Skip to main content

Roles of Intramolecular Interactions in the Regulation of TRP Channels

  • Chapter
  • First Online:
Reviews of Physiology, Biochemistry and Pharmacology

Part of the book series: Reviews of Physiology, Biochemistry and Pharmacology ((REVIEWS,volume 186))

Abstract

The transient receptor potential (TRP) channels, classified into six (-A, -V, -P, -C, -M, -ML, -N and -Y) subfamilies, are important membrane sensors and mediators of diverse stimuli including pH, light, mechano-force, temperature, pain, taste, and smell. The mammalian TRP superfamily of 28 members share similar membrane topology with six membrane-spanning helices (S1–S6) and cytosolic N-/C-terminus. Abnormal function or expression of TRP channels is associated with cancer, skeletal dysplasia, immunodeficiency, and cardiac, renal, and neuronal diseases. The majority of TRP members share common functional regulators such as phospholipid PIP2, 2-aminoethoxydiphenyl borate (2-APB), and cannabinoid, while other ligands are more specific, such as allyl isothiocyanate (TRPA1), vanilloids (TRPV1), menthol (TRPM8), ADP-ribose (TRPM2), and ML-SA1 (TRPML1). The mechanisms underlying the gating and regulation of TRP channels remain largely unclear. Recent advances in cryogenic electron microscopy provided structural insights into 19 different TRP channels which all revealed close proximity of the C-terminus with the N-terminus and intracellular S4–S5 linker. Further studies found that some highly conserved residues in these regions of TRPV, -P, -C and -M members mediate functionally critical intramolecular interactions (i.e., within one subunit) between these regions. This review provides an overview on (1) intramolecular interactions in TRP channels and their effect on channel function; (2) functional roles of interplays between PIP2 (and other ligands) and TRP intramolecular interactions; and (3) relevance of the ligand-induced modulation of intramolecular interaction to diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

2-APB:

2-Aminoethoxydiphenyl borate

ARDs:

Ankyrin repeat domains

BTDM:

(2-(Benzo[d][1,3]dioxol-5-ylamino)thiazol-4-yl)((3 S,5 R)-3,5-dimethylpiperidin-1-yl)methanone

CBD:

Cannabinoid

Cryo-EM:

Cryogenic electron microscopy

ER:

Endoplasmic reticulum

HEK:

Human embryonic kidney

HTH:

Helix-turn-helix

MHRs:

TRPM homology regions

ML-SA1:

Mucolipin synthetic agonist 1

PIP2:

Phosphatidylinositol 4,5-bisphosphate

RTx:

Resiniferatoxin

TRP:

Transient receptor potential

VSLD:

Voltage-sensing like domain

References

  • Alberts B, Alexander J, Lewis J, Raff M, Roberts K, Walter P (2002) Molecular biology of the cell, 4th edn. Garland Science, New York

    Google Scholar 

  • Autzen HE, Myasnikov AG, Campbell MG, Asarnow D, Julius D, Cheng Y (2018) Structure of the human TRPM4 ion channel in a lipid nanodisc. Science 359:228–232

    Article  CAS  Google Scholar 

  • Bai Y, Yu X, Chen H, Horne D, White R, Wu X, Lee P, Gu Y, Ghimire-Rijal S, Lin DC et al (2020) Structural basis for pharmacological modulation of the TRPC6 channel. eLife 9

    Google Scholar 

  • Bamps D, Vriens J, de Hoon J, Voets T (2021) TRP channel cooperation for nociception: therapeutic opportunities. Annu Rev Pharmacol Toxicol 61:655–677

    Article  CAS  Google Scholar 

  • Bargal R, Avidan N, Ben-Asher E, Olender Z, Zeigler M, Frumkin A, Raas-Rothschild A, Glusman G, Lancet D, Bach G (2000) Identification of the gene causing mucolipidosis type IV. Nat Genet 26:118–123

    Article  CAS  Google Scholar 

  • Bhardwaj R, Lindinger S, Neuberger A, Nadezhdin KD, Singh AK, Cunha MR, Derler I, Gyimesi G, Reymond JL, Hediger MA et al (2020) Inactivation-mimicking block of the epithelial calcium channel TRPV6. Sci Adv 6

    Google Scholar 

  • Boukalova S, Marsakova L, Teisinger J, Vlachova V (2010) Conserved residues within the putative S4-S5 region serve distinct functions among thermosensitive vanilloid transient receptor potential (TRPV) channels. J Biol Chem 285:41455–41462

    Article  CAS  Google Scholar 

  • Cai R, Liu X, Zhang R, Hofmann L, Zheng W, Amin MR, Wang L, Hu Q, Peng JB, Michalak M et al (2020) Autoinhibition of TRPV6 channel and regulation by PIP2. iScience 23:101444

    Article  CAS  Google Scholar 

  • Cai R, Wang L, Liu X, Michalak M, Tang J, Peng JB, Chen XZ (2021) Auto-inhibitory intramolecular S5/S6 interaction in the TRPV6 channel regulates breast cancer cell migration and invasion. Commun Biol 4:990

    Article  CAS  Google Scholar 

  • Cao E (2020) Structural mechanisms of transient receptor potential ion channels. J Gen Physiol 152

    Google Scholar 

  • Cao E, Liao M, Cheng Y, Julius D (2013) TRPV1 structures in distinct conformations reveal activation mechanisms. Nature 504:113–118

    Article  CAS  Google Scholar 

  • Chen Q, She J, Zeng W, Guo J, Xu H, Bai XC, Jiang Y (2017) Structure of mammalian endolysosomal TRPML1 channel in nanodiscs. Nature 550:415–418

    Article  CAS  Google Scholar 

  • Chen HW, Yen CC, Kuo LL, Lo CW, Huang CS, Chen CC, Lii CK (2020) Benzyl isothiocyanate ameliorates high-fat/cholesterol/cholic acid diet-induced nonalcoholic steatohepatitis through inhibiting cholesterol crystal-activated NLRP3 inflammasome in Kupffer cells. Toxicol Appl Pharmacol 393:114941

    Article  CAS  Google Scholar 

  • Clapham DE (2007) SnapShot: mammalian TRP channels. Cell 129:220

    Article  Google Scholar 

  • Colton CK, Zhu MX (2007) 2-Aminoethoxydiphenyl borate as a common activator of TRPV1, TRPV2, and TRPV3 channels. Handb Exp Pharmacol:173–187

    Google Scholar 

  • Cosens DJ, Manning A (1969) Abnormal electroretinogram from a drosophila mutant. Nature 224:285–287

    Article  CAS  Google Scholar 

  • Damann N, Voets T, Nilius B (2008) TRPs in our senses. Curr Biol 18:R880–R889

    Article  CAS  Google Scholar 

  • Dang S, van Goor MK, Asarnow D, Wang Y, Julius D, Cheng Y, van der Wijst J (2019) Structural insight into TRPV5 channel function and modulation. Proc Natl Acad Sci U S A 116:8869–8878

    Article  CAS  Google Scholar 

  • Daumy X, Amarouch MY, Lindenbaum P, Bonnaud S, Charpentier E, Bianchi B, Nafzger S, Baron E, Fouchard S, Thollet A et al (2016) Targeted resequencing identifies TRPM4 as a major gene predisposing to progressive familial heart block type I. Int J Cardiol 207:349–358

    Article  Google Scholar 

  • de Almeida AS, Bernardes LB, Trevisan G (2021) TRP channels in cancer pain. Eur J Pharmacol 904:174185

    Article  Google Scholar 

  • Deng HX, Klein CJ, Yan J, Shi Y, Wu Y, Fecto F, Yau HJ, Yang Y, Zhai H, Siddique N et al (2010) Scapuloperoneal spinal muscular atrophy and CMT2C are allelic disorders caused by alterations in TRPV4. Nat Genet 42:165–169

    Article  CAS  Google Scholar 

  • Deng Z, Paknejad N, Maksaev G, Sala-Rabanal M, Nichols CG, Hite RK, Yuan P (2018) Cryo-EM and X-ray structures of TRPV4 reveal insight into ion permeation and gating mechanisms. Nat Struct Mol Biol 25:252–260

    Article  CAS  Google Scholar 

  • Deng Z, Maksaev G, Rau M, Xie Z, Hu H, Fitzpatrick JAJ, Yuan P (2020) Gating of human TRPV3 in a lipid bilayer. Nat Struct Mol Biol 27:635–644

    Article  CAS  Google Scholar 

  • Dhani SU, Bear CE (2006) Role of intramolecular and intermolecular interactions in ClC channel and transporter function. Pflugers Arch 451:708–715

    Article  CAS  Google Scholar 

  • Di Palma F, Belyantseva IA, Kim HJ, Vogt TF, Kachar B, Noben-Trauth K (2002) Mutations in Mcoln3 associated with deafness and pigmentation defects in varitint-waddler (Va) mice. Proc Natl Acad Sci U S A 99:14994–14999

    Article  Google Scholar 

  • Dill KA, Ozkan SB, Shell MS, Weikl TR (2008) The protein folding problem. Annu Rev Biophys 37:289–316

    Article  CAS  Google Scholar 

  • Diver MM, Cheng Y, Julius D (2019) Structural insights into TRPM8 inhibition and desensitization. Science 365:1434–1440

    Article  CAS  Google Scholar 

  • Dong XP, Wang X, Shen D, Chen S, Liu M, Wang Y, Mills E, Cheng X, Delling M, Xu H (2009) Activating mutations of the TRPML1 channel revealed by proline-scanning mutagenesis. J Biol Chem 284:32040–32052

    Article  CAS  Google Scholar 

  • Dosey TL, Wang Z, Fan G, Zhang Z, Serysheva II, Chiu W, Wensel TG (2019) Structures of TRPV2 in distinct conformations provide insight into role of the pore turret. Nat Struct Mol Biol 26:40–49

    Article  CAS  Google Scholar 

  • Duan J, Li J, Zeng B, Chen GL, Peng X, Zhang Y, Wang J, Clapham DE, Li Z, Zhang J (2018a) Structure of the mouse TRPC4 ion channel. Nat Commun 9:3102

    Article  Google Scholar 

  • Duan J, Li Z, Li J, Hulse RE, Santa-Cruz A, Valinsky WC, Abiria SA, Krapivinsky G, Zhang J, Clapham DE (2018b) Structure of the mammalian TRPM7, a magnesium channel required during embryonic development. Proc Natl Acad Sci U S A 115:E8201–E8210

    Article  CAS  Google Scholar 

  • Duan J, Li Z, Li J, Santa-Cruz A, Sanchez-Martinez S, Zhang J, Clapham DE (2018c) Structure of full-length human TRPM4. Proc Natl Acad Sci U S A 115:2377–2382

    Article  CAS  Google Scholar 

  • Duan J, Li J, Chen GL, Ge Y, Liu J, Xie K, Peng X, Zhou W, Zhong J, Zhang Y et al (2019) Cryo-EM structure of TRPC5 at 2.8-A resolution reveals unique and conserved structural elements essential for channel function. Sci Adv 5:eaaw7935

    Article  CAS  Google Scholar 

  • Fan C, Choi W, Sun W, Du J, Lu W (2018) Structure of the human lipid-gated cation channel TRPC3. eLife 7

    Google Scholar 

  • Fine M, Schmiege P, Li X (2018) Structural basis for PtdInsP2-mediated human TRPML1 regulation. Nat Commun 9:4192

    Article  Google Scholar 

  • Froghi S, Grant CR, Tandon R, Quaglia A, Davidson B, Fuller B (2021) New insights on the role of TRP channels in calcium signalling and immunomodulation: review of pathways and implications for clinical practice. Clin Rev Allergy Immunol 60:271–292

    Article  CAS  Google Scholar 

  • Galione A, Chuang KT (2020) Pyridine nucleotide metabolites and calcium release from intracellular stores. Adv Exp Med Biol 1131:371–394

    Article  CAS  Google Scholar 

  • Gao Y, Cao E, Julius D, Cheng Y (2016) TRPV1 structures in nanodiscs reveal mechanisms of ligand and lipid action. Nature 534:347–351

    Article  CAS  Google Scholar 

  • Grieben M, Pike AC, Shintre CA, Venturi E, El-Ajouz S, Tessitore A, Shrestha L, Mukhopadhyay S, Mahajan P, Chalk R et al (2017) Structure of the polycystic kidney disease TRP channel polycystin-2 (PC2). Nat Struct Mol Biol 24:114–122

    Article  CAS  Google Scholar 

  • Guo J, She J, Zeng W, Chen Q, Bai XC, Jiang Y (2017) Structures of the calcium-activated, non-selective cation channel TRPM4. Nature 552:205–209

    Article  CAS  Google Scholar 

  • Heber S, Gold-Binder M, Ciotu CI, Witek M, Ninidze N, Kress HG, Fischer MJM (2019) A human TRPA1-specific pain model. J Neurosci 39:3845–3855

    Article  CAS  Google Scholar 

  • Hermosura MC, Nayakanti H, Dorovkov MV, Calderon FR, Ryazanov AG, Haymer DS, Garruto RM (2005) A TRPM7 variant shows altered sensitivity to magnesium that may contribute to the pathogenesis of two Guamanian neurodegenerative disorders. Proc Natl Acad Sci U S A 102:11510–11515

    Article  CAS  Google Scholar 

  • Hermosura MC, Cui AM, Go RC, Davenport B, Shetler CM, Heizer JW, Schmitz C, Mocz G, Garruto RM, Perraud AL (2008) Altered functional properties of a TRPM2 variant in Guamanian ALS and PD. Proc Natl Acad Sci U S A 105:18029–18034

    Article  CAS  Google Scholar 

  • Hirschi M, Herzik MA Jr, Wie J, Suo Y, Borschel WF, Ren D, Lander GC, Lee SY (2017) Cryo-electron microscopy structure of the lysosomal calcium-permeable channel TRPML3. Nature 550:411–414

    Article  CAS  Google Scholar 

  • Huang Y, Winkler PA, Sun W, Lu W, Du J (2018) Architecture of the TRPM2 channel and its activation mechanism by ADP-ribose and calcium. Nature 562:145–149

    Article  CAS  Google Scholar 

  • Huang Y, Fliegert R, Guse AH, Lu W, Du J (2020) A structural overview of the ion channels of the TRPM family. Cell Calcium 85:102111

    Article  CAS  Google Scholar 

  • Hughes TET, Pumroy RA, Yazici AT, Kasimova MA, Fluck EC, Huynh KW, Samanta A, Molugu SK, Zhou ZH, Carnevale V et al (2018) Structural insights on TRPV5 gating by endogenous modulators. Nat Commun 9:4198

    Article  Google Scholar 

  • Hughes TE, Del Rosario JS, Kapoor A, Yazici AT, Yudin Y, Fluck EC 3rd, Filizola M, Rohacs T, Moiseenkova-Bell VY (2019) Structure-based characterization of novel TRPV5 inhibitors. eLife 8

    Google Scholar 

  • Jia Q, Tian W, Li B, Chen W, Zhang W, Xie Y, Cheng N, Chen Q, Xiao J, Zhang Y et al (2021) Transient receptor potential channels, TRPV1 and TRPA1 in melanocytes synergize UV-dependent and UV-independent melanogenesis. Br J Pharmacol 178:4646–4662

    Article  CAS  Google Scholar 

  • Julius D (2013) TRP channels and pain. Annu Rev Cell Dev Biol 29:355–384

    Article  CAS  Google Scholar 

  • Kadamur G, Ross EM (2013) Mammalian phospholipase C. Annu Rev Physiol 75:127–154

    Article  CAS  Google Scholar 

  • Kaneko Y, Szallasi A (2014) Transient receptor potential (TRP) channels: a clinical perspective. Br J Pharmacol 171:2474–2507

    Article  CAS  Google Scholar 

  • Kass RS (2006) Sodium channel inactivation in heart: a novel role of the carboxy-terminal domain. J Cardiovasc Electrophysiol 17(Suppl 1):S21–S25

    Article  Google Scholar 

  • Kim KM, Wijerathne T, Hur JH, Kang UJ, Kim IH, Kweon YC, Lee AR, Jeong SJ, Lee SK, Lee YY et al (2018) Distinct gating mechanism of SOC channel involving STIM-Orai coupling and an intramolecular interaction of Orai in Caenorhabditis elegans. Proc Natl Acad Sci U S A 115:E4623–E4632

    CAS  Google Scholar 

  • Krakow D, Vriens J, Camacho N, Luong P, Deixler H, Funari TL, Bacino CA, Irons MB, Holm IA, Sadler L et al (2009) Mutations in the gene encoding the calcium-permeable ion channel TRPV4 produce spondylometaphyseal dysplasia, Kozlowski type and metatropic dysplasia. Am J Hum Genet 84:307–315

    Article  CAS  Google Scholar 

  • Landoure G, Zdebik AA, Martinez TL, Burnett BG, Stanescu HC, Inada H, Shi Y, Taye AA, Kong L, Munns CH et al (2010) Mutations in TRPV4 cause Charcot-Marie-Tooth disease type 2C. Nat Genet 42:170–174

    Article  CAS  Google Scholar 

  • Lee CM, Lee DS, Jung WK, Yoo JS, Yim MJ, Choi YH, Park S, Seo SK, Choi JS, Lee YM et al (2016) Benzyl isothiocyanate inhibits inflammasome activation in E. coli LPS-stimulated BV2 cells. Int J Mol Med 38:912–918

    Article  CAS  Google Scholar 

  • Lewis AH, Grandl J (2020) Inactivation kinetics and mechanical gating of Piezo1 ion channels depend on subdomains within the cap. Cell Rep 30(870–880):e872

    Google Scholar 

  • Li H (2017) TRP channel classification. Adv Exp Med Biol 976:1–8

    Article  CAS  Google Scholar 

  • Li M, Yu Y, Yang J (2011) Structural biology of TRP channels. Adv Exp Med Biol 704:1–23

    Article  CAS  Google Scholar 

  • Liao M, Cao E, Julius D, Cheng Y (2013) Structure of the TRPV1 ion channel determined by electron cryo-microscopy. Nature 504:107–112

    Article  CAS  Google Scholar 

  • Loukin S, Su Z, Zhou X, Kung C (2010) Forward genetic analysis reveals multiple gating mechanisms of TRPV4. J Biol Chem 285:19884–19890

    Article  CAS  Google Scholar 

  • Mackie K (2008) Cannabinoid receptors: where they are and what they do. J Neuroendocrinol 20(Suppl 1):10–14

    Article  CAS  Google Scholar 

  • Maier T, Follmann M, Hessler G, Kleemann HW, Hachtel S, Fuchs B, Weissmann N, Linz W, Schmidt T, Lohn M et al (2015) Discovery and pharmacological characterization of a novel potent inhibitor of diacylglycerol-sensitive TRPC cation channels. Br J Pharmacol 172:3650–3660

    Article  CAS  Google Scholar 

  • Mandadi S, Armati PJ, Roufogalis BD (2011) Protein kinase C modulation of thermo-sensitive transient receptor potential channels: implications for pain signaling. J Nat Sci Biol Med 2:13–25

    Article  CAS  Google Scholar 

  • Mandal K (2020) Review of PIP2 in cellular signaling, functions and diseases. Int J Mol Sci 21

    Google Scholar 

  • Maruyama T, Kanaji T, Nakade S, Kanno T, Mikoshiba K (1997) 2APB, 2-aminoethoxydiphenyl borate, a membrane-penetrable modulator of Ins(1,4,5)P3-induced Ca2+ release. J Biochem 122:498–505

    Article  CAS  Google Scholar 

  • McGoldrick LL, Singh AK, Saotome K, Yelshanskaya MV, Twomey EC, Grassucci RA, Sobolevsky AI (2018) Opening of the human epithelial calcium channel TRPV6. Nature 553:233–237

    Article  CAS  Google Scholar 

  • Mochizuki T, Wu G, Hayashi T, Xenophontos SL, Veldhuisen B, Saris JJ, Reynolds DM, Cai Y, Gabow PA, Pierides A et al (1996) PKD2, a gene for polycystic kidney disease that encodes an integral membrane protein. Science 272:1339–1342

    Article  CAS  Google Scholar 

  • Montell C (2001) Physiology, phylogeny, and functions of the TRP superfamily of cation channels. Sci STKE 2001:re1

    Article  CAS  Google Scholar 

  • Muller C, Morales P, Reggio PH (2018) Cannabinoid ligands targeting TRP channels. Front Mol Neurosci 11:487

    Article  CAS  Google Scholar 

  • Ng LCT, Vien TN, Yarov-Yarovoy V, DeCaen PG (2019) Opening TRPP2 (PKD2L1) requires the transfer of gating charges. Proc Natl Acad Sci U S A 116:15540–15549

    Article  CAS  Google Scholar 

  • Nilius B (2007) TRP channels in disease. Biochim Biophys Acta 1772:805–812

    Article  CAS  Google Scholar 

  • Nilius B, Owsianik G, Voets T (2008) Transient receptor potential channels meet phosphoinositides. EMBO J 27:2809–2816

    Article  CAS  Google Scholar 

  • Palovcak E, Delemotte L, Klein ML, Carnevale V (2015) Comparative sequence analysis suggests a conserved gating mechanism for TRP channels. J Gen Physiol 146:37–50

    Article  CAS  Google Scholar 

  • Parys JB, Vervliet T (2020) New insights in the IP3 receptor and its regulation. Adv Exp Med Biol 1131:243–270

    Article  CAS  Google Scholar 

  • Paulsen CE, Armache JP, Gao Y, Cheng Y, Julius D (2015) Structure of the TRPA1 ion channel suggests regulatory mechanisms. Nature 520:511–517

    Article  CAS  Google Scholar 

  • Peng JB, Suzuki Y, Gyimesi G, Hediger MA (2018) TRPV5 and TRPV6 calcium-selective channels. In: Kozak JA, Putney JW Jr (eds) Calcium entry channels in non-excitable cells. CRC Press/Taylor & Francis, Boca Raton, pp 241–274

    Google Scholar 

  • Pumroy RA, Samanta A, Liu Y, Hughes TE, Zhao S, Yudin Y, Rohacs T, Han S, Moiseenkova-Bell VY (2019) Molecular mechanism of TRPV2 channel modulation by cannabidiol. eLife 8

    Google Scholar 

  • Rohacs T (2014) Phosphoinositide regulation of TRP channels. Handb Exp Pharmacol 223:1143–1176

    Article  CAS  Google Scholar 

  • Ruan Z, Haley E, Orozco IJ, Sabat M, Myers R, Roth R, Du J, Lu W (2021) Structures of the TRPM5 channel elucidate mechanisms of activation and inhibition. Nat Struct Mol Biol 28:604–613

    Article  CAS  Google Scholar 

  • Santulli G, Marks AR (2015) Essential roles of intracellular calcium release channels in muscle, brain, metabolism, and aging. Curr Mol Pharmacol 8:206–222

    Article  CAS  Google Scholar 

  • Saotome K, Singh AK, Yelshanskaya MV, Sobolevsky AI (2016) Crystal structure of the epithelial calcium channel TRPV6. Nature 534:506–511

    Article  CAS  Google Scholar 

  • Schlingmann KP, Weber S, Peters M, Niemann Nejsum L, Vitzthum H, Klingel K, Kratz M, Haddad E, Ristoff E, Dinour D et al (2002) Hypomagnesemia with secondary hypocalcemia is caused by mutations in TRPM6, a new member of the TRPM gene family. Nat Genet 31:166–170

    Article  CAS  Google Scholar 

  • Schlingmann KP, Waldegger S, Konrad M, Chubanov V, Gudermann T (2007) TRPM6 and TRPM7 – gatekeepers of human magnesium metabolism. Biochim Biophys Acta 1772:813–821

    Article  CAS  Google Scholar 

  • Schmiege P, Fine M, Blobel G, Li X (2017) Human TRPML1 channel structures in open and closed conformations. Nature 550:366–370

    Article  CAS  Google Scholar 

  • Sharmin N, Gallin WJ (2017) Intramolecular interactions that control voltage sensitivity in the jShak1 potassium channel from polyorchis penicillatus. J Exp Biol 220:469–477

    Google Scholar 

  • Shen D, Wang X, Li X, Zhang X, Yao Z, Dibble S, Dong XP, Yu T, Lieberman AP, Showalter HD et al (2012) Lipid storage disorders block lysosomal trafficking by inhibiting a TRP channel and lysosomal calcium release. Nat Commun 3:731

    Article  Google Scholar 

  • Shen PS, Yang X, DeCaen PG, Liu X, Bulkley D, Clapham DE, Cao E (2016) The structure of the polycystic kidney disease channel PKD2 in lipid nanodiscs. Cell 167:763–773.e711

    Article  CAS  Google Scholar 

  • Shimada H, Kusakizako T, Dung Nguyen TH, Nishizawa T, Hino T, Tominaga M, Nureki O (2020) The structure of lipid nanodisc-reconstituted TRPV3 reveals the gating mechanism. Nat Struct Mol Biol 27:645–652

    Article  CAS  Google Scholar 

  • Singh A, Hamedinger D, Hoda JC, Gebhart M, Koschak A, Romanin C, Striessnig J (2006) C-terminal modulator controls Ca2+-dependent gating of Ca(v)1.4 L-type Ca2+ channels. Nat Neurosci 9:1108–1116

    Article  CAS  Google Scholar 

  • Singh AK, Saotome K, Sobolevsky AI (2017) Swapping of transmembrane domains in the epithelial calcium channel TRPV6. Sci Rep 7:10669

    Article  Google Scholar 

  • Singh AK, McGoldrick LL, Sobolevsky AI (2018a) Structure and gating mechanism of the transient receptor potential channel TRPV3. Nat Struct Mol Biol 25:805–813

    Article  CAS  Google Scholar 

  • Singh AK, Saotome K, McGoldrick LL, Sobolevsky AI (2018b) Structural bases of TRP channel TRPV6 allosteric modulation by 2-APB. Nat Commun 9:2465

    Article  Google Scholar 

  • Song X, Li J, Tian M, Zhu H, Hu X, Zhang Y, Cao Y, Ye H, McCormick PJ, Zeng B et al (2021) Cryo-EM structure of mouse TRPML2 in lipid nanodiscs. J Biol Chem 101487

    Google Scholar 

  • Su Q, Hu F, Liu Y, Ge X, Mei C, Yu S, Shen A, Zhou Q, Yan C, Lei J et al (2018) Cryo-EM structure of the polycystic kidney disease-like channel PKD2L1. Nat Commun 9:1192

    Article  Google Scholar 

  • Suh BC, Hille B (2008) PIP2 is a necessary cofactor for ion channel function: how and why? Annu Rev Biophys 37:175–195

    Article  CAS  Google Scholar 

  • Suo Y, Wang Z, Zubcevic L, Hsu AL, He Q, Borgnia MJ, Ji RR, Lee SY (2020) Structural insights into electrophile irritant sensing by the human TRPA1 channel. Neuron 105:882–894.e885

    Article  CAS  Google Scholar 

  • Tang Q, Guo W, Zheng L, Wu JX, Liu M, Zhou X, Zhang X, Chen L (2018) Structure of the receptor-activated human TRPC6 and TRPC3 ion channels. Cell Res 28:746–755

    Article  CAS  Google Scholar 

  • Teng J, Loukin SH, Anishkin A, Kung C (2015) L596-W733 bond between the start of the S4-S5 linker and the TRP box stabilizes the closed state of TRPV4 channel. Proc Natl Acad Sci U S A 112:3386–3391

    Article  CAS  Google Scholar 

  • van Genderen MM, Bijveld MM, Claassen YB, Florijn RJ, Pearring JN, Meire FM, McCall MA, Riemslag FC, Gregg RG, Bergen AA et al (2009) Mutations in TRPM1 are a common cause of complete congenital stationary night blindness. Am J Hum Genet 85:730–736

    Article  Google Scholar 

  • Vandewauw I, De Clercq K, Mulier M, Held K, Pinto S, Van Ranst N, Segal A, Voet T, Vennekens R, Zimmermann K et al (2018) A TRP channel trio mediates acute noxious heat sensing. Nature 555:662–666

    Article  CAS  Google Scholar 

  • Vanhaesebroeck B, Leevers SJ, Ahmadi K, Timms J, Katso R, Driscoll PC, Woscholski R, Parker PJ, Waterfield MD (2001) Synthesis and function of 3-phosphorylated inositol lipids. Annu Rev Biochem 70:535–602

    Article  CAS  Google Scholar 

  • Venkatachalam K, Zheng F, Gill DL (2003) Regulation of canonical transient receptor potential (TRPC) channel function by diacylglycerol and protein kinase C. J Biol Chem 278:29031–29040

    Article  CAS  Google Scholar 

  • Vien TN, Wang J, Ng LCT, Cao E, DeCaen PG (2020) Molecular dysregulation of ciliary polycystin-2 channels caused by variants in the TOP domain. Proc Natl Acad Sci U S A 117:10329–10338

    Article  CAS  Google Scholar 

  • Wang L, Fu TM, Zhou Y, Xia S, Greka A, Wu H (2018) Structures and gating mechanism of human TRPM2. Science 362

    Google Scholar 

  • Wang M, Wang R, He X, Yu M, Xia Z, Gao C (2020) Two children with novel TRPC6 spontaneous missense mutations and atypical phenotype: a case report and literature review. Front Pediatr 8:269

    Article  Google Scholar 

  • Whiting PF, Wolff RF, Deshpande S, Di Nisio M, Duffy S, Hernandez AV, Keurentjes JC, Lang S, Misso K, Ryder S et al (2015) Cannabinoids for medical use: a systematic review and meta-analysis. JAMA 313:2456–2473

    Article  CAS  Google Scholar 

  • Willard VP, Leddy HA, Palmer D, Wu CL, Liedtke W, Guilak F (2021) Transient receptor potential vanilloid 4 as a regulator of induced pluripotent stem cell chondrogenesis. Stem Cells 39:1447–1456

    Article  CAS  Google Scholar 

  • Winn MP, Conlon PJ, Lynn KL, Farrington MK, Creazzo T, Hawkins AF, Daskalakis N, Kwan SY, Ebersviller S, Burchette JL et al (2005) A mutation in the TRPC6 cation channel causes familial focal segmental glomerulosclerosis. Science 308:1801–1804

    Article  CAS  Google Scholar 

  • Xian W, Hui X, Tian Q, Wang H, Moretti A, Laugwitz KL, Flockerzi V, Ruppenthal S, Lipp P (2018) Aberrant deactivation-induced gain of function in TRPM4 mutant is associated with human cardiac conduction block. Cell Rep 24:724–731

    Article  CAS  Google Scholar 

  • Xian W, Wang H, Moretti A, Laugwitz KL, Flockerzi V, Lipp P (2020) Domain zipping and unzipping modulates TRPM4's properties in human cardiac conduction disease. FASEB J 34:12114–12126

    Article  CAS  Google Scholar 

  • Xu SZ, Sukumar P, Zeng F, Li J, Jairaman A, English A, Naylor J, Ciurtin C, Majeed Y, Milligan CJ et al (2008) TRPC channel activation by extracellular thioredoxin. Nature 451:69–72

    Article  CAS  Google Scholar 

  • Yin Y, Wu M, Zubcevic L, Borschel WF, Lander GC, Lee SY (2018) Structure of the cold- and menthol-sensing ion channel TRPM8. Science 359:237–241

    Article  CAS  Google Scholar 

  • Yin Y, Le SC, Hsu AL, Borgnia MJ, Yang H, Lee SY (2019) Structural basis of cooling agent and lipid sensing by the cold-activated TRPM8 channel. Science 363

    Google Scholar 

  • Zakharian E, Cao C, Rohacs T (2010) Gating of transient receptor potential melastatin 8 (TRPM8) channels activated by cold and chemical agonists in planar lipid bilayers. J Neurosci 30:12526–12534

    Article  CAS  Google Scholar 

  • Zhang L, Saffen D (2001) Muscarinic acetylcholine receptor regulation of TRP6 Ca2+ channel isoforms. Molecular structures and functional characterization. J Biol Chem 276:13331–13339

    Article  CAS  Google Scholar 

  • Zhang X, Li X, Xu H (2012) Phosphoinositide isoforms determine compartment-specific ion channel activity. Proc Natl Acad Sci U S A 109:11384–11389

    Article  CAS  Google Scholar 

  • Zhang S, Li N, Zeng W, Gao N, Yang M (2017) Cryo-EM structures of the mammalian endo-lysosomal TRPML1 channel elucidate the combined regulation mechanism. Protein Cell 8:834–847

    Article  CAS  Google Scholar 

  • Zhao J, Lin King JV, Paulsen CE, Cheng Y, Julius D (2020) Irritant-evoked activation and calcium modulation of the TRPA1 receptor. Nature 585:141–145

    Article  CAS  Google Scholar 

  • Zheng W, Cai R, Hofmann L, Nesin V, Hu Q, Long W, Fatehi M, Liu X, Hussein S, Kong T et al (2018) Direct binding between pre-S1 and TRP-like domains in TRPP channels mediates gating and functional regulation by PIP2. Cell Rep 22:1560–1573

    Article  CAS  Google Scholar 

  • Zhou X, Li M, Su D, Jia Q, Li H, Li X, Yang J (2017) Cryo-EM structures of the human endolysosomal TRPML3 channel in three distinct states. Nat Struct Mol Biol 24:1146–1154

    Article  CAS  Google Scholar 

  • Zubcevic L, Herzik MA Jr, Chung BC, Liu Z, Lander GC, Lee SY (2016) Cryo-electron microscopy structure of the TRPV2 ion channel. Nat Struct Mol Biol 23:180–186

    Article  CAS  Google Scholar 

  • Zubcevic L, Herzik MA Jr, Wu M, Borschel WF, Hirschi M, Song AS, Lander GC, Lee SY (2018a) Conformational ensemble of the human TRPV3 ion channel. Nat Commun 9:4773

    Article  Google Scholar 

  • Zubcevic L, Le S, Yang H, Lee SY (2018b) Conformational plasticity in the selectivity filter of the TRPV2 ion channel. Nat Struct Mol Biol 25:405–415

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Sciences and Engineering Research Council of Canada and Kidney Foundation of Canada (to X.Z.C.). R.C. was a recipient of the Alberta Innovates Graduate Student Scholarship and the NSERC International Research Training Group Studentship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xing-Zhen Chen .

Editor information

Editors and Affiliations

Ethics declarations

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cai, R., Chen, XZ. (2022). Roles of Intramolecular Interactions in the Regulation of TRP Channels. In: Pedersen, S.H.F. (eds) Reviews of Physiology, Biochemistry and Pharmacology. Reviews of Physiology, Biochemistry and Pharmacology, vol 186. Springer, Cham. https://doi.org/10.1007/112_2022_74

Download citation

Publish with us

Policies and ethics