Skip to main content

Senescence-Associated Genes in Response to Abiotic/Biotic Stresses

  • Chapter
  • First Online:
Progress in Botany Vol. 79

Abstract

Plant senescence is a complex physiological process consequence either of the natural lifespan or externally induced by abiotic and biotic factors. It comprises a coordinated sequence of molecular and biochemical events, phenotypically illustrated by changes in plant colour. Senescence is associated with alterations in chlorophyll and pigment content, reduction of photosynthesis, hydrolysis of macromolecules to produce more simple compounds and dismantling of cell organelles, to finally produce cell death. At the end, relocation of nutrients from the senescent tissues towards sink organs or growing tissues takes place to complete a recycling process. Consequently, the major part of the nitrogen is released as ammonium after being re-assimilated into amino acids to be exported via the phloem to the developing grains, fruits and tubers. During senescence, the reprograming of thousands of genes is triggered in response to specific senescence-promoting factors under a restricted regulatory control. The actual high-throughput omics technologies have led to the generation of integrative information, which has been used to understand the physiological changes during the onset and progression of senescence. This chapter covers an overview on plant senescence, particularly focussed on the senescence of the leaf, including the most recent findings about features, signalling, regulation and pathways involved in this natural or induced process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andersson A, Keskitalo J, Sjodin A, Bhalerao R, Sterky F, Wissel K, Tandre K, Aspeborg H, Moyle R, Ohmiya Y, Bhalerao R, Brunner A, Gustafsson P, Karlsson J, Lundeberg J, Nilsson O, Sandberg G, Strauss S, Sundberg B, Uhlen M, Jansson S, Nilsson P (2004) A transcriptional timetable of autumn senescence. Genome Biol 5:R24

    Article  PubMed  PubMed Central  Google Scholar 

  • Avila-Ospina L, Moison M, Yoshimoto K, Masclaux-Daubresse C (2014) Autophagy, plant senescence, and nutrient recycling. J Exp Bot 65:3799–3811

    Article  PubMed  Google Scholar 

  • Ay N, Clauss K, Barth O, Humbeck K (2008) Identification and characterization of novel senescence-associated genes from barley (Hordeum vulgare) primary leaves. Plant Biol 10:121–135

    Article  CAS  PubMed  Google Scholar 

  • Ay N, Janack B, Humbeck K (2014) Epigenetic control of plant senescence and linked processes. J Exp Bot 65:3875–3887

    Article  PubMed  Google Scholar 

  • Balazadeh S, Schildhauer J, Araujo WL, Munne-Bosch S, Fernie AR, Proost S, Humbeck K, Mueller-Roeber B (2014) Reversal of senescence by N resupply to N-starved Arabidopsis thaliana: transcriptomic and metabolomic consequences. J Exp Bot 65:3975–3992

    Article  PubMed  PubMed Central  Google Scholar 

  • Bhalerao R, Keskitalo J, Sterky F, Erlandsson R, Bjorkbacka H, Birve SJ, Karlsson J, Gardestrom P, Gustafsson P, Lundeberg J, Jansson S (2003) Gene expression in autumn leaves. Plant Physiol 131:430–442

    Article  PubMed  PubMed Central  Google Scholar 

  • Breeze E, Harrison E, Page T, Warner N, Shen C, Zhang C, Buchanan-Wollaston V (2008) Transcriptional regulation of plant senescence: from functional genomics to systems biology. Plant Biol 10:99–109

    Article  CAS  PubMed  Google Scholar 

  • Breeze E, Harrison E, McHattie S, Hughes L, Hickman R, Hill C, Kiddle S, Kim Y-S, Penfold CA, Jenkins D, Zhang C, Morris K, Jenner C, Jackson S, Thomas B, Tabrett A, Legaie R, Moore JD, Wild DL, Ott S, Rand D, Beynon J, Denby K, Mead A, Buchanan-Wollaston V (2011) High-resolution temporal profiling of transcripts during Arabidopsis leaf senescence reveals a distinct chronology of processes and regulation. Plant Cell 23:873–894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown AV, Hudson KA (2015) Developmental profiling of gene expression in soybean trifoliate leaves and cotyledons. BMC Plant Biol 15:169

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Buchanan-Wollaston V, Page T, Harrison E, Breeze E, Lim PO, Nam HG, Lin JF, Wu SH, Swidzinski J, Ishizaki K, Leaver CJ (2005) Comparative transcriptome analysis reveals significant differences in gene expression and signalling pathways between developmental and dark/starvation-induced senescence in Arabidopsis. Plant J 42:567–585

    Article  CAS  PubMed  Google Scholar 

  • Carrion C, Martinez D, Costa M, Guiamet J (2014) Senescence-associated vacuoles, as specific lytic compartment for degradation of chloroplast proteins? Plants 3:498–512

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen CC, Han GQ, He HQ, Westcott M (2011) Yield, protein, and remobilization of water soluble carbohydrate and nitrogen of three spring wheat cultivars as influenced by nitrogen input. Agron J 103:786–795

    Article  CAS  Google Scholar 

  • Christiansen MW, Matthewman C, Podzimska-Sroka D, O’Shea C, Lindemose S, Møllegaard NE, Holme IB, Hebelstrup K, Skriver K, Gregersen PL (2016) Barley plants over-expressing the NAC transcription factor gene HvNAC005 show stunting and delay in development combined with early senescence. J Exp Bot 67:5259–5273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Desclos M, Etienne P, Coquet L, Jouenne T, Bonnefoy J, Segura R, Reze S, Ourry A, Avice JC (2009) A combined 15N tracing/proteomics study in Brassica napus reveals the chronology of proteomics events associated with N remobilization during leaf senescence induced by nitrate limitation or starvation. Proteomics 9:3580–3608

    Article  CAS  PubMed  Google Scholar 

  • Diaz-Mendoza M, Velasco-Arroyo B, Gonzalez-Melendi P, Martinez M, Diaz I (2014) C1A cysteine protease-cystatin interactions in leaf senescence. J Exp Bot 65:3825–3833

    Article  CAS  PubMed  Google Scholar 

  • Diaz-Mendoza M, Dominguez-Figueroa JD, Velasco-Arroyo B, Cambra I, Gonzalez-Melendi P, Lopez-Gonzalvez A, Garcia A, Hensel G, Kumlehn J, Diaz I (2016a) HvPap-1 C1A protease and HvCPI-2 cystatin contribute to barley grain filling and germination. Plant Physiol 170:2511–2524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Diaz-Mendoza M, Velasco-Arroyo B, Santamaria ME, González-Melendi P, Martinez M, Diaz I (2016b) Plant senescence and proteolysis: two processes with one destiny. Genet Mol Biol 39:329–338

    Article  PubMed  PubMed Central  Google Scholar 

  • Distelfeld A, Avni R, Fischer AM (2014) Senescence, nutrient remobilization, and yield in wheat and barley. J Exp Bot 65:37883–33798

    Article  Google Scholar 

  • Dworak A, Nykiel M, Walczak B, Miazek A, Szworst-Lupina D, Zagdanska B, Kiekiewicz M (2016) Maize proteomic responses to separate or overlapping soil drought and two-spotted spider mite stresses. Planta 244:939–960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fagard M, Launay A, Clement G, Courtial J, Dellagi A, Farjad M, Krapp A, Soulie MC, Masclaux-Daubresse C (2014) Nitrogen metabolism meets phytopathology. J Exp Bot 65:5643–5656

    Article  CAS  PubMed  Google Scholar 

  • Feller U, Anders I, Demirevska K (2008a) Degradation of Rubisco and other chloroplast proteins under abiotic stress. Plant Physiol 34:5–18

    CAS  Google Scholar 

  • Feller U, Anders I, Mae T (2008b) Rubiscolytics: fate of Rubisco after its enzymatic function in a cell is terminated. J Exp Bot 59:1615–1624

    Article  CAS  PubMed  Google Scholar 

  • Forde BG, Lea PJ (2007) Glutamate in plants: metabolism, regulation, and signalling. J Exp Bot 58:2339–2358

    Article  CAS  PubMed  Google Scholar 

  • Foyer CH, Karpinska B, Krupinska K (2014) The functions of WHIRLY1 and REDOX-RESPONSIVE TRANSCRIPTION FACTOR 1 in cross tolerance responses in plants: a hypothesis. Philos Trans R Soc Lond B Biol Sci 369:2013–20226

    Article  CAS  Google Scholar 

  • Foyer CH, Rasool B, Davey JW, Hancock RD (2016) Cross-tolerance to biotic and abiotic stresses in plants: a focus on resistance to aphid infestation. J Exp Bot 67:2025–2037

    Article  CAS  PubMed  Google Scholar 

  • Gan S, Amasino RM (1997) Making sense of senescence (molecular genetic regulation and manipulation of leaf senescence). Plant Physiol 3:313–319

    Article  Google Scholar 

  • Gan SS, Hörtensteiner S (2013) Frontiers in plant senescence research: from bench to bank. Plant Mol Biol 82:503–504

    Article  CAS  PubMed  Google Scholar 

  • Gregersen PL, Holm PB (2007) Transcriptome analysis of senescence in the flag leaf of wheat (Triticum aestivum L). Plant Biotechnol J 5:192–206

    Article  CAS  PubMed  Google Scholar 

  • Gregersen PL, Holm PB, Krupinska K (2008) Leaf senescence and nutrient remobilisation in barley and wheat. Plant Biol 10:37–49

    Article  CAS  PubMed  Google Scholar 

  • Gregersen PL, Culetic A, Boschian L, Krupinska K (2013) Plant senescence and crop productivity. Plant Mol Biol 82:603622

    Article  CAS  Google Scholar 

  • Guiboileau A, Avila-Ospina L, Yoshimoto K, Soulay F, Azzopardi M, Marmagne A, Lothier J, Masclaux-Daubresse C (2013) Physiological and metabolic consequences of autophagy deficiency for the management of nitrogen and protein resources in Arabidopsis leaves depending on nitrate availability. New Phytol 199:683–694

    Article  CAS  PubMed  Google Scholar 

  • Guo Y, Gan S (2005) Leaf senescence: signals, execution, and regulation. Curr Top Dev Biol 71:83–112

    Article  CAS  PubMed  Google Scholar 

  • Guo Y, Gan S (2012) Convergence and divergence in gene expression profiles induced by leaf senescence and 27 senescence-promoting hormonal, pathological and environmental stress treatments. Plant Cell Environ 35:644–655

    Article  CAS  PubMed  Google Scholar 

  • Guo Y, Cai Z, Gan S (2004) Transcriptome of Arabidopsis leaf senescence. Plant Cell Environ 27:521–549

    Article  CAS  Google Scholar 

  • Gupta R, Lee SJ, Min CW, Kim SW, Park KH, Bae DW, Lee BW, Agrawal GK, Rakwal R, Kim ST (2016b) Coupling of gel-based 2-DE and 1-DE shotgun proteomics approaches to dig deep into the leaf senescence proteome of Glycine max. J Proteomics 148:65–74

    Article  CAS  PubMed  Google Scholar 

  • Gupta A, Sarkar AK, Senthil-Kumar M (2016a) Global transcriptional analysis reveals unique and shared responses in Arabidopsis thaliana exposed to combined drought and pathogen stress. Front Plant Sci 7:686

    PubMed  PubMed Central  Google Scholar 

  • Have M, Marmagne A, Chardon F, Masclaux-Daubresse C (2016) Nitrogen remobilisation during leaf senescence: lessons from Arabidopsis to crops. J Exp Bot. doi:10.1093/jxb/erw365 (in press)

  • He Y, Tang W, Swain JD, Green AL, Jack TP, Gan S (2001) Networking senescence-regulating pathways by using Arabidopsis enhancer trap lines. Plant Physiol 126:707–716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hebeler R, Oeljeklaus S, Reidegeld KA, Eisenacher M, Stephan C, Sitek B, Stühler K, Meyer HE, Sturre MJ, Dijkwel PP, Warscheid B (2008) Study of early leaf senescence in Arabidopsis thaliana by quantitative proteomics using reciprocal 14N/15N labeling and difference gel electrophoresis. Mol Cell Proteomics 7:108–120

    Article  CAS  PubMed  Google Scholar 

  • Hollmann J, Gregersen PL, Krupinska K (2014) Identification of predominant genes involved in regulation and execution of senescence-associated nitrogen remobilization in flag leaves of field grown barley. J Exp Bot 65:3963–3974

    Article  PubMed  PubMed Central  Google Scholar 

  • Hörtensteiner S, Feller U (2002) Nitrogen metabolism and remobilization during senescence. J Exp Bot 53:927937

    Article  Google Scholar 

  • Huang YJ, To KY, Yap MN, Chiang WJ, Suen DF, Chen SCG (2001) Cloning and characterization of leaf senescence up-regulated genes in sweet potato. Physiol Plant 113:384–339

    Article  CAS  PubMed  Google Scholar 

  • Hui Z, Tian FX, Wang GK, Wang GP, Wang W (2012) The antioxidative defense system is involved in the delayed senescence in a wheat mutant tasg1. Plant Cell Rep 31:1073–1084

    Article  CAS  PubMed  Google Scholar 

  • Islam N, Li G, Garrett WM, Lin R, Sriram G, Cooper B, Coleman GD (2015) Proteomics of nitrogen remobilization in poplar bark. J Proteome Res 14:1112–1126

    Article  CAS  PubMed  Google Scholar 

  • Jukanti AK, Heidlebaugh NM, Parrott DL, Fischer IA, McInnerney K, Fischer AM (2008) Comparative transcriptome profiling of near-isogenic barley (Hordeum vulgare) lines differing in the allelic state of a major grain protein content locus identifies genes with possible roles in leaf senescence and nitrogen reallocation. New Phytol 177:333–349

    CAS  PubMed  Google Scholar 

  • Khanna-Chopra R (2012) Leaf senescence and abiotic stresses share reactive oxygen species-mediated chloroplast degradation. Protoplasma 249:469–481

    Article  CAS  PubMed  Google Scholar 

  • Kichey T, Hirel B, Heumez E, Dubois F, Le Gouis J (2007) In winter wheat (Triticum aestivum L.), post-anthesis nitrogen uptake and remobilisation to the grain correlates with agronomic traits and nitrogen physiological markers. Field Crop Res 102:22–32

    Article  Google Scholar 

  • Kidric M, Kos J, Sabotic J (2014) Proteases and their endogenous inhibitors in the plant response to abiotic stress. Bot Serbica 38:139–158

    Google Scholar 

  • Kim JH, Woo HR, Kim J, Lim PO, Lee IC, Choi SH, Hwang D, Nam HG (2009) Trifurcate feed-forward regulation of age-dependent cell death involving miR164 in Arabidopsis. Science 323:1053–1057

    Article  CAS  PubMed  Google Scholar 

  • Kim J, Woo HR, Nam HG (2016) Toward systems to understand of leaf senescence: an integrated multi-omics perspective on leaf senescence research. Mol Plant 9:813–825

    Article  CAS  PubMed  Google Scholar 

  • Koeslin-Findeklee F, Rizi VS, Becker MA, Parra-Londono S, Arif M, Balazadeh S, Mueller-Roeber B, Kunze R, Horst WJ (2015) Transcriptomic analysis of nitrogen starvation- and cultivar-specific leaf senescence in winter oilseed rape (Brassica napus L). Plant Sci 233:174–185

    Article  CAS  PubMed  Google Scholar 

  • Krupinska K, Mulisch M, Hollmann J, Tokarz K, Zschiesche W, Kage H, Humbeck K, Bilger W (2012) An alternative strategy of dismantling of the chloroplasts during leaf senescence observed in a high-yield variety of barley. Physiol Plant 144:189–200

    Article  CAS  PubMed  Google Scholar 

  • Lee SC, Luan S (2012) ABA signal transduction at the crossroad of biotic and abiotic stress responses. Plant Cell Environ 35:53–60

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Peng J, Wen X, Guo H (2012) Gene network analysis and functional studies of senescence-associated genes reveal novel regulators of Arabidopsis leaf senescence. J Integr Plant Biol 54:526–539

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Zhao Y, Liu X, Peng J, Guo H, Luo J (2014) LSD 2.0: an update of the leaf senescence database. Nucleic Acids Res 42:1200–1205

    Article  CAS  Google Scholar 

  • Li F, Chung T, Pennington JC, Federico ML, Kaeppler HF, Kaeppler SM, Otegui MS, Vierstra RD (2015) Autophagic recycling plays a central role in maize nitrogen remobilization. Plant Cell 27:1389–1408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liang C, Wang Y, Zhu Y, Tang J, Hu B, Liu L, Ou S, Wu H, Sun X, Chu J, Chu C (2014) OsNAP connects abscisic acid and leaf senescence by fine-tuning abscisic acid biosynthesis and directly targeting senescence-associated genes in rice. Proc Natl Acad Sci U S A 111:10013–10018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lim PO, Kim HJ, Nam HG (2007) Leaf senescence. Annu Rev Plant Biol 58:115–136

    Article  CAS  PubMed  Google Scholar 

  • Lin M, Pang C, Fan S, Song M, Wei H, Yu S (2015) Global analysis of the Gossypium hirsutum L. transcriptomic during leaf senescence by RNA-Seq. BMC Plant Biol 15:43

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu X, Li Z, Jiang Z, Zhao Y, Peng J, Jin J, Guo H, Luo J (2011) LSD: a leaf senescence database. Nucleic Acids Res 39:1–5

    Article  CAS  Google Scholar 

  • Lohman K, Gan S, Manorama CJ, Amasino RM (1994) Molecular analysis of natural leaf senescence in Arabidopsis thaliana. Physiol Plant 92:322–328

    Article  CAS  Google Scholar 

  • Louis J, Lorenc-Kukula K, Singh V, Reese J, Jander G, Shah J (2010) Antibiosis against the green peach aphid requires the Arabidopsis thaliana MYZUS PERSICAE-INDUCED LIPASE1 gene. Plant J 64:800–811

    Article  CAS  PubMed  Google Scholar 

  • Machado-Assefh CR, Lucatti AF, Alvarez AE (2014) Induced senescence promotes the feeding activities and nymph development of Myzus persicae (Hemiptera: Aphididae) on potato plants. J Insect Sci 14:155

    Article  PubMed  Google Scholar 

  • Martinez M, Diaz I (2008) The origin and evolution of plant cystatins and their target cysteine proteinases indicate a complex functional relationship. BMC Evol Biol 8:198

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Martinez M, Cambra I, Gonzalez-Melendi P, Santamarıa ME, Dıaz I (2012) C1A cysteine-proteases and their inhibitors in plants. Physiol Plant 145:85–94

    Article  CAS  PubMed  Google Scholar 

  • Masclaux-Daubresse C (2016) Autophagy controls carbon, nitrogen, and redox homeostasis in plants. Autophagy 12:896–987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Masclaux-Daubresse C, Krupinska K (2014) Preface. J Exp Bot 65:3781–3782

    Article  CAS  Google Scholar 

  • Masclaux-Daubresse C, Daniel-Vedele F, Dechorgnat J, Chardon F, Gaufichon L, Suzuki A (2010) Nitrogen uptake, assimilation and remobilization in plants: challenges for sustainable and productive agriculture. Ann Bot 105:1141–1157

    Article  PubMed  PubMed Central  Google Scholar 

  • Mason KE, Hilmer JK, Maaty WS, Reeves BD, Grieco PA, Bothner B, Fischer AM (2016) Proteomic comparison of near-isogenic barley (Hordeum vulgare L.) germplasm differing in the allelic state of a major senescence QTL identifies numerous proteins involved in plant pathogen defense. Plant Physiol Biochem 109:114–127

    Article  CAS  PubMed  Google Scholar 

  • Matallana-Ramirez LP, Rauf M, Farage-Barhom S, Dortay H, Xue GP, Dröge-Laser W, Lers A, Balazadeh S, Mueller-Roeber B (2013) NAC transcription factor ORE1 and senescence-induced BIFUNCTIONAL NUCLEASE1 (BFN1) constitute a regulatory cascade in Arabidopsis. Mol Plant 6:1438–1452

    Article  PubMed  CAS  Google Scholar 

  • Moschen S, Luoni SB, Di Rienzo JA, Caro MP, Tohge T, Watanabe M, Hollman J, Gonzalez S, Rivarola M, Garcia-Garcia F, Dopazo J, Hopp HE, Hoefgen R, Fernie AR, Paniego N, Fernandez P, Heinz RA (2015) Integrating transcriptomic and metabolomics analysis to understand natural leaf senescence in sunflower. Plant Biotechnol J 14:719–734

    Article  PubMed  CAS  Google Scholar 

  • Moschen S, Higgins J, Di Rienzo JA, Heinz RA, Paniego N, Fernandez P (2016) Network and biosignature analysis for the integration of transcriptomic and metabolomic data to characterize leaf senescence process in sunflower. BMC Bioinf 17:174

    Article  CAS  Google Scholar 

  • Munne-Bosch S (2008) Do perennials really senesce? Trends Plant Sci 13:216–220

    Article  CAS  PubMed  Google Scholar 

  • Noctor G, Mhamdi A, Foyer CH (2014) The roles of reactive oxygen metabolism in drought: not so cut and dried. Plant Physiol 164:1636–1648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noctor G, Mhamdi A, Foyer CH (2016) Oxidative stress and antioxidative systems: recipes for successful data collection and interpretation. Plant Cell Environ:1140–1160

    Google Scholar 

  • Oh SA, Park JH, Lee GI, Paek KH, Park SK, Nam HG (1997) Identification of three genetic loci controlling leaf senescence in Arabidopsis thaliana. Plant J 12:527–535

    Article  CAS  PubMed  Google Scholar 

  • Parrott DL, McInnerney K, Feller U, Fischer AM (2007) Steam-girdling of barley (Hordeum vulgare) leaves leads to carbohydrate accumulation and accelerated leaf senescence, facilitating transcriptomic analysis of senescence-associated genes. New Phytol 176:56–69

    Article  CAS  PubMed  Google Scholar 

  • Pegadaraju V, Knepper C, Reese J, Shah J (2005) Premature leaf senescence modulated by the Arabidopsis PHYTOALEXIN DEFICIENT4 gene is associated with defense against the phloem-feeding green peach aphid. Plant Physiol 139:1927–1934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Penfold CA, Buchanan-Wollaston V (2014) Modelling transcriptional networks in leaf senescence. J Exp Bot 65:3859–3873

    Google Scholar 

  • Podzimska-Sroka D, O’shea C, Gregersen PL, Skriver K (2015) NAC transcription factors in senescence: from molecular structure to function in crops. Plants 4:412–448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quirino BF, Noh YS, Himelblau E, Amasino RM (2000) Molecular aspects of leaf senescence. Trends Plant Sci 5:278–282

    Article  CAS  PubMed  Google Scholar 

  • Roberts IN, Caputo C, Criado MV, Funk C (2012) Senescence-associated proteases in plants. Physiol Plant 145:130–139

    Article  CAS  PubMed  Google Scholar 

  • Schildhauer J, Wiedemuth K, Humbeck K (2008) Supply of nitrogen can reverse senescence processes and affect expression of genes coding for plastidic glutamine synthetase and lysine-ketoglutarate reductase/saccharopine dehydrogenase. Plant Biol 10:76–84

    Article  CAS  PubMed  Google Scholar 

  • Schiltz S, Gallardo K, Huart M, Negroni L, Sommerer N, Burstin J (2004) Proteome reference maps of vegetative tissues in pea. An investigation of nitrogen mobilization from leaves during seed filling. Plant Physiol 135:2241–2260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schippers JHM (2015) Transcriptional networks in leaf senescence. Curr Opin Plant Biol 27:77–83

    Article  CAS  PubMed  Google Scholar 

  • See D, Kanazin V, Kephart K, Blake T (2002) Mapping genes controlling variation in barley grain protein concentration. Crop Sci 42:680685

    Article  Google Scholar 

  • Sekhon RS, Childs KL, Santoro N, Foster CE, Buell CR, de Leon N, Kaeppler SM (2012) Transcriptional and metabolic analysis of senescence induced by preventing pollination in maize. Plant Physiol 159:1730–1744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh S, Giri MK, Singh PK, Siddiqui A, Nandi AK (2013) Down-regulation of OsSAG12-1 results in enhanced senescence and pathogen-induced cell death in transgenic rice plants. J Biosci 38:583–592

    Article  CAS  PubMed  Google Scholar 

  • Sreenivasulu N, Usadel B, Winter A, Radchuk V, Scholz U, Stein N, Weschke W, Strickert M, Close TJ, Stitt M, Graner A, Wobus U (2008) Barley grain maturation and germination: metabolic pathway and regulatory network commonalities and differences highlighted by new mapMan/PageMan profiling tools. Plant Physiol 146:1738–1758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomas H (2013) Senescence, ageing and death of the whole plant. New Phytol 197:696–711

    Article  PubMed  Google Scholar 

  • Tschoep H, Gibon Y, Carillo P, Armengaud P, Szecowka M, Nunes-Nesi A, Fernie AR, Koehl K, Stitt M (2009) Adjustment of growth and central metabolism to a mild but sustained nitrogen-limitation in Arabidopsis. Plant Cell Environ 32:300–318

    Article  CAS  PubMed  Google Scholar 

  • Uauy C, Distelfeld A, Fahima T, Blechl A, Dubcovsky J (2006) A NAC gene regulating senescence improves grain protein, zinc, and iron content in wheat. Science 314:1298–1301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van der Graff E, Schwacke R, Schneider A, Desimone M, Fluggue UI, Kunze R (2006) Transcriptioon analyissi of Arabidopsis membrane tarnsporters and hormone pathways during developmental and induced leaf senescence. Plant Physiol 141:776–792

    Article  CAS  Google Scholar 

  • Velasco-Arroyo B, Diaz-Mendoza M, Gandullo J, Gonzalez-Melendi P, Santamaria ME, Dominguez-Figueroa JD, Hensel G, Martinez M, Kumlehn J, Diaz I (2016) HvPap-1 C1A protease actively participates in barley proteolysis mediated by abiotic stresses. J Exp Bot 67:4297–4310

    Article  CAS  PubMed  Google Scholar 

  • Watanabe M, Balazadeh S, Tohge T, Erban A, Giavalisco P, Kopka J, Mueller-Roeber B, Fernie AR, Hoefgen R (2013) Comprenhensive dissection of saptiotemporal metabolic shifts in primary, secondary, and lipid metabolism during developmental senescence in Arabidopsis. Plant Physiol 162:1290–1310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei S, Wang X, Zhang J, Liu P, Zhao B, Li G, Dong S (2015) The role of nitrogen in leaf senescence of summer maize and analysis of underlying mechanisms using comparative proteomics. Plant Sci 233:72–81

    Article  CAS  PubMed  Google Scholar 

  • Wiedemuth K, Müller J, Kahlau A, Amme S, Mock H, Grzam A, Hell R, Egle K, Beschow H, Humbeck K (2005) Successive maturation and senescence of individual leaves during barley whole plant ontogeny reveals temporal and spatial regulation of photosynthetic function in conjunction with C and N metabolism. J Plant Physiol 162:1226–1236

    Article  CAS  PubMed  Google Scholar 

  • Wilson KA, McManus MT, Gordon ME, Jordan TW (2002) The proteomics of senescence in leaves of white clover, Trfolium repens (L.) Proteomics 2:1114–1122

    Article  CAS  PubMed  Google Scholar 

  • Wingler A, Roitsch T (2008) Metabolic regulation of leaf senescence: interactions of sugar signalling with biotic and abiotic stress responses. Plant Biol 10:50–62

    Article  CAS  PubMed  Google Scholar 

  • Woo HR, Chung KM, Park JH, Oh SA, Ahn T, Hong SH, Jang SK, Nam HG (2001) ORE9, an F-box protein that regulates leaf senescence in Arabidopsis. Plant Cell 13:1779–1790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woo HR, Goh CH, Park JH, Teyssendier de la Serve B, Kim JH, Park YL, Nam HG (2002) Extended leaf longevity in the ore4-1 mutant of Arabidopsis with a reduced expression of a plastid ribosomal protein gene. Plant J 31:331–340

    Article  CAS  PubMed  Google Scholar 

  • Woo HR, Koo HJ, Kim J, Jeong H, Yang JO, Lee IW, Jun JH, Choi SH, Park SJ, Kang B, Kim YW, Phee BK, Kim JH, Seo C, Park C, Kim SC, Park S, Lee B, Lee S, Hwang D, Nam HG, Lim POK (2016) Programming of plant leaf senescence with temporal and inter-organellar coordination of transcriptome in Arabidopsis. Plant Physiol 171:452–467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu XY, Hu WJ, Luo H, Xia Y, Zhao Y, Wang LD, Zhan LM, Luo JC (2016) Transcriptome profiling of developmental leaf senescence in sorghum (Sorghum bicolor). Plant Mol Biol 92:555–580

    Article  CAS  PubMed  Google Scholar 

  • Ximenez-Embun MG, Ortego F, Castañera P (2016) Drought-stressed tomato plants trigger bottom–up effects on the invasive Tetranychus evansi. PLoS One 11:e0145275

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yoshida S (2003) Molecular regulation of leaf senescence. Curr Opin Plant Biol 6:7984

    Article  Google Scholar 

  • Zentgraf U, Jobst J, Kolb D, Rentsch D (2004) Senescence-related gene expression profiles of rosette leaves of Arabidopsis thaliana: leaf age versus plant age. Plant Mol 6:178–183

    CAS  Google Scholar 

  • Zhang WY, Xu YC, Li WL, Yang L, Yue X, Zhang XS, Zhao XY (2014) Transcriptional analysis of natural leaf senescence in maize. PLoS One 9:e115617

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the project from Ministerio de Economia y Competitividad e Industria of Spain (BIO2014-53508-R). B.V.-A. a and A.G.-S. had FPI contracts and M.E.S. Juan de la Cierva contract, all of them from the same Spanish Ministry.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabel Diaz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Velasco-Arroyo, B. et al. (2017). Senescence-Associated Genes in Response to Abiotic/Biotic Stresses. In: Cánovas, F., Lüttge, U., Matyssek, R. (eds) Progress in Botany Vol. 79. Progress in Botany, vol 79. Springer, Cham. https://doi.org/10.1007/124_2017_1

Download citation

Publish with us

Policies and ethics