Skip to main content

Multiple Alignment of Protein Structures in Three Dimensions

  • Conference paper
Computational Life Sciences (CompLife 2005)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 3695))

Included in the following conference series:

Abstract

The paper describes the algorithm of multiple alignment of protein structures in 3D used in the EBI-MSD web service SSM (Secondary Structure Matching) located at URL given in the title. Structure alignment is known as a computationally hard procedure, with multiple alignment being considerably harder then a more conventional pairwise alignment. We base our approach on an efficient SSM algorithm for pairwise structure alignment, which allowed for multiple alignment of a considerably larger number of structures (up to 100), on comparison with alternative techniques, in real time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Krissinel, E., Henrick, K.: Secondary-structure matching (SSM), a new tool for fast protein structure alignment in three dimensions. Acta Cryst. D60, 2256–2268 (2004)

    Google Scholar 

  2. Chotia, C., Lesk, A.M.: The relation between the divergence of sequence and structure in proteins. EMBO J. 5, 823–826 (1986)

    Google Scholar 

  3. Chotia, C.: One thousand families for the molecular biologist. Nature 357, 543–544 (1992)

    Article  Google Scholar 

  4. Hubbard, T.J.P., Blundell, T.L.: Comparison of solvent-inaccessible cores of homologous proteins – definitions useful for protein modelling. Protein Engng. 1, 159–171 (1987)

    Article  Google Scholar 

  5. Holm, L., Sander, C.: Protein structure comparison by alignment of distance matrices. J. Mol. Biol. 233, 123–138 (1993)

    Article  Google Scholar 

  6. Orengo, C.A., Taylor, W.R.: SSAP: Sequential Structure Alignment Program for protein structure comparison. Meth. Enzym. 266, 617–635 (1996)

    Article  Google Scholar 

  7. Falicov, A., Cohen, F.E.: A surface of minimum metric for the structural comparison of proteins. J. Mol. Biol. 258, 871–892 (1996)

    Article  Google Scholar 

  8. Gerstein, M., Levitt, M.: Using iterative dynamic programming to obtain accurate pairwise and multiple alignments of protein structures. In: Proc. of the Fourth Int. Conf. Intell. Syst. Mol. Biol., pp. 59–67. AAAI Press, Menlo Park (1996)

    Google Scholar 

  9. Singh, A.P., Brutlag, D.L.: Hierarchical protein structure superposition using both secondary structure and atomic representations. In: Proc. Int. Conf. Intell. Syst. Mol. Biol. ISMB 1997, pp. 284–293. AAAI Press, Menlo Park (1997)

    Google Scholar 

  10. Vriend, G., Sander, C.: Detection of common three-dimensional substructures in proteins. Proteins 11, 52–58 (1991)

    Article  Google Scholar 

  11. Mizuguchi, K., Go, N.: Comparison of spatial arrangements of secondary structural elements in proteins. Protein Engng. 8(4), 353–362 (1995)

    Article  Google Scholar 

  12. Mitchell, E.M., Artymiuk, P.J., Rice, D.W., Willett, P.: Use of techniques derived from graph theory to compare secondary structure motifs in proteins. J. Mol. Biol. 212, 151–166 (1990)

    Article  Google Scholar 

  13. Alexandrov, N.N.: SARFing the PDB. Protein Engng. 9, 727–732 (1996)

    Article  Google Scholar 

  14. Grindley, H.M., Artymiuk, P.J., Rice, D.W., Willett, P.: Identification of tertiary structure resemblance in proteins using a maximal common subgraph isomor-phism algorithm. J. Mol. Biol. 229, 707–721 (1993)

    Article  Google Scholar 

  15. Shindyalov, I.N., Bourne, P.E.: Protein structure alignment by incremental combinatorial extension (CE) of the optimal path. Protein Engng. 11(9), 739–747 (1998)

    Article  Google Scholar 

  16. Gibrat, J.-F., Madej, T., Bryant, S.H.: Surprising similarities in structure comparison. Current Opinion in Structural Biology 6, 377–385 (1996)

    Article  Google Scholar 

  17. Kleywegt, G.J., Jones, T.A.: Detecting folding motifs and similarities in protein structures. Meth. Enzym. 277, 525–545 (1997)

    Article  Google Scholar 

  18. Russell, R.B., Barton, G.J.: Multiple protein sequence alignment from tertiary structure comparison. Proteins: Struct. Funct. Genet. 14, 309–323 (1992)

    Article  Google Scholar 

  19. Shatsky, M., Nussinov, R., Wolfson, H.J.: MultiProt - a Multiple Protein Structural Alignment Algorithm. In: Guigó, R., Gusfield, D. (eds.) WABI 2002. LNCS, vol. 2452, pp. 235–250. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  20. Dror, O., Benyamini, H., Nussinov, R., Wolfson, H.: Multiple structural alignment by secondary structures: algorithm and applications. Protein Science 12, 2492–2507 (2003)

    Article  Google Scholar 

  21. Guda, C., Lu, S., Scheeff, E.D., Bourne, P.E., Shindyalov, I.N.: CE-MC: a multiple protein structure alignment server. Nucl. Acids Res. 32, W100–W103 (2004)

    Article  Google Scholar 

  22. Kolodny, R., Koehl, P., Levitt, M.: Comprehensive Evaluation of Protein Structure Alignment Methods: Scoring by Geometric Measures. J. Mo. Biol. 346, 1173–1188 (2005)

    Article  Google Scholar 

  23. Gusfield, D.: Algorithms on Strings, Trees and Sequences., pp. 348–350. Cambridge University Press, New York (1997)

    Book  Google Scholar 

  24. Krissinel, E.B., Winn, M.D., Ballard, C.C., Ashton, A.W., Patel, P., Potterton, E.A., McNicholas, S.J., Cowtan, K.D., Emsley, P.: The new CCP4 Coordinate Library as a toolkit for the design of coordinate-related applications in protein crystallography. Acta Cryst. D60, 2250–2255 (2004)

    Google Scholar 

  25. Sayle, R.A., Milner-White, E.J.: RasMol: Biomolecular graphics for all. Trends in Biochemical Sci. 20, 374–376 (1995)

    Article  Google Scholar 

  26. Kraulis, P.J.: MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J. Appl. Cryst. 24, 946–950 (1991)

    Article  Google Scholar 

  27. Merritt, E.A., Bacon, D.J.: Raster3D: Photorealistic Molecular Graphics. Meth. Enzymol. 277, 505–524 (1997)

    Article  Google Scholar 

  28. Murzin, A.G., Brenner, S.E., Hubbard, T., Chothia, C.: SCOP: a structural classi_cation of proteins database for the investigation of sequences and structures. J. Mol. Biol. 247, 536–540 (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Krissinel, E., Henrick, K. (2005). Multiple Alignment of Protein Structures in Three Dimensions. In: R. Berthold, M., Glen, R.C., Diederichs, K., Kohlbacher, O., Fischer, I. (eds) Computational Life Sciences. CompLife 2005. Lecture Notes in Computer Science(), vol 3695. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11560500_7

Download citation

  • DOI: https://doi.org/10.1007/11560500_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-29104-6

  • Online ISBN: 978-3-540-31726-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics