Skip to main content

Photorespiration and Improving Photosynthesis

  • Chapter
  • First Online:
Progress in Botany Vol. 84

Part of the book series: Progress in Botany ((BOTANY,volume 84))

Abstract

Improving photosynthesis has become a strategy to increase plant productivity. Current photosynthetic targets dealing with light and CO2 capture will be briefly described and major breakthroughs dealing with photoprotection kinetics, CO2-concentrating mechanisms, and ribulose-1,5-bisphosphate regeneration will be highlighted before focusing on photorespiration. This metabolic process occurs when ribulose-1,5-bisphosphate carboxylase/oxygenase, the major CO2-assimilatory enzyme, uses O2 thereby producing toxic 2-phosphoglycolate that has to be removed. This is achieved by the photorespiratory cycle, a high energy cost pathway that competes with photosynthetic CO2 assimilation and releases both CO2 and ammonium that can be lost to the atmosphere if not re-assimilated. This wasteful metabolic pathway cannot be knocked out, as photorespiratory mutants are unable to develop normally in air and require high CO2 atmospheres that limit photorespiration for normal growth. Surprisingly, little is known about the regulation of this important metabolic cycle even though photorespiratory enzymes are associated with several post-translational modifications. Current progress in the use of photorespiratory mutants to better understand photorespiration and its interactions with other metabolic pathways, and in proteomics to identify potential regulatory mechanisms will be described before moving onto how manipulating the photorespiratory cycle has led to the improvement of photosynthesis and plant productivity. This has been achieved either by over-expressing photorespiratory proteins or by creating alternative glycolate catabolism routes within the chloroplast.

Communicated by Francisco M. Cánovas

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abadie C, Mainguet S, Davanture M, Hodges M, Zivy M, Tcherkez G (2016) Concerted changes in the phosphoproteome and metabolome under different CO2/O2 gaseous conditions in Arabidopsis rosettes. Plant Cell Physiol 57:1544–1556

    PubMed  Google Scholar 

  • Abbasi AZ, Bilal M, Khurshid G, Yiotis C, Zeb I, Hussain J, Baig A, Shah MM, Chaudhary SU, Osborne B et al (2021) Expression of cyanobacterial genes enhanced CO2 assimilation and biomass production in transgenic Arabidopsis thaliana. PeerJ 9:1–33

    Google Scholar 

  • Ainsworth EA, Long SP (2005) What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytol 165:351–372

    PubMed  Google Scholar 

  • Anderson LE (1971) Chloroplast and cytoplasmic enzymes II. Pea leaf triose phosphate isomerases. Biochim Biophys Acta 235:237–244

    PubMed  Google Scholar 

  • Aroca Á, Serna A, Gotor C, Romero LC (2015) S-sulfhydration: a cysteine posttranslational modification in plant systems. Plant Physiol 168:334–342

    PubMed  PubMed Central  Google Scholar 

  • Aryal UK, Krochko JE, Ross ARS (2012) Identification of phosphoproteins in Arabidopsis thaliana leaves using polyethylene glycol fractionation, immobilized metal-ion affinity chromatography, two-dimensional gel electrophoresis and mass spectrometry. J Proteome Res 11:425–437

    PubMed  Google Scholar 

  • Balmer Y, Vensel WH, Tanaka CK, Hurkman WJ, Gelhaye E, Rouhier N, Jacquot JP, Manieri W, Schürmann P, Droux M et al (2004) Thioredoxin links redox to the regulation of fundamental processes of plant mitochondria. Proc Natl Acad Sci U S A 101:2642–2647

    PubMed  PubMed Central  Google Scholar 

  • Bar-Even A (2018) Daring metabolic designs for enhanced plant carbon fixation. Plant Sci 273:71–83

    PubMed  Google Scholar 

  • Bartsch O, Mikkat S, Hagemann M, Bauwe H (2010) An autoinhibitory domain confers redox regulation to maize glycerate kinase. Plant Physiol 153:832–840

    PubMed  PubMed Central  Google Scholar 

  • Baslam M, Mitsui T, Hodges M, Priesack E, Herritt MT, Aranjuelo I, Sanz-Sáez Á (2020) Photosynthesis in a changing global climate: scaling up and scaling down in crops. Front Plant Sci 11:1–29

    Google Scholar 

  • Battisti DS, Naylor RL (2009) Historical warnings of future food insecurity with unprecedented seasonal heat. Science 323:240–244

    PubMed  Google Scholar 

  • Bauwe H, Hagemann M, Fernie AR (2010) Photorespiration: players, partners and origin. Trends Plant Sci 15:330–336

    PubMed  Google Scholar 

  • Betti M, Bauwe H, Busch FA, Fernie AR, Keech O, Levey M, Ort DR, Parry MAJ, Sage R, Timm S et al (2016) Manipulating photorespiration to increase plant productivity: recent advances and perspectives for crop improvement. J Exp Bot 67:2977–2988

    PubMed  Google Scholar 

  • Bilal M, Abbasi AZ, Khurshid G, Yiotis C, Hussain J, Shah MM, Naqvi T, Kwon SY, Il PY, Osborne B et al (2019) The expression of cyanobacterial glycolate–decarboxylation pathway genes improves biomass accumulation in Arabidopsis thaliana. Plant Biotechnol Rep. https://doi.org/10.1007/s11816-019-00548-x

  • Bloom AJ, Burger M, Rubio Asensio JS, Cousins AB (2010) Carbon dioxide enrichment inhibits nitrate assimilation in wheat and Arabidopsis. Science 328:899–903

    PubMed  Google Scholar 

  • Boldt R, Edner C, Kolukisaoglu U, Hagemann M, Weckwerth W, Wienkoop S, Morgenthal K, Bauwe H (2005) D-GLYCERATE 3-KINASE, the last unknown enzyme in the photorespiratory cycle in Arabidopsis, belongs to a novel kinase family. Plant Cell 17:2413–2420

    PubMed  PubMed Central  Google Scholar 

  • Bykova NV, Keerberg O, Pärnik T, Bauwe H, Gardeström P (2005) Interaction between photorespiration and respiration in transgenic potato plants with antisense reduction in glycine decarboxylase. Planta 222:130–140

    PubMed  Google Scholar 

  • Camejo D, Romero-Puertas MDC, Rodríguez-Serrano M, Sandalio LM, Lázaro JJ, Jiménez A, Sevilla F (2013) Salinity-induced changes in S-nitrosylation of pea mitochondrial proteins. J Proteome 79:87–99

    Google Scholar 

  • Campbell WJ, Ogren WL (1990) Glyoxylate inhibition of ribulosebisphosphate carboxylase/oxygenase activation in intact, lysed, and reconstituted chloroplasts. Photosynth Res 23:257–268

    PubMed  Google Scholar 

  • Carmo-Silva E, Scales JC, Madgwick PJ, Parry MAJ (2015) Optimizing rubisco and its regulation for greater resource use efficiency. Plant Cell Environ 38:1817–1832

    PubMed  Google Scholar 

  • Carvalho JFC, Madgwick PJ, Powers SJ, Keys AJ, Lea PJ, Parry MA (2011) An engineered pathway for glyoxylate metabolism in tobacco plants aimed to avoid the release of ammonia in photorespiration. BMC Biotechnol 11:111. https://doi.org/10.1186/1472-6750-11-111

    Article  PubMed  PubMed Central  Google Scholar 

  • Cavanagh AP, South PF, Bernacchi CJ, Ort DR (2021) Alternative pathway to photorespiration protects growth and productivity at elevated temperatures in a model crop. Plant Biotechnol J. https://doi.org/10.1111/pbi.13750

  • Cerveau D, Kraut A, Stotz HU, Mueller MJ, Couté Y, Rey P (2016) Characterization of the Arabidopsis thaliana 2-Cys peroxiredoxin interactome. Plant Sci 252:30–41

    PubMed  Google Scholar 

  • Chen ZF, Kang XP, Nie HM, Zheng SW, Zhang TL, Zhou D, Xing GM, Sun S (2019) Introduction of exogenous glycolate catabolic pathway can strongly enhances photosynthesis and biomass yield of cucumber grown in a low-CO2 environment. Front Plant Sci 10:1–11

    Google Scholar 

  • Choudhary MK, Nomura Y, Wang L, Nakagami H, Somers DE (2015) Quantitative circadian phosphoproteomic analysis of Arabidopsis reveals extensive clock control of key components in physiological, metabolic, and signaling pathways. Mol Cell Proteomics 14:2243–2260

    PubMed  PubMed Central  Google Scholar 

  • Collakova E, Goyer A, Naponelli V, Krassovskaya I, Gregory JF, Hanson AD, Shachar-Hill Y (2008) Arabidopsis 10-formyl tetrahydrofolate deformylases are essential for photorespiration. Plant Cell 20:1818–1832

    PubMed  PubMed Central  Google Scholar 

  • Cook CM, Mulligan RM, Tolbert NE (1985) Inhibition and stimulation of ribulose-1,5-bisphosphate carboxylase/oxygenase by glyoxylate. Arch Biochem Biophys 240:392–401

    PubMed  Google Scholar 

  • Coschigano KT, Melo-Oliveira R, Lim J, Coruzzi GM (1998) Arabidopsis gls mutants and distinct Fd-GOGAT genes. Implications for photorespiration and primary nitrogen assimilation. Plant Cell 10(5):741–752

    PubMed  PubMed Central  Google Scholar 

  • Cui LL, Lu YS, Li Y, Yang C, Peng XX (2016) Overexpression of glycolate oxidase confers improved photosynthesis under high light and high temperature in rice. Front Plant Sci 7:1–12

    Google Scholar 

  • Da Fonseca-Pereira P, Souza PVL, Hou LY, Schwab S, Geigenberger P, Nunes-Nesi A, Timm S, Fernie AR, Thormählen I, Araújo WL et al (2020) Thioredoxin h2 contributes to the redox regulation of mitochondrial photorespiratory metabolism. Plant Cell Environ 43:188–208

    PubMed  Google Scholar 

  • Da Fonseca-Pereira P, Souza PVL, Fernie AR, Timm S, Daloso DM, Araújo WL (2021) Thioredoxin-mediated regulation of (photo)respiration and central metabolism. J Exp Bot 72:5987–6002

    PubMed  Google Scholar 

  • Dalal J, Lopez H, Vasani NB, Hu Z, Swift JE, Yalamanchili R, Dvora M, Lin X, Xie D, Qu R et al (2015) A photorespiratory bypass increases plant growth and seed yield in biofuel crop Camelina sativa. Biotechnol Biofuels 8:1–22

    Google Scholar 

  • Danila FR, Thakur V, Chatterjee J, Bala S, Coe RA, Acebron K, Furbank RT, von Caemmerer S, Quick WP (2021) Bundle sheath suberisation is required for C4 photosynthesis in a Setaria viridis mutant. Commun Biol 4:1–10

    Google Scholar 

  • Dellero Y, Lamothe-Sibold M, Jossier M, Hodges M (2015) Arabidopsis thaliana ggt1 photorespiratory mutants maintain leaf carbon/nitrogen balance by reducing RuBisCO content and plant growth. Plant J 83:1005–1018

    PubMed  Google Scholar 

  • Dellero Y, Jossier M, Glab N, Oury C, Tcherkez G, Hodges M (2016a) Decreased glycolate oxidase activity leads to altered carbon allocation and leaf senescence after a transfer from high CO2 to ambient air in Arabidopsis thaliana. J Exp Bot 67(10):3149–3163

    PubMed  Google Scholar 

  • Dellero Y, Jossier M, Schmitz J, Maurino VG, Hodges M (2016b) Photorespiratory glycolate-glyoxylate metabolism. J Exp Bot 67(10):3041–3052

    PubMed  Google Scholar 

  • Dellero Y, Mauve C, Jossier M, Hodges M (2021) The impact of photorespiratory glycolate oxidase activity on arabidopsis thaliana leaf soluble amino acid pool sizes during acclimation to low atmospheric CO2 concentrations. Meta 11(8):501. https://doi.org/10.3390/metabo11080501

    Article  Google Scholar 

  • Ding F, Wang M, Zhang S, Ai X (2016) Changes in SBPase activity influence photosynthetic capacity, growth, and tolerance to chilling stress in transgenic tomato plants. Sci Rep 6:1–14

    Google Scholar 

  • Douce R, Bourguignon J, Neuburger M, Rébeillé F (2001) The glycine decarboxylase system: a fascinating complex. Trends Plant Sci 6:167–176

    PubMed  Google Scholar 

  • Driever SM, Simkin AJ, Alotaibi S, Fisk SJ, Madgwick PJ, Sparks CA, Jones HD, Lawson T, Parry MAJ, Raines CA (2017) Increased sbpase activity improves photosynthesis and grain yield in wheat grown in greenhouse conditions. Philos Trans R Soc B Biol Sci. https://doi.org/10.1098/rstb.2016.0384

  • Eisenhut M, Ruth W, Haimovich M, Bauwe H, Kaplan A, Hagemann M (2008) The photorespiratory glycolate metabolism is essential for cyanobacteria and might have been conveyed endosymbiontically to plants. Proc Natl Acad Sci U S A 105:17199–17204

    PubMed  PubMed Central  Google Scholar 

  • Eisenhut M, Planchais S, Cabassa C, Guivarc’H A, Justin AM, Taconnat L, Renou JP, Linka M, Gagneul D, Timm S et al (2013) Arabidopsis A BOUT de SOUFFLE is a putative mitochondrial transporter involved in photorespiratory metabolism and is required for meristem growth at ambient CO2 levels. Plant J 73:836–849

    PubMed  Google Scholar 

  • Eisenhut M, Bräutigam A, Timm S, Florian A, Tohge T, Fernie AR, Bauwe H, Weber APM (2017) Photorespiration is crucial for dynamic response of photosynthetic metabolism and stomatal movement to altered CO2 availability. Mol Plant 10:47–61

    PubMed  Google Scholar 

  • Eisenhut M, Roell M, Weber APM (2019) Mechanistic understanding of photorespiration paves the way to a new green revolution. New Phytol 223(4):1762–1769

    PubMed  Google Scholar 

  • Engel N, van den Daele K, Kolukisaoglu U, Morgenthal K, Weckwerth W, Parnik T, Keerberg O, Bauwe H (2007) Deletion of glycine decarboxylase in Arabidopsis is lethal under nonphotorespiratory conditions. Plant Physiol 144:1328–1335

    PubMed  PubMed Central  Google Scholar 

  • Engel N, Eisenhut M, Qu N, Bauwe H (2008) Arabidopsis mutants with strongly reduced levels of the T-protein subunit of glycine decarboxylase. In: Photosynthesis. Energy from the Sun, vol 1, pp 819–822

    Google Scholar 

  • Engel N, Ewald R, Gupta KJ, Zrenner R, Hagemann M, Bauwe H (2011) The presequence of Arabidopsis serine hydroxymethyltransferase SHM2 selectively prevents import into mesophyll mitochondria. Plant Physiol 157:1711–1720

    PubMed  PubMed Central  Google Scholar 

  • Engqvist MKM, Schmitz J, Gertzmann A, Florian A, Jaspert N, Arif M, Balazadeh S, Mueller-Roeber B, Fernie AR, Maurino VG (2015) GLYCOLATE OXIDASE3, a glycolate oxidase homolog of yeast L-lactate cytochrome c oxidoreductase, supports L-lactate oxidation in roots of arabidopsis. Plant Physiol 169:1042–1061

    PubMed  PubMed Central  Google Scholar 

  • Ermakova M, Danila FR, Furbank RT, von Caemmerer S (2020) On the road to C4 rice: advances and perspectives. Plant J 101:940–950

    PubMed  Google Scholar 

  • Ermakova M, Arrivault S, Giuliani R, Danila F, Alonso-Cantabrana H, Vlad D, Ishihara H, Feil R, Guenther M, Borghi GL et al (2021) Installation of C4 photosynthetic pathway enzymes in rice using a single construct. Plant Biotechnol J 19:575–588

    PubMed  Google Scholar 

  • Esser C, Kuhn A, Groth G, Lercher MJ, Maurino VG (2014) Plant and animal glycolate oxidases have a common eukaryotic ancestor and convergently duplicated to evolve long-chain 2-hydroxy acid oxidases. Mol Biol Evol 31:1089–1101

    PubMed  Google Scholar 

  • Fahnenstich H, Scarpeci TE, Valle EM, Flügge UI, Maurino VG (2008) Generation of hydrogen peroxide in chloroplasts of arabidopsis overexpressing glycolate oxidase as an inducible system to study oxidative stress. Plant Physiol 148:719–729

    PubMed  PubMed Central  Google Scholar 

  • Ferreira S, Moreira E, Amorim I, Santos C, Melo P (2019) Arabidopsis thaliana mutants devoid of chloroplast glutamine synthetase (GS2) have non-lethal phenotype under photorespiratory conditions. Plant Physiol Biochem 144:365–374

    PubMed  Google Scholar 

  • Flügel F, Timm S, Arrivault S, Florian A, Stitt M, Fernie AR, Bauwe H (2017) The photorespiratory metabolite 2-phosphoglycolate regulates photosynthesis and starch accumulation in Arabidopsis. Plant Cell 29(10):2537–2551

    PubMed  PubMed Central  Google Scholar 

  • Foyer CH, Noctor G (2020) Redox homeostasis and signaling in a higher-CO2 world. Annu Rev Plant Biol 71:157–182

    PubMed  Google Scholar 

  • Foyer CH, Bloom AJ, Queval G, Noctor G (2009) Photorespiratory metabolism: genes, mutants, energetics, and redox signaling. Annu Rev Plant Biol 60:455–484

    PubMed  Google Scholar 

  • Giuliani R, Karki S, Covshoff S, Lin HC, Coe RA, Koteyeva NK, Quick WP, Von Caemmerer S, Furbank RT, Hibberd JM et al (2019) Knockdown of glycine decarboxylase complex alters photorespiratory carbon isotope fractionation in Oryza sativa leaves. J Exp Bot 70:2773–2786

    PubMed  PubMed Central  Google Scholar 

  • González M, Delgado-Requerey V, Ferrández J, Serna A, Cejudo FJ (2019) Insights into the function of NADPH thioredoxin reductase C (NTRC) based on identification of NTRC-interacting proteins in vivo. J Exp Bot 70(20):5787–5798

    PubMed  PubMed Central  Google Scholar 

  • Gupta SD, Levey M, Schulze S, Karki S, Emmerling J, Streubel M, Gowik U, Paul Quick W, Westhoff P (2020) The C4Ppc promoters of many C4 grass species share a common regulatory mechanism for gene expression in the mesophyll cell. Plant J 101:204–216

    PubMed  Google Scholar 

  • Hagemann M, Bauwe H (2016) Photorespiration and the potential to improve photosynthesis. Curr Opin Chem Biol 35:109–116

    PubMed  Google Scholar 

  • Hennacy JH, Jonikas MC (2020) Prospects for engineering biophysical CO2 concentrating mechanisms into land plants to enhance yields. Annu Rev Plant Biol 71:461–485

    PubMed  PubMed Central  Google Scholar 

  • Hibberd JM, Sheehy JE, Langdale JA (2008) Using C4 photosynthesis to increase the yield of rice-rationale and feasibility. Curr Opin Plant Biol 11:228–231

    PubMed  Google Scholar 

  • Hodges M, Jossier M, Boex-Fontvieille E, Tcherkez G (2013) Protein phosphorylation and photorespiration. Plant Biol 15:694–706

    PubMed  Google Scholar 

  • Hodges M, Dellero Y, Keech O, Betti M, Raghavendra AS, Sage R, Zhu X-G, Allen DK, Weber APM (2016) Perspectives for a better understanding of the metabolic integration of photorespiration within a complex plant primary metabolism network. J Exp Bot 67(10):3015–3026

    PubMed  Google Scholar 

  • Hu J, Huang X, Chen L, Sun X, Lu C, Zhang L, Wang Y, Zuo J (2015) Site-specific nitrosoproteomic identification of endogenously S-nitrosylated proteins in Arabidopsis. Plant Physiol 167:1731–1746

    PubMed  PubMed Central  Google Scholar 

  • Hunter MC, Smith RG, Schipanski ME, Atwood LW, Mortensen DA (2017) Agriculture in 2050: recalibrating targets for sustainable intensification. Bioscience 67:386–391

    Google Scholar 

  • Ichikawa Y, Tamoi M, Sakuyama H, Maruta T, Ashida H, Yokota A, Shigeoka S (2010) Generation of transplastomic lettuce with enhanced growth and high yield. GM Crops 1:322–326

    PubMed  Google Scholar 

  • Igarashi D, Miwa T, Seki M, Kobayashi M, Kato T, Tabata S, Shinozaki K, Ohsumi C (2003) Identification of photorespiratory glutamate:glyoxylate aminotransferase (GGAT) gene in Arabidopsis. Plant J 33:975–987

    PubMed  Google Scholar 

  • Igarashi D, Tsuchida H, Miyao M, Ohsumi C (2006) Glutamate:Glyoxylate aminotransferase modulates amino acid content during photorespiration. Plant Physiol 142:901–910

    PubMed  PubMed Central  Google Scholar 

  • Jossier M, Liu Y, Massot S, Hodges M (2020) Enzymatic properties of recombinant phosphomimetic photorespiratory glycolate oxidases from Arabidopsis thaliana and Zea mays. Plan Theory 9(1):27. https://doi.org/10.3390/plants9010027

    Article  Google Scholar 

  • Kebeish R, Niessen M, Thiruveedhi K, Bari R, Hirsch HJ, Rosenkranz R, Stäbler N, Schönfeld B, Kreuzaler F, Peterhänsel C (2007) Chloroplastic photorespiratory bypass increases photosynthesis and biomass production in Arabidopsis thaliana. Nat Biotechnol 25:593–599

    PubMed  Google Scholar 

  • Keech O, Gardeström P, Kleczkowski LA, Rouhier N (2016) The redox control of photorespiration: from biochemical and physiological aspects to biotechnological considerations. Plant Cell Environ 40(4):553–569

    PubMed  Google Scholar 

  • Kelly GJ, Latzko E (1976) Inhibition of spinach-leaf phosphofructokinase by 2-phosphoglycollate. FEBS Lett 68:55–58

    PubMed  Google Scholar 

  • Köhler IH, Ruiz-Vera UM, VanLoocke A, Thomey ML, Clemente T, Long SP, Ort DR, Bernacchi CJ (2017) Expression of cyanobacterial FBP/SBPase in soybean prevents yield depression under future climate conditions. J Exp Bot 68:715–726

    PubMed  Google Scholar 

  • König AC, Hartl M, Boersema PJ, Mann M, Finkemeier I (2014) The mitochondrial lysine acetylome of Arabidopsis. Mitochondrion 19:252–260

    PubMed  Google Scholar 

  • Kromdijk J, Głowacka K, Leonelli L, Gabilly ST, Iwai M, Niyogi KK, Long SP (2016) Improving photosynthesis and crop productivity by accelerating recovery from photoprotection. Science 354:857–861

    PubMed  Google Scholar 

  • Lawand S, Dorne AJ, Long D, Coupland G, Mache R, Carol P (2002) Arabidopsis a bout de souffle, which is homologous with mammalian carnitine acyl carrier, is required for postembryonic growth in the light. Plant Cell 14:2161–2173

    PubMed  PubMed Central  Google Scholar 

  • Lawrence SR, Gaitens M, Guan Q, Dufresne C, Chen S (2020) S-nitroso-proteome revealed in stomatal guard cell response to flg22. Int J Mol Sci 21(5):1688. https://doi.org/10.3390/ijms21051688

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee DY, Hua L, Khoshravesh R, Giuliani R, Kumar I, Cousins A, Sage TL, Hibberd JM, Brutnell TP (2021) Engineering chloroplast development in rice through cell-specific control of endogenous genetic circuits. Plant Biotechnol J 19:2291–2303

    PubMed  PubMed Central  Google Scholar 

  • Lefebvre S, Lawson T, Zakhleniuk OV, Lloyd JC, Raines CA, Fryer M (2005) Increased sedoheptulose-1,7-bisphosphatase activity in transgenic tobacco plants stimulates photosynthesis and growth from an early stage in development. Plant Physiol 138:451–460

    PubMed  PubMed Central  Google Scholar 

  • Levey M, Timm S, Mettler-altmann T, Borghi GL, Koczor M, Arrivault S, Weber APM, Bauwe H, Gowik U, Westhoff P (2019) Efficient 2-phosphoglycolate degradation is required to maintain carbon assimilation and allocation in the C 4 plant Flaveria bidentis. J Exp Bot 70:575–587

    PubMed  Google Scholar 

  • Liepman AH, Olsen LJ (2001) Peroxisomal alanine: glyoxylate aminotransferase (AGT1) is a photorespiratory enzyme with multiple substrates in Arabidopsis thaliana. Plant J 25:487–498

    PubMed  Google Scholar 

  • Liepman AH, Olsen LJ (2003) Alanine aminotransferase homologs catalyze the glutamate:glyoxylate aminotransferase reaction in peroxisomes of Arabidopsis. Plant Physiol 131:215–227

    PubMed  PubMed Central  Google Scholar 

  • Lin MT, Occhialini A, Andralojc PJ, Devonshire J, Hines KM, Parry MAJ, Hanson MR (2014) β-Carboxysomal proteins assemble into highly organized structures in Nicotiana chloroplasts. Plant J 79:1–12

    PubMed  PubMed Central  Google Scholar 

  • Lin H, Karki S, Coe RA, Bagha S, Khoshravesh R, Balahadia CP, Ver Sagun J, Tapia R, Israel WK, Montecillo F et al (2016) Targeted knockdown of GDCH in rice leads to a photorespiratory-deficient phenotype useful as a building block for C4 rice. Plant Cell Physiol 57:919–932

    PubMed  Google Scholar 

  • Lin HC, Arrivault S, Coe RA, Karki S, Covshoff S, Bagunu E, Lunn JE, Stitt M, Furbank RT, Hibberd JM et al (2020) A partial C4 photosynthetic biochemical pathway in rice. Front Plant Sci 11:1–12

    Google Scholar 

  • Liu Y, Mauve C, Lamothe-Sibold M, Guérard F, Glab N, Hodges M, Jossier M (2019) Photorespiratory serine hydroxymethyltransferase 1 activity impacts abiotic stress tolerance and stomatal closure. Plant Cell Environ 42(9):2567–2583

    PubMed  Google Scholar 

  • Liu Y, Guérard F, Hodges M, Jossier M (2020) Phosphomimetic T335D mutation of hydroxypyruvate reductase 1 modifies cofactor specificity and impacts Arabidopsis growth in AIR1. Plant Physiol 183:194–205

    PubMed  PubMed Central  Google Scholar 

  • Long SP, Zhu X-GG, Naidu SL, Ort DR (2006) Can improvement in photosynthesis increase crop yields? Plant Cell Environ 29:315–330

    PubMed  Google Scholar 

  • Long BM, Hee WY, Sharwood RE, Rae BD, Kaines S, Lim YL, Nguyen ND, Massey B, Bala S, von Caemmerer S et al (2018) Carboxysome encapsulation of the CO2-fixing enzyme Rubisco in tobacco chloroplasts. Nat Commun 9(1):3570. https://doi.org/10.1038/s41467-018-06044-0

    Article  PubMed  PubMed Central  Google Scholar 

  • López-Calcagno PE, Fisk S, Brown KL, Bull SE, South PF, Raines CA (2019) Overexpressing the H-protein of the glycine cleavage system increases biomass yield in glasshouse and field-grown transgenic tobacco plants. Plant Biotechnol J 17:141–151

    PubMed  Google Scholar 

  • Lu Y, Li Y, Yang Q, Zhang Z, Chen Y, Zhang S, Peng XX (2014) Suppression of glycolate oxidase causes glyoxylate accumulation that inhibits photosynthesis through deactivating Rubisco in rice. Physiol Plant 150:463–476

    PubMed  Google Scholar 

  • Lutziger I, Oliver DJ (2001) Characterization of two cDNAs encoding mitochondrial lipoamide dehydrogenase from Arabidopsis. Plant Physiol 127(2):615–623

    PubMed  PubMed Central  Google Scholar 

  • Maier A, Fahnenstich H, von Caemmerer S, Engqvist MKM, Weber APM, Flügge U-I, Maurino VG (2012) Transgenic introduction of a glycolate oxidative cycle into A. thaliana chloroplasts leads to growth improvement. Front Plant Sci 3:1–12

    Google Scholar 

  • Marchand C, Le Marechal P, Meyer Y, Miginiac-Maslow M, Issakidis-Bourguet E, Decottignies P (2004) New targets of Arabidopsis thioredoxins revealed by proteomic analysis. Proteomics 4:2696–2706

    PubMed  Google Scholar 

  • Maurino VG (2019) Using energy-efficient synthetic biochemical pathways to bypass photorespiration. Biochem Soc Trans 47:1805–1813

    PubMed  Google Scholar 

  • Maurino VG, Peterhansel C (2010) Photorespiration: current status and approaches for metabolic engineering. Curr Opin Plant Biol 13:249–256

    PubMed  Google Scholar 

  • Maurino VG, Weber APM (2013) Engineering photosynthesis in plants and synthetic microorganisms. J Exp Bot 64:743–751

    PubMed  Google Scholar 

  • Miyagawa Y, Tamoi M, Shigeoka S (2001) Overexpression of a cyanobacterial fructose-1,6-sedoheptulose-1,7-bisphosphatase in tobacco enhances photosynthesis and growth. Nat Biotechnol 19:965–969

    PubMed  Google Scholar 

  • Modde K, Timm S, Florian A, Michl K, Fernie AR, Bauwe H (2017) High serine:glyoxylate aminotransferase activity lowers leaf daytime serine levels, inducing the phosphoserine pathway in Arabidopsis. J Exp Bot 68:643–656

    PubMed  Google Scholar 

  • Moore BD, Cheng SH, Sims D, Seemann JR (1999) The biochemical and molecular basis for photosynthetic acclimation to elevated atmospheric CO2. Plant Cell Environ 22:567–582

    Google Scholar 

  • Moreno JI, Martín R, Castresana C (2005) Arabidopsis SHMT1, a serine hydroxymethyltransferase that functions in the photorespiratory pathway influences resistance to biotic and abiotic stress. Plant J 41(3):451–463

    PubMed  Google Scholar 

  • Müller-Schüssele SJ, Bohle F, Rossi J, Trost P, Meyer AJ, Zaffagnini M (2021) Plasticity in plastid redox networks: evolution of glutathione-dependent redox cascades and glutathionylation sites. BMC Plant Biol 21:322. https://doi.org/10.1186/s12870-021-03087-2

    Article  PubMed  PubMed Central  Google Scholar 

  • Murchie EH, Ruban AV (2020) Dynamic non-photochemical quenching in plants: from molecular mechanism to productivity. Plant J 101:885–896

    PubMed  Google Scholar 

  • Murray AJS, Blackwell RD, Lea PJ (1989) Metabolism of hydroxypyruvate in a mutant of barley lacking NADH-dependent hydroxypyruvate reductase, an important photorespiratory enzyme activity. Plant Physiol 91:395–400

    PubMed  PubMed Central  Google Scholar 

  • Nayak L, Panda D, Dash GK, Lal MK, Swain P, Baig MJ, Kumar A (2022) A chloroplast glycolate catabolic pathway bypassing the endogenous photorespiratory cycle enhances photosynthesis, biomass and yield in rice (Oryza sativa L.). Plant Sci 314:111103

    PubMed  Google Scholar 

  • Nölke G, Houdelet M, Kreuzaler F, Peterhänsel C, Schillberg S (2014) The expression of a recombinant glycolate dehydrogenase polyprotein in potato (Solanum tuberosum) plastids strongly enhances photosynthesis and tuber yield. Plant Biotechnol J 12:734–742

    PubMed  Google Scholar 

  • Nölke G, Barsoum M, Houdelet M, Arcalís E, Kreuzaler F, Fischer R, Schillberg S (2019) The integration of algal carbon concentration mechanism components into tobacco chloroplasts increases photosynthetic efficiency and biomass. Biotechnol J 14:e1800170. https://doi.org/10.1002/biot.201800170

    Article  PubMed  Google Scholar 

  • Nunes-Nesi A, Araújo WL, Obata T, Fernie AR (2013) Regulation of the mitochondrial tricarboxylic acid cycle. Curr Opin Plant Biol 16:335–343

    PubMed  Google Scholar 

  • Oliver DJ (1980) The effect of glyoxylate on photosynthesis and photorespiration by isolated soybean mesophyll cells. Plant Physiol 65:888–892

    PubMed  PubMed Central  Google Scholar 

  • Oliver DJ, Zelitch I (1977) Increasing photosynthesis by inhibiting photorespiration with glyoxylate. Science 196:1450–1451

    PubMed  Google Scholar 

  • Ort DR, Merchant SS, Alric J, Barkan A, Blankenship RE, Bock R, Croce R, Hanson MR, Hibberd JM, Long SP et al (2015) Redesigning photosynthesis to sustainably meet global food and bioenergy demand. Proc Natl Acad Sci U S A 112:8529–8536

    PubMed  PubMed Central  Google Scholar 

  • Ortega-Galisteo AP, Rodríguez-Serrano M, Pazmiño DM, Gupta DK, Sandalio LM, Romero-Puertas MC (2012) S-Nitrosylated proteins in pea (Pisum sativum L.) leaf peroxisomes: changes under abiotic stress. J Exp Bot 63:2089–2103

    PubMed  PubMed Central  Google Scholar 

  • Osmanoglu Ö, Khaled AlSeiari M, AlKhoori HA, Shams S, Bencurova E, Dandekar T, Naseem M (2021) Topological analysis of the carbon-concentrating CETCH cycle and a photorespiratory bypass reveals boosted CO2-sequestration by lants. Front Bioeng Biotechnol 9:1–13

    Google Scholar 

  • Palmieri MC, Lindermayr C, Bauwe H, Steinhauser C, Durner J (2010) Regulation of plant glycine decarboxylase by S-nitrosylation and glutathionylation. Plant Physiol 152:1514–1528

    PubMed  PubMed Central  Google Scholar 

  • Parry MAJ, Madgwick PJ, Carvalho JFC, Andralojc PJ (2007) Prospects for increasing photosynthesis by overcoming the limitations of Rubisco. J Agric Sci 145:31–43

    Google Scholar 

  • Pettigrew ARS, Hesketh JD, Peters DB, Woolley JT (1989) Characterization of canopy photosynthesis of chlorophyll-deficient soybean isolines. Crop Sci 29(4):1025–1029

    Google Scholar 

  • Pick TR, Brautigam A, Schulz MA, Obata T, Fernie AR, Weber APM (2013) PLGG1, a plastidic glycolate glycerate transporter, is required for photorespiration and defines a unique class of metabolite transporters. Proc Natl Acad Sci U S A 110:3185–3190

    PubMed  PubMed Central  Google Scholar 

  • Price GD, Howitt SM (2014) Towards turbocharged photosynthesis. Nature 513:497–498

    PubMed  Google Scholar 

  • Price GD, Pengelly JJL, Forster B, Du J, Whitney SM, von Caemmerer S, Badger MR, Howitt SM, Evans JR (2013) The cyanobacterial CCM as a source of genes for improving photosynthetic CO2 fixation in crop species. J Exp Bot 64:753–768

    PubMed  Google Scholar 

  • Queval G, Issakidis-Bourguet E, Hoeberichts FA, Vandorpe M, Gakière B, Vanacker H, Miginiac-Maslow M, Van Breusegem F, Noctor G (2007) Conditional oxidative stress responses in the Arabidopsis photorespiratory mutant cat2 demonstrate that redox state is a key modulator of daylength-dependent gene expression, and define photoperiod as a crucial factor in the regulation of H2O2-induced cel. Plant J 52:640–657

    PubMed  Google Scholar 

  • Rachmilevitch S, Cousins AB, Bloom AJ (2004) Nitrate assimilation in plant shoots depends on photorespiration. Proc Natl Acad Sci U S A 101:11506–11510

    PubMed  PubMed Central  Google Scholar 

  • Raines CA (2011) Increasing photosynthetic carbon assimilation in C3 plants to improve crop yield: current and future strategies. Plant Physiol 155:36–42

    PubMed  Google Scholar 

  • Reiland S, Messerli G, Baerenfaller K, Gerrits B, Endler A, Grossmann J, Gruissem W, Baginsky S (2009) Large-scale Arabidopsis phosphoproteome profiling reveals novel chloroplast kinase substrates and phosphorylation networks. Plant Physiol 150:889–903

    PubMed  PubMed Central  Google Scholar 

  • Reinholdt O, Schwab S, Zhang Y, Reichheld JP, Fernie AR, Hagemann M, Timm S (2019) Redox-regulation of photorespiration through mitochondrial thioredoxin o1. Plant Physiol 181:442–457

    PubMed  PubMed Central  Google Scholar 

  • Roell MS, von Borzykowski LS, Westhoff P, Plett A, Paczia N, Claus P, Urte S, Erb TJ, Weber APM (2021) A synthetic C4 shuttle via the β-hydroxyaspartate cycle in C3 plants. Proc Natl Acad Sci U S A 118:1–9

    Google Scholar 

  • Rojas CM, Senthil-Kumar M, Wang K, Ryu CM, Kaundal A, Mysore KS (2012) Glycolate oxidase modulates reactive oxygen species-mediated signal transduction during nonhost resistance in Nicotiana benthamiana and Arabidopsis. Plant Cell 24:336–352

    PubMed  PubMed Central  Google Scholar 

  • Rosenthal DM, Locke AM, Khozaei M, Raines CA, Long SP, Ort DR (2011) Over-expressing the C3 photosynthesis cycle enzyme sedoheptulose-1-7 bisphosphatase improves photosynthetic carbon gain and yield under fully open air CO2 fumigation (FACE). BMC Plant Biol 11:123. https://doi.org/10.1186/1471-2229-11-123

    Article  PubMed  PubMed Central  Google Scholar 

  • Rosenwasser S, Van Creveld SG, Schatz D, Malitsky S, Tzfadia O, Aharoni A, Levin Y, Gabashvili A, Feldmesser E, Vardi A (2014) Mapping the diatom redox-sensitive proteome provides insight into response to nitrogen stress in the marine environment. Proc Natl Acad Sci U S A 111:2740–2745

    PubMed  PubMed Central  Google Scholar 

  • Samuilov S, Brilhaus D, Rademacher N, Flachbart S, Arab L, Alfarraj S, Kuhnert F, Kopriva S, Weber APM, Mettler-Altmann T et al (2018) The photorespiratory BOU gene mutation alters sulfur assimilation and its crosstalk with carbon and nitrogen metabolism in Arabidopsis thaliana. Front Plant Sci 9:1709

    PubMed  PubMed Central  Google Scholar 

  • Sayer J, Sunderland T, Ghazoul J, Pfund JL, Sheil D, Meijaard E, Venter M, Boedhihartono AK, Day M, Garcia C et al (2013) Ten principles for a landscape approach to reconciling agriculture, conservation, and other competing land uses. Proc Natl Acad Sci U S A 110:8349–8356

    PubMed  PubMed Central  Google Scholar 

  • Schada von Borzyskowski L, Severi F, Krüger K, Hermann L, Gilardet A, Sippel F, Pommerenke B, Claus P, Cortina NS, Glatter T et al (2019) Marine proteobacteria metabolize glycolate via the β-hydroxyaspartate cycle. Nature 575:500–504

    PubMed  Google Scholar 

  • Scheffen M, Marchal DG, Beneyton T, Schuller SK, Klose M, Diehl C, Lehmann J, Pfister P, Carrillo M, He H et al (2021) A new-to-nature carboxylation module to improve natural and synthetic CO2 fixation. Nat Catal 4:105–115

    Google Scholar 

  • Schwarte S, Bauwe H (2007) Identification of the photorespiratory 2-phosphoglycolate phosphatase, PGLP1, in arabidopsis. Plant Physiol 144:1580–1586

    PubMed  PubMed Central  Google Scholar 

  • Shen BR, Wang LM, Lin XL, Yao Z, Xu HW, Zhu CH, Teng HY, Cui LL, Liu EE, Zhang JJ et al (2019) Engineering a new chloroplastic photorespiratory bypass to increase photosynthetic efficiency and productivity in rice. Mol Plant 12:199–214

    PubMed  Google Scholar 

  • Shih PM, Zarzycki J, Niyogi KK, Kerfeld CA (2014) Introduction of a synthetic CO2-fixing photorespiratory bypass into a cyanobacterium. J Biol Chem 289:9493–9500

    PubMed  PubMed Central  Google Scholar 

  • Shim SH, Lee SK, Lee DW, Brilhaus D, Wu G, Ko S, Lee CH, Weber APM, Jeon JS (2020) Loss of function of rice plastidic glycolate/glycerate translocator 1 impairs photorespiration and plant growth. Front Plant Sci 10:1–11

    Google Scholar 

  • Simkin AJ, McAusland L, Headland LR, Lawson T, Raines CA (2015) Multigene manipulation of photosynthetic carbon assimilation increases CO<inf>2</inf> fixation and biomass yield in tobacco. J Exp Bot 66:4075–4090

    PubMed  PubMed Central  Google Scholar 

  • Simkin AJ, Lopez-Calcagno PE, Davey PA, Headland LR, Lawson T, Timm S, Bauwe H, Raines CA (2017) Simultaneous stimulation of sedoheptulose 1,7-bisphosphatase, fructose 1,6-bisphophate aldolase and the photorespiratory glycine decarboxylase-H protein increases CO2 assimilation, vegetative biomass and seed yield in Arabidopsis. Plant Biotechnol J 15:805–816

    PubMed  PubMed Central  Google Scholar 

  • Simkin AJ, López-Calcagno PE, Raines CA (2019) Feeding the world: improving photosynthetic efficiency for sustainable crop production. J Exp Bot 70:1119–1140

    PubMed  PubMed Central  Google Scholar 

  • Slattery RA, Walker BJ, Weber APM, Ort DR (2017) The impacts of fluctuating light on crop performance. Plant Physiol 176:990–1003

    PubMed  PubMed Central  Google Scholar 

  • Somerville CR (2001) An early Arabidopsis demonstration. Resolving a few issues concerning photorespiration. Plant Physiol 125:20–24

    PubMed  PubMed Central  Google Scholar 

  • Somerville CR, Ogren WL (1979) A phosphoglycolate phosphatase-deficient mutant of Arabidopsis. Nature 280:833–836

    Google Scholar 

  • Somerville CR, Ogren WL (1980a) Inhibition of photosynthesis in Arabidopsis mutants lacking leaf glutamate synthase activity. Nature 286:257–259

    Google Scholar 

  • Somerville CR, Ogren WL (1980b) Photorespiration mutants of Arabidopsis thaliana deficient in serine-glyoxylate aminotransferase activity. Proc Natl Acad Sci U S A 77:2684–2687

    PubMed  PubMed Central  Google Scholar 

  • Somerville CR, Ogren WL (1981) Photorespiration-deficient mutants of Arabidopsis thaliana lacking mitochondrial serine transhydroxymethylase activity. Plant Physiol 67:666–671

    PubMed  PubMed Central  Google Scholar 

  • Somerville CR, Ogren WL (1982) Mutants of the cruciferous plant Arabidopsis thaliana lacking glycine decarboxylase activity. Biochem J 202:373–380

    PubMed  PubMed Central  Google Scholar 

  • Somerville SC, Ogren WL (1983) An Arabidopsis thaliana mutant defective in chloroplast dicarboxylate transport. Proc Natl Acad Sci U S A 80(5):1290–1294

    PubMed  PubMed Central  Google Scholar 

  • South PF, Walker BJ, Cavanagh AP, Rolland V, Badger M, Ort DR (2017) Bile acid sodium symporter BASS6 can transport glycolate and is involved in photorespiratory metabolism in Arabidopsis thaliana. Plant Cell 29:808–823

    PubMed  PubMed Central  Google Scholar 

  • South PF, Cavanagh AP, Lopez-Calcagno PE, Raines CA, Ort DR (2018) Optimizing photorespiration for improved crop productivity. J Integr Plant Biol 60:1217–1230

    PubMed  Google Scholar 

  • South PF, Cavanagh AP, Liu HW, Ort DR (2019) Synthetic glycolate metabolism pathways stimulate crop growth and productivity in the field. Science 363:eaat9077. https://doi.org/10.1126/science.aat9077

    Article  PubMed  Google Scholar 

  • Suzuki K, Marek LF, Spalding MH (1990) A photorespiratory mutant of Chlamydomonas reinhardtii. Plant Physiol 93:231–237

    PubMed  PubMed Central  Google Scholar 

  • Tamoi M, Nagaoka M, Miyagawa Y, Shigeoka S (2006) Contribution of fructose-1,6-bisphosphatase and sedoheptulose-1,7- bisphosphatase to the photosynthetic rate and carbon flow in the Calvin cycle in transgenic plants. Plant Cell Physiol 47:380–390

    PubMed  Google Scholar 

  • Tcherkez G, Bligny R, Gout E, Mahé A, Hodges M, Cornic G (2008) Respiratory metabolism of illuminated leaves depends on CO2 and O2 conditions. Proc Natl Acad Sci U S A 105:797–802

    PubMed  PubMed Central  Google Scholar 

  • Tilman D, Balzer C, Hill J, Befort BL (2011) Global food demand and the sustainable intensification of agriculture. Proc Natl Acad Sci U S A 108:20260–20264

    PubMed  PubMed Central  Google Scholar 

  • Timm S, Bauwe H (2013) The variety of photorespiratory phenotypes - employing the current status for future research directions on photorespiration. Plant Biol 15:737–747

    PubMed  Google Scholar 

  • Timm S, Hagemann M (2020) Photorespiration-how is it regulated and how does it regulate overall plant metabolism? J Exp Bot 71:3955–3965

    PubMed  Google Scholar 

  • Timm S, Nunes-Nesi A, Pärnik T, Morgenthal K, Wienkoop S, Keerberg O, Weckwerth W, Kleczkowski LA, Fernie AR, Bauwe H (2008) A cytosolic pathway for the conversion of hydroxypyruvate to glycerate during photorespiration in Arabidopsis. Plant Cell 20:2848–2859

    PubMed  PubMed Central  Google Scholar 

  • Timm S, Florian A, Jahnke K, Nunes-Nesi A, Fernie AR, Bauwe H (2011) The hydroxypyruvate-reducing system in Arabidopsis: multiple enzymes for the same end. Plant Physiol 155:694–705

    PubMed  Google Scholar 

  • Timm S, Florian A, Arrivault S, Stitt M, Fernie AR, Bauwe H (2012a) Glycine decarboxylase controls photosynthesis and plant growth. FEBS Lett 586:3692–3697

    PubMed  Google Scholar 

  • Timm S, Mielewczik M, Florian A, Frankenbach S, Dreissen A, Hocken N, Fernie AR, Walter A, Bauwe H (2012b) High-to-low CO2 acclimation reveals plasticity of the photorespiratory pathway and indicates regulatory links to cellular metabolism of Arabidopsis. PLoS One 7:e42809

    PubMed  PubMed Central  Google Scholar 

  • Timm S, Wittmiß M, Gamlien S, Ewald R, Florian A, Frank M, Wirtz M, Hell R, Fernie AR, Bauwe H (2015) Mitochondrial dihydrolipoyl dehydrogenase activity shapes photosynthesis and photorespiration of Arabidopsis thaliana. Plant Cell 27:1968–1984

    PubMed  PubMed Central  Google Scholar 

  • Timm S, Woitschach F, Heise C, Hagemann M, Bauwe H (2019) Faster removal of 2-phosphoglycolate through photorespiration improves abiotic stress tolerance of Arabidopsis. Plan Theory 8(12):563. https://doi.org/10.3390/plants8120563

    Article  Google Scholar 

  • Trudeau DL, Edlich-Muth C, Zarzycki J, Scheffen M, Goldsmith M, Khersonsky O, Avizemer Z, Fleishman SJ, Cotton CAR, Erb TJ et al (2018) Design and in vitro realization of carbon-conserving photorespiration. Proc Natl Acad Sci U S A 115(49):E11455–E11464. https://doi.org/10.1073/pnas.1812605115

    Article  PubMed  PubMed Central  Google Scholar 

  • Umezawa T, Sugiyama N, Takahashi F, Anderson JC, Ishihama Y, Peck SC, Shinozaki K (2013) Genetics and phosphoproteomics reveal a protein phosphorylation network in the abscisic acid signaling pathway in arabidopsis thaliana. Sci Signal 6(270):rs8. https://doi.org/10.1126/scisignal.2003509

    Article  PubMed  Google Scholar 

  • Voll LM, Jamai A, Renné P, Voll H, McClung CR, Weber APM (2006) The photorespiratory arabidopsis shm1 mutant is deficient in SHM1. Plant Physiol 140:59–66

    PubMed  PubMed Central  Google Scholar 

  • Von Caemmerer S, Quick WP, Furbank RT (2012) The development of C4 rice: current progress and future challenges. Science 336:1671–1672

    Google Scholar 

  • Voss I, Sunil B, Scheibe R, Raghavendra AS (2013) Emerging concept for the role of photorespiration as an important part of abiotic stress response. Plant Biol 15(4):713–722

    PubMed  Google Scholar 

  • Walker BJ, VanLoocke A, Bernacchi CJ, Ort DR (2016) The costs of photorespiration to food production now and in the future. Annu Rev Plant Biol 67:107–129

    PubMed  Google Scholar 

  • Walker BJ, Drewry DT, Slattery RA, VanLoocke A, Cho YB, Ort DR (2018) Chlorophyll can be reduced in crop canopies with little penalty to photosynthesis. Plant Physiol 176:1215–1232

    PubMed  Google Scholar 

  • Wallsgrove RM, Turner JC, Hall NP, Kendall AC, Bright SW (1987) Barley mutants lacking chloroplast glutamine synthetase-biochemical and genetic analysis. Plant Physiol 83(1):155–158

    PubMed  PubMed Central  Google Scholar 

  • Wang LM, Shen BR, Di LB, Zhang CL, Lin M, Tong PP, Cui LL, Zhang ZS, Peng XX (2020) A synthetic photorespiratory shortcut enhances photosynthesis to boost biomass and grain yield in rice. Mol Plant 13:1802–1815

    PubMed  Google Scholar 

  • Weber APM, Bar-Even A (2019) Update: improving the efficiency of photosynthetic carbon reactions. Plant Physiol 179:803–812

    PubMed  PubMed Central  Google Scholar 

  • Wingler A, Lea PJ, Quick WP, Leegood RC (2000) Photorespiration: metabolic pathways and their role in stress protection. Philos Trans R Soc Lond Ser B Biol Sci 355(1402):1517–1529

    Google Scholar 

  • Wu J, Zhang Z, Zhang Q, Han X, Gu X, Lu T (2015) The molecular cloning and clarification of a photorespiratory mutant, oscdm1, using enhancer trapping. Front Genet 6:1–17

    Google Scholar 

  • Xin CP, Tholen D, Devloo V, Zhu XG (2015) The benefits of photorespiratory bypasses: how can they work? Plant Physiol 167:574–585

    PubMed  Google Scholar 

  • Xu H, Zhang J, Zeng J, Jiang L, Liu E, Peng C, He Z, Peng X (2009) Inducible antisense suppression of glycolate oxidase reveals its strong regulation over photosynthesis in rice. J Exp Bot 60:1799–1809

    PubMed  Google Scholar 

  • Zelitch I, Schultes NP, Peterson RB, Brown P, Brutnell TP (2009) High glycolate oxidase activity is required for survival of maize in normal air. Plant Physiol 149:195–204

    PubMed  PubMed Central  Google Scholar 

  • Zhu XG, Portis AR, Long SP (2004) Would transformation of C3 crop plants with foreign Rubisco increase productivity? A computational analysis extrapolating from kinetic properties to canopy photosynthesis. Plant Cell Environ 27:155–165

    Google Scholar 

  • Zhu X-G, de Sturler E, Long SP (2007) Optimizing the distribution of resources between enzymes of carbon metabolism can dramatically increase photosynthetic rate: a numerical simulation using an evolutionary algorithm. Plant Physiol 145:513–526

    PubMed  PubMed Central  Google Scholar 

  • Zhu X-G, Long SP, Ort DR (2008) What is the maximum efficiency with which photosynthesis can convert solar energy into biomass? Curr Opin Biotechnol 19:153–159

    PubMed  Google Scholar 

  • Zhu X-G, Long SP, Ort DR (2010) Improving photosynthetic efficiency for greater yield. Annu Rev Plant Biol 61:235–261

    PubMed  Google Scholar 

Download references

Acknowledgments

MH is supported by public grants overseen by the French National Research Agency as part of the « Investissement d’Avenir» program, through the “Lidex-3P” project and a French State grant (ANR-10-LABX-0040-SPS) funded by the IDEX Paris-Saclay, ANR-11-IDEX-0003-02. MH was also supported by the ANR-14-CE19-0015 grant REGUL3P. MH would like to thank past (especially Younès Dellero, Yanpei Liu, Pauline Duminil) and present (especially Mathieu Jossier, Nathlaie Glab, Céline Oury) team members who contributed to works described in the chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Hodges .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hodges, M. (2022). Photorespiration and Improving Photosynthesis. In: Lüttge, U., Cánovas, F.M., Risueño, MC., Leuschner, C., Pretzsch, H. (eds) Progress in Botany Vol. 84. Progress in Botany, vol 84. Springer, Cham. https://doi.org/10.1007/124_2022_64

Download citation

Publish with us

Policies and ethics