

  12. Perdew JP, Ruzsinszky A, Csonka GI, Vydrov OA, Scuseria GE, Constantin LA, Zhou X, Burke K (2008) Restoring the density-gradient expansion for exchange in solids and surfaces. Phys Rev Lett 100:136406

    Article  Google Scholar 

  13. Perdew JP, Ruzsinszky A, Csonka GI, Constantin LA, Sun J (2009) Workhorse semilocal density functional for condensed matter physics and quantum chemistry. Phys Rev Lett 103:026403

    Article  Google Scholar 

  14. Staroverov VN, Scuseria GE, Tao J, Perdew JP (2003) Comparative assessment of a new nonempirical density functional: molecules and hydrogen-bonded complexes. J Chem Phys 119:12129

    Article  CAS  Google Scholar 

  15. Perdew JP, Ruzsinszky A, Tao J, Csonka GI, Scuseria GE (2007) One-parameter optimization of a nonempirical meta-generalized-gradient-approximation for the exchange-correlation energy. Phys Rev A 76(4):042506

    Article  Google Scholar 

  16. Tao J, Perdew JP, Ruzsinszky A, Scuseria GE, Csonka GI, Staroverov VN (2007) Meta-generalized gradient approximation: non-empirical construction and performance of a density functional. Philos Mag 87(7):1071–1084

    Article  CAS  Google Scholar 

  17. Constantin LA, Perdew JP, Tao J (2006) Meta-generalized gradient approximation for the exchange-correlation hole with an application to the jellium surface energy. Phys Rev B 73(20):205104

    Article  Google Scholar 

  18. Sun J, Xiao B, Ruzsinszky A (2012) Communication: effect of the orbital-overlap dependence in the meta generalized gradient approximation. J Chem Phys 137(5):051101

    Article  Google Scholar 

  19. Sun J, Xiao B, Fang Y, Haunschild R, Hao P, Ruzsinszky A, Csonka GI, Scuseria GE, Perdew JP (2013) Density functionals that recognize covalent, metallic, and weak bonds. Phys Rev Lett 111(10):106401

    Article  Google Scholar 

  20. Sun J, Haunschild R, Xiao B, Bulik IW, Scuseria GE, Perdew JP (2013) Semilocal and hybrid meta-generalized gradient approximations based on the understanding of the kinetic-energy-density dependence. J Chem Phys 138(4):044113

    Article  Google Scholar 

  21. Zhao Y, Truhlar DG (2006) Comparative DFT study of van der Waals complexes: rare-gas dimers, alkaline-earth dimers, zinc dimer, and zinc-rare-gas dimers. J Phys Chem A 110(15):5121–5129

    Article  CAS  Google Scholar 

  22. Tran F, Hutter J (2013) Nonlocal van der Waals functionals: the case of rare-gas dimers and solids. J Chem Phys 138(20):204103

    Article  Google Scholar 

  23. Tao J, Perdew JP (2005) Test of a non-empirical density functional: short-range part of the van der Waals interaction in rare-gas dimers. J Chem Phys 122(11):114102

    Article  Google Scholar 

  24. Ruzsinszky A, Perdew JP, Csonka GI (2005) Binding energy curves from nonempirical density functionals II. van der Waals bonds in rare-gas and alkaline-earth diatomics. J Phys Chem A 109(48):11015–11102

    Article  CAS  Google Scholar 

  25. Stone AJ (1996) The theory of intermolecular forces, vol 32, International series of monographs on chemistry. Oxford University Press, Oxford

    Google Scholar 

  26. Wu Q, Ayers PW, Yang W (2003) Density-functional theory calculations with correct long-range potentials. J Chem Phys 119:2978

    Article  CAS  Google Scholar 

  27. Grimme S (2006) Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem 27:1787

    Article  CAS  Google Scholar 

  28. Sato T, Tsuneda T, Hirao K (2007) Long-range corrected density functional study on weakly bound systems: balanced descriptions of various types of molecular interactions. J Chem Phys 126:234114/1

    CAS  Google Scholar 

  29. Vydrov OA, Scuseria GE (2006) Assessment of a long-range corrected hybrid functional. J Chem Phys 125:234109/1

    CAS  Google Scholar 

  30. Grimme S, Ehrlich S, Goerigk L (2011) Effect of the damping function in dispersion corrected density functional theory. J Comput Chem 32(7):1456–1465

    Article  CAS  Google Scholar 

  31. Johnson ER, Becke AD (2005) A post-Hartree–Fock model of intermolecular interactions. J Chem Phys 123(2):024101

    Article  Google Scholar 

  32. Tkatchenko A, Scheffler M (2009) Accurate molecular van der Waals interactions from ground-state electron density and free-atom reference data. Phys Rev Lett 102(7):073005

    Article  Google Scholar 

  33. Vydrov OA, Van Voorhis T (2010) Dispersion interactions from a local polarizability model. Phys Rev A 81(6):062708

    Article  Google Scholar 

  34. Klimeš J, Michaelides A (2012) Perspective: advances and challenges in treating van der Waals dispersion forces in density functional theory. J Chem Phys 137(12):120901

    Article  Google Scholar 

  35. Tao J, Perdew JP, Ruzsinszky A (2012) Accurate van der Waals coefficients from density functional theory. Proc Natl Acad Sci 109(1):18–21

    Article  CAS  Google Scholar 

  36. Tao J, Perdew JP, Ruzsinszky A (2013) Long-range van der Waals interaction. Int J Modern Phys B 27(18):30011

    Article  Google Scholar 

  37. Perdew JP, Tao J, Hao P, Ruzsinszky A, Csonka GI, Pitarke JM (2012) Spherical-shell model for the van der Waals coefficients between fullerenes and/or nearly spherical nanoclusters. J Phys Condens Matter 24(42):424207

    Article  Google Scholar 

  38. Perdew JP, Ruzsinszky A, Sun J, Glindmeyer S, Csonka GI (2012) van der Waals interaction as a summable asymptotic series. Phys Rev A 86(6):062714

    Article  Google Scholar 

  39. Ruzsinszky A, Perdew JP, Tao J, Csonka GI, Pitarke JM (2012) van der Waals coefficients for nanostructures: fullerenes defy conventional wisdom. Phys Rev Lett 109(23):233203

    Article  Google Scholar 

  40. Wu Q, Yang W (2002) Empirical correction to density functional theory for van der Waals interactions. J Chem Phys 116(2):515–524

    Article  CAS  Google Scholar 

  41. Hamaker H (1937) The London-van der Waals attraction between spherical particles. Physica 4(10):1058–1072

    Article  CAS  Google Scholar 

  42. Blöchl PE (1994) Projector augmented-wave method. Phys Rev B 50(24):17953

    Article  Google Scholar 

  43. Kresse G, Hafner J (1993) Ab initio molecular dynamics for liquid metals. Phys Rev B 47:558–561

    Article  CAS  Google Scholar 

  44. Kresse G, Hafner J (1994) Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Phys Rev B 49:14251–14269

    Article  CAS  Google Scholar 

  45. Kresse G, Joubert D (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 59:1758–1775

    Article  CAS  Google Scholar 

  46. Lee K, Murray ED, Kong L, Lundqvist B, Langreth D (2010) Higher-accuracy van der Waals density functional. Phys Rev B 82:081101

    Article  Google Scholar 

  47. Ogilvie JF, Wang FY (1992) Potential-energy functions of diatomic molecules of the noble gases I. Like nuclear species. J Mol Struct 273:277–290

    Article  CAS  Google Scholar 

  48. Ogilvie JF, Wang FY (1993) Potential-energy functions of diatomic molecules of the noble gases: II. Unlike nuclear species. J Mol Struct 291(2):313–322

    Article  CAS  Google Scholar 

  49. Schmidt MW, Ivanic J, Ruedenberg K (2010) Electronic structure analysis of the ground-state potential energy curve of Be2. J Phys Chem A 114(33):8687–8696

    Article  CAS  Google Scholar 

  50. Casimir HBG, Polder D (1948) The influence of retardation on the London-van der Waals forces. Phys Rev 73:360–372

    Article  CAS  Google Scholar 

  51. Patil SH, Tang KT (1997) Multipolar polarizabilities and two- and three-body dispersion coefficients for alkali isoelectronic sequences. J Chem Phys 106(6):2298–2305

    Article  CAS  Google Scholar 

  52. Lucas AA, Henrard L, Lambin P (1994) Computation of the ultraviolet absorption and electron inelastic scattering cross section of multishell fullerenes. Phys Rev B 49:2888–2896

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the National Science Foundation under Grant No. DMR-1305135. We thank Prof. Adrienn Ruzsinszky and Dr. Jianwei Sun for their useful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhirup Patra .

Editor information

Editors and Affiliations

Appendices

Appendix 1 Summed-Up Series Expression

The Casimir–Polder [50, 51] formula for the van der Waals coefficients between two objects A and B to the second-order in electron–electron interaction is

$$ {C}_{2k}^{\mathrm{A}\mathrm{B}}=\frac{\left(2k-2\right)!}{2\pi }{\displaystyle \sum_{l_1=1}^{k-2}\frac{1}{\left(2{l}_1\right)!\left(2{l}_2\right)!}}{\displaystyle {\int}_0^{\infty }du{\alpha}_{l_1}^{\mathrm{A}}(iu){\alpha}_{l_2}^{\mathrm{B}}(iu)}, $$
(19)

where \( {l}_2=k-{l}_1-1 \) and \( {\alpha}_{l_1}^{\mathrm{A}}\to {2}^{l_1} \) pole dynamic polarizability of A at imaginary frequency ω = iu. It should be noted that \( l=1,\ l=2,\ l=3 \) are for dipole, quadrupole, and octupole interactions, respectively.

The dynamic multipole polarizabilities for a classical conducting spherical shell can be found from the following expressions:

$$ {\alpha}_l(iu)={R}^{2l+1}\frac{\omega_l^2}{{\omega_l}^2+{u}^2}\frac{1-{\theta}_l}{1-{\beta}_l{\theta}_l}, $$
(20)

where

$$ {\beta}_l=\frac{{\omega_l}^2{\tilde{\omega}}_l^2}{\left({\omega_l}^2+{u}^2\right)\left({\tilde{\omega}}_l^2+{u}^2\right)} $$
(21)

and

$$ {\theta}_l={\left(\frac{R-t}{R}\right)}^{2l+1}={\left(1-t/R\right)}^{2l+1} $$
(22)

from the work of Lucas et al. [52]. Here \( {\omega}_l={\omega}_{\mathrm{p}}\sqrt{l/\left(2l+1\right)} \) and \( {\tilde{\omega}}_l={\omega}_{\mathrm{p}}\sqrt{\left(l+1\right)/\left(2l+1\right)} \). The plasma frequency of the system is \( {\omega}_{\mathrm{p}}=\sqrt{4\pi \rho } \) with \( \rho =\frac{N}{\left[\frac{4}{3}\pi \left\{{R}^3-{\left(R-t\right)}^3\right\}\right]} \) for the spherical shell (with radius R and thickness t) and \( \rho =\frac{N}{\left(\frac{4}{3}\pi {R}^3\right)} \) for the sphere (with radius R). N is the total number of valence electrons, equal to 2 for He and 8 for other rare gas atoms.

In Perdew et al. [37] it is shown that, for a classical conducting spherical shell of radius R, thickness t, and uniform density ρ, the above integration at (18) can be performed to get all the higher order vdW coefficients. For two identical spheres, i.e., when A = B, one can get

$$ {C}_{2k}^{\mathrm{AA}}={\omega}_{\mathrm{p}}{(2R)}^{2k}\frac{1}{2^{2k}}\frac{\left(2k-2\right)!}{4}{\displaystyle \sum_{l=1}^{k-2}\frac{1}{(2l)!\left(2k-2l-1\right)!}\times \frac{1}{\sqrt{\left(2l+1\right)/l}+\sqrt{\left(2k-2l-1\right)/\left(k-l-1\right)}}}. $$
(23)

Then the van der Waals interaction of (2) can be written as

$$ E(d)=-\sqrt{4\pi \rho }{\displaystyle \sum_{k=3}^{\infty }{c}_k\left(t/R\right){z}^k}, $$
(24)

where c k (t/R) is related to C 2k by (4) and \( z={\left(\frac{2R}{d}\right)}^2 \).

Now, by the introduction of the geometric series of \( {\displaystyle {\sum}_{k=1}^{\infty }{z}^k}={\left(1-z\right)}^{-1} \) for 0 ≤ z < 1 and approximating \( {c}_k\to {c}_{\infty } \) for k > 5, we find

$$ {E}^{\mathrm{geo}}(d)=-\sqrt{4\pi \rho}\left[{c}_3\left(\frac{t}{R}\right){z}^3+{c}_4\left(\frac{t}{R}\right){z}^4+{c}_5\left(\frac{t}{R}\right){z}^5+{c}_{\infty}\left\{{\left(1-z\right)}^{-1}-{\displaystyle \sum_{k=0}^5{z}^k}\right\}\right]. $$
(25)

This expression interpolates between the very large d and \( d\to 2R \) limits. The above expression for E geo(d) has an unphysical divergence at z = 1 or d = 2R where the two spheres touch each other. This divergence appears because we sum up all the terms. However, in reality there is no divergence in (2) because it is an asymptotic expansion for large value of d.

This is true because at large d the exponential density overlap between the two real quantum-mechanical objects may be neglected. This divergence in the expression of E geo(d) can be removed by replacing z by z′ where z′ = (2R/d′)2 with a proper choice of d′. The expression for E geo(d) is true for the interaction between identical spheres but it can be generalized to non-identical spheres \( 2R\to {R}_{\mathrm{A}}+{R}_{\mathrm{B}} \), which leads to an equation such as (14) for the expression of E vdW(d′).

In the pair interaction picture, Hamaker’s [41] expression of the van der Waals interaction between two solid spheres of uniform density ρ is

$$ E(d)=-\beta {\displaystyle {\int}_{\mathrm{A}}{d}^3r}{\displaystyle {\int}_{\mathrm{B}}{d}^3{r}^{\prime}\frac{1}{\left|r-{r}^{\prime}\right|{}^6}}, $$
(26)

where \( \beta ={c}_3(1)\sqrt{4\pi \rho }{\left(\frac{3}{4\pi}\right)}^2{2}^6=0.006766\sqrt{4\pi \rho }{\left(\frac{3}{4\pi}\right)}^2{2}^6 \) can be evaluated using the value of c 3(1) from Table 1.

Appendix 2 Binding Energy Curves from Geometric Series

The summed-up van der Waals series expression of (4) can also be used to obtain the binding energy curves for the rare-gas dimers if we use our short-range cut-off idea. Reduced van der Waals coefficients c 3(t/R), c 4(t/R), c 5(t/R) and c (t/R) are taken from Table 1 for t/R = 1, e.g., for solid spheres. For identical solid-spheres the electron density is \( \rho =N/\left(4\pi {R}^3/3\right) \) for a sphere with radius R and number of total valence electrons N (N is 2 for He and 8 for the other rare-gas atoms). The electron density for non-identical spheres can be evaluated using \( 2\sqrt{\rho_{\mathrm{A}}}\sqrt{\rho_{\mathrm{B}}}/\left(\sqrt{\rho_{\mathrm{A}}}+\sqrt{\rho_{\mathrm{B}}}\right) \). We could not optimize the fitting parameter for every dimer. We have used a = 4.09, the average of the optimum values for Ar–Ar and Kr–Kr. Figure 12 shows the results.

Fig. 12
figure 12

Binding energy curves for different dimers using the geometric-series expression of (25) a = 4.09

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Patra, A., Xiao, B., Perdew, J.P. (2015). Short-Range Cut-Off of the Summed-Up van der Waals Series: Rare-Gas Dimers. In: Johnson, E. (eds) Density Functionals. Topics in Current Chemistry, vol 365. Springer, Cham. https://doi.org/10.1007/128_2015_625

Download citation

Publish with us

Policies and ethics