Skip to main content

Experiments on Quantum Annealing

  • Chapter
  • First Online:
Book cover Quantum Annealing and Other Optimization Methods

Part of the book series: Lecture Notes in Physics ((LNP,volume 679))

Abstract

The standard deterministic, gate-based computation paradigms underlying modern digital computing are not those that nature uses to perform complex tasks such as finding the lowest energy states of spin glasses or proteins. Instead, for such complex problems, natural processes achieve their optima by trial and error, where the extent to which ‘errors’ are accepted is determined by the system temperature. Optima then follow by slow cooling from a hightemperature, annealed state. Nearly three decades ago, Kirkpatrick, Gelatt and Vecchi [1] suggested that for certain complex computational problems, including for example that of the travelling salesman, it may be more productive to simulate natural annealing and cooling on a computer, using standard Monte Carlo routines, rather than attempting to use classical mathematical algorithms to find solutions. The appeal of simulated annealing is not only that it can be applied to essentially any new optimization problem, but also that it provides a language, namely that of the thermodynamics of complex statistical mechanical systems, for describing why and how optima can be reached. Motivated by this early work, we asked [2] the question of whether quantum rather than thermal .uctuations could be used to relax a system of many interacting degrees of freedom. The reason why this seemed like a good question to ask is illustrated in Fig. 1 – quantum tunnelling makes transitions to regions of phase space possible that might be very dificult to access via classical, thermal barrier hopping.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Kirkpatrick, C.D. Gelatt, Jr., M.P. Vecchi, Science 220, 671 (1983).

    Article  ADS  MathSciNet  Google Scholar 

  2. J. Brooke, D. Bitko, T.F. Rosenbaum, G. Aeppli, Science 284, 779 (1999).

    Article  ADS  Google Scholar 

  3. G. Santoro, R. Martoňák, E. Tosatti, R. Car, Science 295, 2427 (2002).

    Article  ADS  Google Scholar 

  4. R. Martoňák, G. Santoro and E. Tosatti, arXiv:cond-mat/0402330(2004).

    Google Scholar 

  5. T. Kadowaki, H. Nishimori, Phys. Rev. E 58, 5355 (1998).

    Article  ADS  Google Scholar 

  6. Y. H. Lee and B. J. Berne, J. Phys. Chem A 104, 86(2000).

    Article  Google Scholar 

  7. A. Das, B. K. Chakrabarti, R. B. Stinchcombe, Phys. Rev. E 72, 026701 (2005).

    Article  ADS  Google Scholar 

  8. D. Bitko, T. F. Rosenbaum and G. Aeppli, Phys. Rev. Lett. 77 940 (1996).

    Article  ADS  Google Scholar 

  9. D. H. Reich, T. F. Rosenbaum, G. Aeppli and H. J. Guggenheim, Phys. Rev. B 34 4956 (1986).

    Article  ADS  Google Scholar 

  10. D. H. Reich, B. Ellman, I. Yang, T. Rosenbaum, G. Aeppli and D. P. Belanger, Phys. Rev. B 42, 4631 (1990).

    Article  ADS  Google Scholar 

  11. W. Wu, B. Ellman, T. F. Rosenbaum, G. Aeppli and D. H. Reich, Phys. Rev. Lett. 67 2076 (1991).

    Article  ADS  Google Scholar 

  12. W. Wu, D. Bitko, T. F. Rosenbaum and G. Aeppli, Phys. Rev. Lett 71 1919 (1993).

    Article  ADS  Google Scholar 

  13. H. M. Ronnow, R. Parthasarathy, J. Jensen, G. Aeppli, T. F. Rosenbaum and D. F. McMorrow, Science 308, 392 (2005).

    Article  ADS  Google Scholar 

  14. J. Brooke, T. F. Rosenbaum and G. Aeppli, Nature 413 610 (2001).

    Article  ADS  Google Scholar 

  15. S. Ghosh, T. F. Rosenbaum, G. Aeppli and S. N. Coppersmith, Nature 425 48 (2003).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Arnab Das Bikas K. Chakrabarti

Rights and permissions

Reprints and permissions

About this chapter

Cite this chapter

Aeppli, G., F. Rosenbaum, T. Experiments on Quantum Annealing. In: Das, A., K. Chakrabarti, B. (eds) Quantum Annealing and Other Optimization Methods. Lecture Notes in Physics, vol 679. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11526216_6

Download citation

  • DOI: https://doi.org/10.1007/11526216_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-27987-7

  • Online ISBN: 978-3-540-31515-5

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics