Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3683))

Abstract

A smart system exhibits the four important properties: (i) Interactive, collective, coordinated and efficient Operation (ii) Self -organization and emergence (iii) Power law scaling under emergence (iv) Adaptive. We describe the role of fractal and percolation models for understanding smart systems. A hierarchy based on metric entropy is suggested among the computational systems to differentiate ordinary system from the smart system. Engineering a general purpose smart system is not feasible, since emergence is a global behaviour (or a goal) that evolves from the local behaviour (goals) of components. This is due to the fact that the evolutionary rules for the global goal is non-computable, as it cannot be expressed as a finite composition of computable function of local goals for any arbitrary problem domain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abelson, H., et al.: Amorphous computing. Comm. ACM 43(5), 74–82 (2000)

    Article  MathSciNet  Google Scholar 

  2. Boettcher, S., Percus, A.: Nature.s way of Optimizing. Artificial Intelligence 119, 275–286 (2000)

    Article  MATH  Google Scholar 

  3. Bunde, A., Havlin, S.: Fractals in Science. Springer, New York (1994)

    MATH  Google Scholar 

  4. Camazine, S., et al.: Self-Organization in Biological Systems. Princeton University Press, Princeton (2002)

    Google Scholar 

  5. Chaitin, G.: Two-philosophical applications of Algorithmic Information Theory. In: Calude, C.S., Dinneen, M.J., Vajnovszki, V. (eds.) DMTCS 2003. LNCS, vol. 2731, pp. 1–10. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  6. Conrad, M.: Molecular Computing. Advances in Computers 31, 235–325 (1990)

    Article  Google Scholar 

  7. Dorogovtsev, S.N., Mendes, J.F.F.: Evolution of Networks. Oxford University Press, Oxford (2003)

    Book  MATH  Google Scholar 

  8. Ebeling, W., Schweitzer, F.: Self-organization, Active Brownian dynamics and biological Applications. Nova Acta Leopoldina 88(332), 169–188 (2003)

    MathSciNet  MATH  Google Scholar 

  9. Falcioni, M., et al.: Kolmogorov.s legacy about entropy. In: Chaos and Complexity. Lecture Notes in Physics, vol. 636, pp. 85–108. Springer, New York (2003)

    Google Scholar 

  10. Falconer, K.: Fractal geometry. Wiley, New York (2003)

    Book  MATH  Google Scholar 

  11. Grimmett, G.: Percolation. Springer, New York (1999)

    MATH  Google Scholar 

  12. Holland, J.H.: Emergence-chaos to Order. Addison Wesley, Reading (1998)

    Google Scholar 

  13. Hubermann, B.A., Hogg, T.: Phase transitions in Artificial Intelligence Systems. Artificial Intelligence 33, 155–171 (1987)

    Article  Google Scholar 

  14. Koza, R., et al.: Genetic programming III. Morgan Kaufmann, San Francisco (1999)

    MATH  Google Scholar 

  15. Langton, C.E., et al.: Life at the Edge of chaos, in Artificial Life II, pp. 41–91. Addison Wesley, Reading (1992)

    Google Scholar 

  16. Liebovitch, L.S.: Fractals and Chaos. Oxford University Press, Oxford (1998)

    MATH  Google Scholar 

  17. Mamei, M., Zambonelli, F.: Spray computers: Frontiers of self organization and Pervasive computing (2004), http://www.irit.fr/SMAC/Publications.html

  18. Mithen, S.: The Prehistory of Mind. Thames and Hudson, London (1999)

    Google Scholar 

  19. Ott, E., et al.: Coping with Chaos. John Wiley, New York (1994)

    MATH  Google Scholar 

  20. Prigogine, I.: From being to becoming. H. Freeman and Co., San Francisco (1980)

    Google Scholar 

  21. Prigogine, I.: Laws of Nature. Physica A 263, 528–539 (1999)

    Article  MathSciNet  Google Scholar 

  22. Rose, M.R., Lauder, G.V.: Adapatation. Academic Press, New York (1996)

    Google Scholar 

  23. Serugendo, G.D.M.: Engineering Emergent Behaviour: A Vision. In: MABS 2003. LNCS, vol. 2927, pp. 1–7. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  24. West, B.J.: Fractal Physiology and chaos in Medicine. World Scientific, Singapore (1990)

    MATH  Google Scholar 

  25. Wolfram, S.: A New kind of Science. Wolfram Media Inc., Champaign (2002)

    MATH  Google Scholar 

  26. Zak, M., et al.: From Instability to Intelligence. Springer, New York (1997)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Krishnamurthy, E.V., Murthy, V.K. (2005). On Engineering Smart Systems. In: Khosla, R., Howlett, R.J., Jain, L.C. (eds) Knowledge-Based Intelligent Information and Engineering Systems. KES 2005. Lecture Notes in Computer Science(), vol 3683. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11553939_72

Download citation

  • DOI: https://doi.org/10.1007/11553939_72

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28896-1

  • Online ISBN: 978-3-540-31990-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics