Skip to main content

Normalized Similarity of RNA Sequences

  • Conference paper
String Processing and Information Retrieval (SPIRE 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3772))

Included in the following conference series:

Abstract

We introduce a normalized version of the LCS metric as a new local similarity measure for comparing two RNAs. An \(\mathcal{O}(n^{2}m{\rm lg}m)\) time algorithm is presented for computing the maximum normalized score of two RNA sequences, where n and m are the lengths of the sequences and nm. This algorithm has the same time complexity as the currently best known global LCS algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alber, J., Gramm, J., Guo, J., Niedermeier, R.: Towards optimally solving the longest common subsequence problem for sequences with nested arc annotations in linear time. In: Apostolico, A., Takeda, M. (eds.) CPM 2002. LNCS, vol. 2373, pp. 99–114. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  2. Apostolico, A., Guerra, C.: The longest common subsequence problem revisited. Algorithmica 2, 315–336 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  3. Arslan, A.N., Eǧecioğlu, Ö., Pevzner, P.A.: A new approach to sequence alignment: normalized sequence alignment. Bioinformatics 17(4), 327–337 (2001)

    Article  Google Scholar 

  4. Bille, P.: A survey on tree edit distance and related problems. Theoretical Computer Science 337, 217–239 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  5. Chartrand, P., Meng, X.-H., Singer, R.H., Long, R.M.: Structural elements required for the localization of ASH1 mRNA and of a green fluorescent protein reporter particle in vivo. Current Biology 9, 333–336 (1999)

    Article  Google Scholar 

  6. Couzin, J.: Breakthrough of the year. Small RNAs make big splash. Science 298(5602), 2296–2297 (2002)

    Article  Google Scholar 

  7. Efraty, N., Landau, G.M.: Sparse normalized local alignment. In: Sahinalp, S.C., Muthukrishnan, S.M., Dogrusoz, U. (eds.) CPM 2004. LNCS, vol. 3109, pp. 333–346. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  8. Evans, P.A.: Algorithms and complexity for annotated sequence analysis. PhD thesis, University of Alberta (1999)

    Google Scholar 

  9. Gramm, J., Guo, J., Niedermeier, R.: Pattern matching for arc annotated sequences. In: Agrawal, M., Seth, A.K. (eds.) FSTTCS 2002. LNCS, vol. 2556, pp. 182–193. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  10. Hirschberg, D.S.: Algorithms for the longest common subsequence problem. Journal of the ACM 24(4), 664–675 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  11. Hunt, J.W., Szymanski, T.G.: A fast algorithm for computing longest common subsequences. Communications of the ACM 20(5), 350–353 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  12. Jiang, T., Lin, G.-H., Ma, B., Zhang, K.: The longest common subsequence problem for arc-annotated sequences. In: Giancarlo, R., Sankoff, D. (eds.) CPM 2000. LNCS, vol. 1848, pp. 154–165. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  13. Klein, P.N.: Computing the Edit-Distance between Unrooted Ordered Trees. In: Bilardi, G., Pietracaprina, A., Italiano, G.F., Pucci, G. (eds.) ESA 1998. LNCS, vol. 1461, pp. 91–102. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  14. Moore, P.B.: Structural motifs in RNA. Annual review of biochemistry 68, 287–300 (1999)

    Article  Google Scholar 

  15. Shasha, D., Zhang, K.: Simple fast algorithms for the editing distance between trees and related problems. SIAM Journal on Computing 18(6), 1245–1262 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  16. Smith, T.F., Waterman, M.S.: The identification of common molecular subsequences. Journal of Molecular Biology 147, 195–197 (1981)

    Article  Google Scholar 

  17. Zhang, K.: Computing similarity between RNA secondary structures. In: Proc. of the IEEE joint symposium on Intelligence and Systems conference, pp. 126–132 (1998)

    Google Scholar 

  18. Zuker, M.: On finding all suboptimal foldings of an RNA molecule. Science 244(4900), 48–52 (1989)

    Article  MathSciNet  Google Scholar 

  19. Zuker, M., Stiegler, P.: Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information. Nucleic Acids Research 9(1), 133–148 (1981)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Backofen, R., Hermelin, D., Landau, G.M., Weimann, O. (2005). Normalized Similarity of RNA Sequences. In: Consens, M., Navarro, G. (eds) String Processing and Information Retrieval. SPIRE 2005. Lecture Notes in Computer Science, vol 3772. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11575832_40

Download citation

  • DOI: https://doi.org/10.1007/11575832_40

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-29740-6

  • Online ISBN: 978-3-540-32241-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics