Skip to main content

Probabilistic Subgraph Matching Based on Convex Relaxation

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 3757))

Abstract

We present a novel approach to the matching of subgraphs for object recognition in computer vision. Feature similarities between object model and scene graph are complemented with a regularization term that measures differences of the relational structure. For the resulting quadratic integer program, a mathematically tight relaxation is derived by exploiting the degrees of freedom of the embedding space of positive semidefinite matrices. We show that the global minimum of the relaxed convex problem can be interpreted as probability distribution over the original space of matching matrices, providing a basis for efficiently sampling all close-to-optimal combinatorial matchings within the original solution space. As a result, the approach can even handle completely ambiguous situations, despite uniqueness of the relaxed convex problem. Exhaustive numerical experiments demonstrate the promising performance of the approach which – up to a single inevitable regularization parameter that weights feature similarity against structural similarity – is free of any further tuning parameters.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barrow, H.G., Popplestone, R.J.: Relational descriptions in picture processing. Machine Intelligence 6, 377–396 (1971)

    Google Scholar 

  2. Ullmann, J.R.: An algorithm for subgraph isomorphism. Journal of the ACM 23(1), 31–42 (1976)

    Article  MathSciNet  Google Scholar 

  3. Cross, A.D.J., Wilson, R.C., Hancock, E.R.: Inexact graph matching using genetic search. Pattern Recog. 30(6), 953–970 (1997)

    Article  Google Scholar 

  4. Umeyama, S.: An eigendecomposition approach to weighted graph matching problems. IEEE Trans. Patt. Anal. Mach. Intell. 10(5), 695–703 (1988)

    Article  MATH  Google Scholar 

  5. Luo, B., Hancock, E.R.: Structural graph matching using the em algorithm and singular value decomposition. IEEE Trans. Patt. Anal. Mach. Intell. 23(10), 1120–1136 (2001)

    Google Scholar 

  6. Cross, A.D.J., Hancock, E.R.: Graph matching with a dual-step em algorithm. IEEE Trans. Patt. Anal. Mach. Intell. 20(11), 1236–1253 (1998)

    Article  Google Scholar 

  7. Pavan, M., Pelillo, M.: Dominant sets and hierarchical clustering. In: Proc. ICCV 2003 - 9th IEEE International Conference on Computer Vision, vol. 1, pp. 362–369 (2003)

    Google Scholar 

  8. Van Wyk, B.J., Van Wyk, M.A.: Kronecker product graph matching. Patt. Recognition 36(9), 2019–2030 (2003)

    Article  MATH  Google Scholar 

  9. Demirci, M.F., Shoukoufandeh, A., Keselman, Y., Dickinson, S., Bretzner, L.: Many-to-many matching of scale-space feature hierarchies using metric embedding. In: Griffin, L.D., Lillholm, M. (eds.) Scale-Space 2003. LNCS, vol. 2695, pp. 17–32. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  10. Robles-Kelley, A., Hancock, E.R.: Graph edit distance from spectral seriation. IEEE Trans. Patt. Anal. Mach. Intell. 27(3), 365–378 (2005)

    Article  Google Scholar 

  11. Caelli, T., Caetano, T.S.: Graphical models for graph matching: Approximate models and optimal algorithms. Patt. Recog. Letters 26(3), 339–346 (2005)

    Article  Google Scholar 

  12. Conte, D., Foggia, P., Sansone, C., Vento, M.: Thirty years of graph matching in pattern recognition. IJPRAI 18(3), 265–298 (2004)

    Google Scholar 

  13. Gold, S., Rangarajan, A.: A graduated assignment algorithm for graph matching. IEEE Trans. Patt. Anal. Mach. Intell. 18(4), 377–388 (1996)

    Article  Google Scholar 

  14. Ishii, S., Sato, M.: Doubly constrained network for combinatorial optimization. Neurocomputing 43, 239–257 (2002)

    Article  MATH  Google Scholar 

  15. Kosowsky, J.J., Yuille, A.L.: The invisible hand algorithm: Solving the assignment problem with statistical pyhysics. Neural Networks 7(3), 477–490 (1994)

    Article  MATH  Google Scholar 

  16. Rangarajan, A., Yuille, A., Mjolsness, E.: Convergence properties of the softassign quadratic assignment algorithm. Neural Computation 11(6), 1455–1474 (1999)

    Article  Google Scholar 

  17. Alizadeh, F.: Interior point methods in semidefinite programming with applications to combinatorial optimization. SIAM Journal on Optimization 5(1), 13–51 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  18. Poljak, S., Rendl, F., Wolkowicz, H.: A recipe for semidefinite relaxation for 0-1 quadratic programming. Journal of Global Optimization (7), 51–73 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  19. Zhao, Q., Karisch, S.E., Rendl, F., Wolkowicz, H.: Semidefinite programming relaxations for the quadratic assignment problem. J. Combinat. Optimization 2(1), 71–109 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  20. Anstreicher, K.M., Brixius, N.W.: A new bound for the quadratic assignment problem based on convex quadratic programming. Mathematical Programming 89(3), 341–357 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  21. Burkard, R.E., Karisch, S., Rendl, F.: QAPLIB-A Quadratic Assignment Problem Library. European Journal of Operational Research 55, 115–119 (1991)

    Article  MATH  Google Scholar 

  22. Schellewald, C., Roth, S., Schnörr, C.: Evaluation of convex optimization techniques for the weighted graph-matching problem in computer vision. In: Radig, B., Florczyk, S. (eds.) DAGM 2001. LNCS, vol. 2191, pp. 361–368. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  23. Keuchel, J., Schnörr, C., Schellewald, C., Cremers, D.: Binary partitioning, perceptual grouping, and restoration with semidefinite programming. IEEE Trans. Patt. Anal. Mach. Intell. 25(11), 1364–1379 (2003)

    Article  Google Scholar 

  24. Keuchel, J., Heiler, M., Schnörr, C.: Hierarchical image segmentation based on semidefinite programming. In: Rasmussen, C.E., Bülthoff, H.H., Schölkopf, B., Giese, M.A. (eds.) DAGM 2004. LNCS, vol. 3175, pp. 120–128. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  25. Schrijver, A.: Theory of linear and integer programming. John Wiley & Sons, Inc., New York (1986)

    MATH  Google Scholar 

  26. Korte, B., Vygen, J.: Combinatorial Optimization: Theory and Algorithms. In: Algorithms and Combinatorics, vol. 21. Springer, Heidelberg (2000)

    Google Scholar 

  27. Wolkowicz, H., Saigal, R., Vandenberghe, L. (eds.): Handbook of Semidefinite Programming. Kluwer Acad. Publ., Boston (2000)

    Google Scholar 

  28. Toint, P.L.: On sparse and symmetric matrix updating subject to a linear equation. Mathematics of Computation 31, 954–961 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  29. Rubner, Y., Tomasi, C., Guibas, L.J.: The earth mover’s distance as a metric for image retrieval. International Journal of Computer Vision 40(2), 99–121 (2000)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Schellewald, C., Schnörr, C. (2005). Probabilistic Subgraph Matching Based on Convex Relaxation. In: Rangarajan, A., Vemuri, B., Yuille, A.L. (eds) Energy Minimization Methods in Computer Vision and Pattern Recognition. EMMCVPR 2005. Lecture Notes in Computer Science, vol 3757. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11585978_12

Download citation

  • DOI: https://doi.org/10.1007/11585978_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-30287-2

  • Online ISBN: 978-3-540-32098-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics