Skip to main content

Developmental Changes in Phosphate Homeostasis

  • Chapter
  • First Online:
Reviews of Physiology, Biochemistry and Pharmacology

Part of the book series: Reviews of Physiology, Biochemistry and Pharmacology ((REVIEWS,volume 179))

Abstract

Phosphate is a multivalent ion critical for a variety of physiological functions including bone formation, which occurs rapidly in the developing infant. In order to ensure maximal bone mineralization, young animals must maintain a positive phosphate balance. To accomplish this, intestinal absorption and renal phosphate reabsorption are greater in suckling and young animals relative to adults. This review discusses the known intestinal and renal adaptations that occur in young animals in order to achieve a positive phosphate balance. Additionally, we discuss the ontogenic changes in phosphotropic endocrine signalling as it pertains to intestinal and renal phosphate handling, including several endocrine factors not always considered in the traditional dogma of phosphotropic endocrine signalling, such as growth hormone, triiodothyronine, and glucocorticoids. Finally, a proposed model of how these factors may contribute to achieving a positive phosphate balance during development is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AA:

Arachidonic acid

ALP:

Alkaline phosphatase

BBMV:

Brush-border membrane vesicles

CVD:

Cardiovascular disease

FGF23:

Fibroblast growth factor 23

GH:

Growth hormone

NaPiIIa:

Sodium-phosphate cotransporter isoform IIa

NaPiIIb:

Sodium-phosphate cotransporter isoform IIb

NaPiIIc:

Sodium-phosphate cotransporter isoform IIc

NHE3:

Sodium hydrogen exchanger isoform III

Pi:

Phosphate

PLA2:

Phospholipase A2

PTH:

Parathyroid hormone

T3:

Triiodothyronine

References

  • Alcalde AI, Sarasa M, Raldúa D, Aramayona J, Morales R, Biber J, Murer H, Levi M, Sorribas V (1999) Role of thyroid hormone in regulation of renal phosphate transport in young and aged rats. Endocrinology 140(4):1544–1551

    CAS  PubMed  Google Scholar 

  • Almaden Y, Canalejo A, Hernandez A, Ballesteros E, Garcia-Navarro S, Torres A, Rodriguez M (1996) Direct effect of phosphorus on PTH secretion from whole rat parathyroid glands in vitro. J Bone Miner Res 11(7):970–976

    CAS  PubMed  Google Scholar 

  • Almaden Y, Hernandez A, Torregrosa V, Canalejo A, Sabate L, Fernandez Cruz L, Campistol JM, Torres A, Rodriguez M (1998) High phosphate level directly stimulates parathyroid hormone secretion and synthesis by human parathyroid tissue in vitro. J Am Soc Nephrol 9(10):1845–1852

    CAS  PubMed  Google Scholar 

  • Ansermet C, Moor MB, Centeno G, Auberson M, Hu DZ, Baron R, Nikolaeva S, Haenzi B, Katanaeva N, Gautschi I, Katanaev V, Rotman S, Koesters R, Schild L, Pradervand S, Bonny O, Firsov D (2017) Renal Fanconi syndrome and Hypophosphatemic rickets in the absence of Xenotropic and Polytropic retroviral receptor in the nephron. J Am Soc Nephrol 28(4):1073–1078

    CAS  PubMed  Google Scholar 

  • Bergwitz C, Roslin NM, Tieder M, Loredo-Osti JC, Bastepe M, Abu-Zahra H, Frappier D, Burkett K, Carpenter TO, Anderson D, Garabedian M, Sermet I, Fujiwara TM, Morgan K, Tenenhouse HS, Juppner H (2006) SLC34A3 mutations in patients with hereditary hypophosphatemic rickets with hypercalciuria predict a key role for the sodium-phosphate cotransporter NaPi-IIc in maintaining phosphate homeostasis. Am J Hum Genet 78(2):179–192

    CAS  PubMed  Google Scholar 

  • Bhadada SK, Rao SD (2020) Role of phosphate in biomineralization. Calcif Tissue Int:1–9. https://doi.org/10.1007/s00223-020-00729-9

  • Biber J, Hernando N, Forster I (2013) Phosphate transporters and their function. Annu Rev Physiol 75:535–550

    CAS  PubMed  Google Scholar 

  • Bistarakis L, Voskaki I, Lambadaridis J, Sereti H, Sbyrakis S (1986) Renal handling of phosphate in the first six months of life. Arch Dis Child 61(7):677–681

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bitzan M, Goodyer PR (2019) Hypophosphatemic rickets. Pediatr Clin N Am 66(1):179–207

    Google Scholar 

  • Bon N, Couasnay G, Bourgine A, Sourice S, Beck-Cormier S, Guicheux J, Beck L (2018) Phosphate (Pi)-regulated heterodimerization of the high-affinity sodium-dependent Pi transporters PiT1/Slc20a1 and PiT2/Slc20a2 underlies extracellular Pi sensing independently of Pi uptake. J Biol Chem 293(6):2102–2114

    CAS  PubMed  Google Scholar 

  • Borowitz SM, Granrud GS (1992) Ontogeny of intestinal phosphate absorption in rabbits. Am J Phys 262(5 Pt 1):847

    Google Scholar 

  • Braithwaite VS, Prentice A, Darboe MK, Prentice AM, Moore SE (2016) The effects of maternal iron deficiency on infant fibroblast growth factor-23 and mineral metabolism. Bone 83:1–8

    CAS  PubMed  PubMed Central  Google Scholar 

  • Braun DA, Lawson JA, Gee HY, Halbritter J, Shril S, Tan W, Stein D, Wassner AJ, Ferguson MA, Gucev Z, Fisher B, Spaneas L, Varner J, Sayer JA, Milosevic D, Baum M, Tasic V, Hildebrandt F (2016) Prevalence of monogenic causes in pediatric patients with nephrolithiasis or nephrocalcinosis. Clin J Am Soc Nephrol 11(4):664–672

    CAS  PubMed  PubMed Central  Google Scholar 

  • Calvo MS, Moshfegh AJ, Tucker KL (2014) Assessing the health impact of phosphorus in the food supply: issues and considerations. Adv Nutr 5(1):104–113

    CAS  PubMed  PubMed Central  Google Scholar 

  • Centeno PP, Herberger A, Mun H, Tu C, Nemeth EF, Chang W, Conigrave AD, Ward DT (2019) Phosphate acts directly on the calcium-sensing receptor to stimulate parathyroid hormone secretion. Nat Commun 10:1–12

    CAS  Google Scholar 

  • Chanoine JP, Veronikis I, Alex S, Stone S, Fang SL, Leonard JL, Braverman LE (1993) The postnatal serum 3,5,3′-triiodothyronine (T3) surge in the rat is largely independent of extrathyroidal 5′-deiodination of thyroxine to T3. Endocrinology 133(6):2604–2609

    CAS  PubMed  Google Scholar 

  • Corut A, Senyigit A, Ugur SA, Altin S, Ozcelik U, Calisir H, Yildirim Z, Gocmen A, Tolun A (2006) Mutations in SLC34A2 cause pulmonary alveolar Microlithiasis and are possibly associated with testicular Microlithiasis. Am J Hum Genet 79(4):650–656

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cross HS, Debiec H, Peterlik M (1990) Mechanism and regulation of intestinal phosphate absorption. Miner Electrolyte Metab 16(2–3):115–124

    CAS  PubMed  Google Scholar 

  • Duflos C, Bellaton C, Pansu D, Bronner F (1995) Calcium solubility, intestinal sojourn time and paracellular permeability codetermine passive calcium absorption in rats. J Nutr 125(9):2348–2355

    CAS  PubMed  Google Scholar 

  • Edwards A, Bonny O (2018) A model of calcium transport and regulation in the proximal tubule. Am J Physiol Renal Physiol 315(4):F942–F953

    CAS  PubMed  PubMed Central  Google Scholar 

  • Euzet S, Lelièvre-Pégorier M, Merlet-Bénichou C (1995) Maturation of rat renal phosphate transport: effect of triiodothyronine. J Physiol 488(Pt 2):449–457

    CAS  PubMed  PubMed Central  Google Scholar 

  • Evans DF, Pye G, Bramley R, Clark AG, Dyson TJ, Hardcastle JD (1988) Measurement of gastrointestinal pH profiles in normal ambulant human subjects. Gut 29(8):1035–1041

    CAS  PubMed  PubMed Central  Google Scholar 

  • Faroqui S, Levi M, Soleimani M, Amlal H (2008) Estrogen downregulates the proximal tubule type IIa sodium phosphate cotransporter causing phosphate wasting and hypophosphatemia. Kidney Int 73(10):1141–1150

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ferrari SL, Bonjour J, Rizzoli R (2005) Fibroblast growth factor-23 relationship to dietary phosphate and renal phosphate handling in healthy young men. J Clin Endocrinol Metab 90(3):1519–1524

    CAS  PubMed  Google Scholar 

  • Forster IC, Loo DD, Eskandari S (1999) Stoichiometry and Na+ binding cooperativity of rat and flounder renal type II Na+-Pi cotransporters. Am J Phys 276(4):644

    Google Scholar 

  • Francis RM, Selby PL (1997) Osteomalacia. Bailliere Clin Endocrinol Metab 11(1):145–163

    CAS  Google Scholar 

  • Friedlander G, Amiel C (1994) Cellular mode of action of parathyroid hormone. Adv Nephrol Necker Hosp 23:265–279

    CAS  PubMed  Google Scholar 

  • Fujita H, Sugimoto K, Inatomi S, Maeda T, Osanai M, Uchiyama Y, Yamamoto Y, Wada T, Kojima T, Yokozaki H, Yamashita T, Kato S, Sawada N, Chiba H (2008) Tight junction proteins claudin-2 and -12 are critical for vitamin D-dependent Ca2+ absorption between enterocytes. Mol Biol Cell 19(5):1912–1921

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gattineni J, Bates C, Twombley K, Dwarakanath V, Robinson ML, Goetz R, Mohammadi M, Baum M (2009) FGF23 decreases renal NaPi-2a and NaPi-2c expression and induces hypophosphatemia in vivo predominantly via FGF receptor 1. Am J Physiol Renal Physiol 297(2):F282–F291

    CAS  PubMed  PubMed Central  Google Scholar 

  • Greenberg BG, Winters RW, Graham JB (1960) The normal range of serum inorganic phosphorus and its utility as a discriminant in the diagnosis of congenital hypophosphatemia. J Clin Endocrinol Metab 20:364–379

    CAS  PubMed  Google Scholar 

  • Greer FR (1989) Calcium, phosphorus, and magnesium: how much is too much for infant formulas? J Nutr 119(12 Suppl):1846–1851

    CAS  PubMed  Google Scholar 

  • Gridneva Z, Tie WJ, Rea A, Lai CT, Ward LC, Murray K, Hartmann PE, Geddes DT (2018) Human milk casein and whey protein and infant body composition over the first 12 months of lactation. Nutrients 10:9

    Google Scholar 

  • Günzel D, Yu ASL (2013) Claudins and the modulation of tight junction permeability. Physiol Rev 93(2):525–569

    PubMed  PubMed Central  Google Scholar 

  • Gustke RF, McCormick P, Ruppin H, Soergel KH, Whalen GE, Wood CM (1981) Human intestinal potential difference: recording method and biophysical implications. J Physiol Lond 321:571–582

    CAS  PubMed  Google Scholar 

  • Henning SJ (1978) Plasma concentrations of total and free corticosterone during development in the rat. Am J Phys 235(5):451

    Google Scholar 

  • Hilfiker H, Hattenhauer O, Traebert M, Forster I, Murer H, Biber J (1998) Characterization of a murine type II sodium-phosphate cotransporter expressed in mammalian small intestine. Proc Natl Acad Sci U S A 95(24):14564–14569

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hong S, Park S, Lee S, Kim S, Cho M (2015) Biological effects of inorganic phosphate: potential signal of toxicity. J Toxicol Sci 40(1):55–69

    CAS  PubMed  Google Scholar 

  • Hu MC, Shi M, Zhang J, Pastor J, Nakatani T, Lanske B, Razzaque MS, Rosenblatt KP, Baum MG, Kuro-o M, Moe OW (2010) Klotho: a novel phosphaturic substance acting as an autocrine enzyme in the renal proximal tubule. FASEB J 24(9):3438–3450

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huqun N, Izumi S, Miyazawa H, Ishii K, Uchiyama B, Ishida T, Tanaka S, Tazawa R, Fukuyama S, Tanaka T, Nagai Y, Yokote A, Takahashi H, Fukushima T, Kobayashi K, Chiba H, Nagata M, Sakamoto S, Nakata K, Takebayashi Y, Shimizu Y, Kaneko K, Shimizu M, Kanazawa M, Abe S, Inoue Y, Takenoshita S, Yoshimura K, Kudo K, Tachibana T, Nukiwa T, Hagiwara K (2007) Mutations in the SLC34A2 gene are associated with pulmonary alveolar microlithiasis. Am J Respir Crit Care Med 175(3):263–268

    CAS  PubMed  Google Scholar 

  • Ikuta K, Segawa H, Sasaki S, Hanazaki A, Fujii T, Kushi A, Kawabata Y, Kirino R, Sasaki S, Noguchi M, Kaneko I, Tatsumi S, Ueda O, Wada NA, Tateishi H, Kakefuda M, Kawase Y, Ohtomo S, Ichida Y, Maeda A, Jishage K, Horiba N, Miyamoto K (2018) Effect of Npt2b deletion on intestinal and renal inorganic phosphate (Pi) handling. Clin Exp Nephrol 22(3):517–528

    CAS  PubMed  Google Scholar 

  • Imel EA (2020) Congenital conditions of hypophosphatemia in children. Calcif Tissue Int:1–7. https://doi.org/10.1007/s00223-020-00692-5

  • Ito N, Fukumoto S (2020) Congenital hyperphosphatemic conditions caused by the deficient activity of FGF23. Calcif Tissue Int:1–12. https://doi.org/10.1007/s00223-020-00659-6

  • Jimbo R, Kawakami-Mori F, Mu S, Hirohama D, Majtan B, Shimizu Y, Yatomi Y, Fukumoto S, Fujita T, Shimosawa T (2014) Fibroblast growth factor 23 accelerates phosphate-induced vascular calcification in the absence of Klotho deficiency. Kidney Int 85(5):1103–1111

    CAS  PubMed  Google Scholar 

  • Johnson V, Spitzer A (1986) Renal reabsorption of phosphate during development: whole-kidney events. Am J Phys 251(2 Pt 2):251

    Google Scholar 

  • Kaneko I, Saini RK, Griffin KP, Whitfield GK, Haussler MR, Jurutka PW (2015) FGF23 gene regulation by 1,25-dihydroxyvitamin D: opposing effects in adipocytes and osteocytes. J Endocrinol 226(3):155–166

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kaskel FJ, Kumar AM, Feld LG, Spitzer A (1988) Renal reabsorption of phosphate during development: tubular events. Pediatr Nephrol 2(1):129–134

    CAS  PubMed  Google Scholar 

  • Katai K, Miyamoto K, Kishida S, Segawa H, Nii T, Tanaka H, Tani Y, Arai H, Tatsumi S, Morita K, Taketani Y, Takeda E (1999) Regulation of intestinal Na+−dependent phosphate co-transporters by a low-phosphate diet and 1,25-dihydroxyvitamin D3. Biochem J 343(Pt 3):705–712

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kaufman JS, Hamburger RJ (1987) Lack of influence of volume flux on phosphate reabsorption in the proximal tubule. Miner Electrolyte Metab 13(3):158–164

    CAS  PubMed  Google Scholar 

  • Keasey MP, Lemos RR, Hagg T, Oliveira JRM (2016) Vitamin-D receptor agonist calcitriol reduces calcification in vitro through selective upregulation of SLC20A2 but not SLC20A1 or XPR1. Sci Rep 6(1):25802

    CAS  PubMed  PubMed Central  Google Scholar 

  • King AJ, Siegel M, He Y, Nie B, Wang J, Koo-McCoy S, Minassian NA, Jafri Q, Pan D, Kohler J, Kumaraswamy P, Kozuka K, Lewis JG, Dragoli D, Rosenbaum DP, O’Neill D, Plain A, Greasley PJ, Jönsson-Rylander A, Karlsson D, Behrendt M, Strömstedt M, Ryden-Bergsten T, Knöpfel T, Pastor Arroyo EM, Hernando N, Marks J, Donowitz M, Wagner CA, Alexander RT, Caldwell JS (2018) Inhibition of sodium/hydrogen exchanger 3 in the gastrointestinal tract by tenapanor reduces paracellular phosphate permeability. Sci Transl Med 10:456

    Google Scholar 

  • Knöpfel T, Himmerkus N, Günzel D, Bleich M, Hernando N, Wagner CA (2019) Paracellular transport of phosphate along the intestine. Am J Physiol Gastrointest Liver Physiol 317(2):G233–G241

    PubMed  Google Scholar 

  • Kritmetapak K, Kumar R (2019) Phosphate as a signaling molecule. Calcif Tissue Int. https://doi.org/10.1007/s00223-019-00636-8

  • Larsson TE, Kameoka C, Nakajo I, Taniuchi Y, Yoshida S, Akizawa T, Smulders RA (2018) NPT-IIb inhibition does not improve hyperphosphatemia in CKD. Kidney Int Rep 3(1):73–80

    PubMed  Google Scholar 

  • Layunta E, Pastor Arroyo EM, Kägi L, Thomas L, Levi M, Hernando N, Wagner CA (2019) Intestinal response to acute intragastric and intravenous administration of phosphate in rats. Cell Physiol Biochem 52(4):838–849

    CAS  PubMed  Google Scholar 

  • Lee AW, Cho SS (2015) Association between phosphorus intake and bone health in the NHANES population. Nutr J 14:28

    PubMed  PubMed Central  Google Scholar 

  • Lee JJ, Plain A, Beggs MR, Dimke H, Alexander RT (2017) Effects of phospho- and calciotropic hormones on electrolyte transport in the proximal tubule. F1000Res 6:1797

    PubMed  PubMed Central  Google Scholar 

  • Lee JJ, Liu X, O’Neil D, Beggs MR, Weissgerber P, Flockerzi V, Chen X, Dimke H, Alexander RT (2019) Activation of the calcium sensing receptor attenuates TRPV6-dependent intestinal calcium absorption. JCI insight 4:11

    Google Scholar 

  • Levi M, Shayman JA, Abe A, Gross SK, McCluer RH, Biber J, Murer H, Lötscher M, Cronin RE (1995) Dexamethasone modulates rat renal brush border membrane phosphate transporter mRNA and protein abundance and glycosphingolipid composition. J Clin Investig 96(1):207–216

    CAS  PubMed  Google Scholar 

  • Levi M, Gratton E, Forster IC, Hernando N, Wagner CA, Biber J, Sorribas V, Murer H (2019) Mechanisms of phosphate transport. Nat Rev Nephrol 15(8):482–500

    CAS  PubMed  Google Scholar 

  • Linarelli LG (1972) Newborn urinary cyclic AMP and developmental renal responsiveness to parathyroid hormone. Pediatrics 50(1):14–23

    CAS  PubMed  Google Scholar 

  • Lönnerdal B, Erdmann P, Thakkar SK, Sauser J, Destaillats F (2017) Longitudinal evolution of true protein, amino acids and bioactive proteins in breast milk: a developmental perspective. J Nutr Biochem 41:1–11

    PubMed  Google Scholar 

  • Lorenz-Depiereux B, Benet-Pages A, Eckstein G, Tenenbaum-Rakover Y, Wagenstaller J, Tiosano D, Gershoni-Baruch R, Albers N, Lichtner P, Schnabel D, Hochberg Z, Strom TM (2006) Hereditary hypophosphatemic rickets with hypercalciuria is caused by mutations in the sodium-phosphate cotransporter gene SLC34A3. Am J Hum Genet 78(2):193–201

    CAS  PubMed  Google Scholar 

  • Marcucci G, Brandi ML (2020) Congenital conditions of hypophosphatemia expressed in adults. Calcif Tissue Int. https://doi.org/10.1007/s00223-020-00695-2

  • Marks J, Lee GJ, Nadaraja SP, Debnam ES, Unwin RJ (2015) Experimental and regional variations in Na+-dependent and Na+-independent phosphate transport along the rat small intestine and colon. Physiol Rep 3:1

    Google Scholar 

  • Moor MB, Haenzi B, Legrand F, Koesters R, Hynes NE, Bonny O (2018) Renal Memo1 differentially regulates the expression of vitamin D-dependent distal renal tubular calcium transporters. Front Physiol 9:874

    PubMed  PubMed Central  Google Scholar 

  • Motta SE, Imenez Silva PH, Daryadel A, Haykir B, Pastor-Arroyo EM, Bettoni C, Hernando N, Wagner CA (2020) Expression of NaPi-IIb in rodent and human kidney and upregulation in a model of chronic kidney disease. Pflugers Arch 472(4):449–460

    CAS  PubMed  Google Scholar 

  • Mulroney SE, Lumpkin MD, Haramati A (1989) Antagonist to GH-releasing factor inhibits growth and renal Pi reabsorption in immature rats. Am J Phys 257(1 Pt 2):29

    Google Scholar 

  • Neiberger RE, Barac-Nieto M, Spitzer A (1989) Renal reabsorption of phosphate during development: transport kinetics in BBMV. Am J Phys 257(2 Pt 2):268

    Google Scholar 

  • Noda S, Yamada A, Nakaoka K, Goseki-Sone M (2017) 1-alpha,25-Dihydroxyvitamin D3 up-regulates the expression of 2 types of human intestinal alkaline phosphatase alternative splicing variants in Caco-2 cells and may be an important regulator of their expression in gut homeostasis. Nutr Res 46:59–67

    CAS  PubMed  Google Scholar 

  • Noori N, Sims JJ, Kopple JD, Shah A, Colman S, Shinaberger CS, Bross R, Mehrotra R, Kovesdy CP, Kalantar-Zadeh K (2010) Organic and inorganic dietary phosphorus and its management in chronic kidney disease. Iran J Kidney Dis 4(2):89–100

    PubMed  Google Scholar 

  • Pastor-Arroyo EM, Knöpfel T, Imenez Silva PH, Schnitzbauer U, Poncet N, Biber J, Wagner CA, Hernando N (2020) Intestinal epithelial ablation of pit-2/Slc20a2 in mice leads to sustained elevation of vitamin D3 upon dietary restriction of phosphate. Acta Physiol (Oxf) 230(2):e13526

    CAS  Google Scholar 

  • Pastoriza-Muñoz E, Colindres RE, Lassiter WE, Lechene C (1978) Effect of parathyroid hormone on phosphate reabsorption in rat distal convolution. Am J Phys 235(4):321

    Google Scholar 

  • Peacock M (2020) Phosphate metabolism in health and disease. Calcif Tissue Int:1–13. https://doi.org/10.1007/s00223-020-00686-3

  • Penido M, Alon U (2012) Phosphate homeostasis and its role in bone health. Pediatr Nephrol 27(11):2039–2048

    PubMed Central  Google Scholar 

  • Piontek J, Krug SM, Protze J, Krause G, Fromm M (2020) Molecular architecture and assembly of the tight junction backbone. Biochim Biophys Acta Biomembr 1862(7):183279

    CAS  PubMed  Google Scholar 

  • Rajagopal A, Braslavsky D, Lu JT, Kleppe S, Clément F, Cassinelli H, Liu DS, Liern JM, Vallejo G, Bergadá I, Gibbs RA, Campeau PM, Lee BH (2014) Exome sequencing identifies a novel homozygous mutation in the phosphate transporter SLC34A1 in hypophosphatemia and nephrocalcinosis. J Clin Endocrinol Metab 99(11):2451

    Google Scholar 

  • Ross R, Dorsey J (1991) Postnatal changes in plasma 1,25-dihydroxyvitamin D3 in sheep: role of altered clearance. Am J Phys 261(5 Pt 1):635

    Google Scholar 

  • Sabbagh Y, Giral H, Caldas Y, Levi M, Schiavi SC (2011) Intestinal phosphate transport. Adv Chronic Kidney Dis 18(2):85–90

    PubMed  PubMed Central  Google Scholar 

  • Sanders JO, Qiu X, Lu X, Duren DL, Liu RW, Dang D, Menendez ME, Hans SD, Weber DR, Cooperman DR (2017) The uniform pattern of growth and skeletal maturation during the human adolescent growth spurt. Sci Rep 7:1–9

    Google Scholar 

  • Saurette M, Alexander RT (2019) Intestinal phosphate absorption: the paracellular pathway predominates? Exp Biol Med 244:646–654

    CAS  Google Scholar 

  • Schlingmann KP, Ruminska J, Kaufmann M, Dursun I, Patti M, Kranz B, Pronicka E, Ciara E, Akcay T, Bulus D, Cornelissen EAM, Gawlik A, Sikora P, Patzer L, Galiano M, Boyadzhiev V, Dumic M, Vivante A, Kleta R, Dekel B, Levtchenko E, Bindels RJ, Rust S, Forster IC, Hernando N, Jones G, Wagner CA, Konrad M (2016) Autosomal-recessive mutations in SLC34A1 encoding sodium-phosphate cotransporter 2A cause idiopathic infantile hypercalcemia. J Am Soc Nephrol 27(2):604–614

    CAS  PubMed  Google Scholar 

  • Schönauer R, Petzold F, Lucinescu W, Seidel A, Müller L, Neuber S, Bergmann C, Sayer JA, Werner A, Halbritter J (2019) Evaluating pathogenicity of SLC34A3-Ser192Leu, a frequent European missense variant in disorders of renal phosphate wasting. Urolithiasis 47(6):511–519

    PubMed  PubMed Central  Google Scholar 

  • Schoppet M, Hofbauer LC, Brinskelle-Schmal N, Varennes A, Goudable J, Richard M, Hawa G, Chapurlat R, Szulc P (2012) Serum level of the phosphaturic factor FGF23 is associated with abdominal aortic calcification in men: the STRAMBO study. J Clin Endocrinol Metab 97(4):575

    Google Scholar 

  • Segawa H, Kaneko I, Takahashi A, Kuwahata M, Ito M, Ohkido I, Tatsumi S, Miyamoto K (2002) Growth-related renal type II Na/Pi cotransporter. J Biol Chem 277(22):19665–19672

    CAS  PubMed  Google Scholar 

  • Sheu JN, Baum M, Harkins EW, Quigley R (1997) Maturational changes in rabbit renal cortical phospholipase A2 activity. Kidney Int 52(1):71–78

    CAS  PubMed  Google Scholar 

  • Silverstein DM, Barac-Nieto M, Spitzer A (1999) Multiple arachidonic acid metabolites inhibit sodium-dependent phosphate transport in OK cells. Prostaglandins Leukot Essent Fatty Acids 61(3):165–169

    CAS  PubMed  Google Scholar 

  • Smith MW, Jarvis LG (1978) Growth and cell replacement in the new-born pig intestine. Proc R Soc Lond B Biol Sci 203(1150):69–89

    CAS  PubMed  Google Scholar 

  • Suzuki KT, Tamagawa H, Hirano S, Kobayashi E, Takahashi K, Shimojo N (1991) Changes in element concentration and distribution in breast-milk fractions of a healthy lactating mother. Biol Trace Elem Res 28(2):109–121

    CAS  PubMed  Google Scholar 

  • Tonelli M, Sacks F, Pfeffer M, Gao Z, Curhan G (2005) Relation between serum phosphate level and cardiovascular event rate in people with coronary disease. Circulation 112(17):2627–2633

    CAS  PubMed  Google Scholar 

  • Toriz CG, Melo AI, Solano-Agama C, Gómez-Domínguez EG, Martínez-Muñoz MDLA, Castañeda-Obeso J, Vera-Aguilar E, Aguirre-Benítez EL, Romero-Aguilar L, González-del Pliego M, Jiménez-Estrada I, Luna M, Pardo JP, Camacho J, Mendoza-Garrido ME (2019) Physiological changes of growth hormone during lactation in pup rats artificially reared. PLoS One 14:8

    Google Scholar 

  • Urakawa I, Yamazaki Y, Shimada T, Iijima K, Hasegawa H, Okawa K, Fujita T, Fukumoto S, Yamashita T (2006) Klotho converts canonical FGF receptor into a specific receptor for FGF23. Nature 444(7120):770–774

    Google Scholar 

  • Villa-Bellosta R, Ravera S, Sorribas V, Stange G, Levi M, Murer H, Biber J, Forster IC (2009) The Na+-Pi cotransporter PiT-2 (SLC20A2) is expressed in the apical membrane of rat renal proximal tubules and regulated by dietary Pi. Am J Physiol Renal Physiol 296(4):F691–F699

    CAS  PubMed  Google Scholar 

  • Vorland CJ, Lachcik PJ, Aromeh LO, Moe SM, Chen NX, Hill Gallant KM (2018) Effect of dietary phosphorus intake and age on intestinal phosphorus absorption efficiency and phosphorus balance in male rats. PLoS One 13(11):e0207601

    PubMed  PubMed Central  Google Scholar 

  • Xu H, Bai L, Collins JF, Ghishan FK (2002) Age-dependent regulation of rat intestinal type IIb sodium-phosphate cotransporter by 1,25-(OH)(2) vitamin D(3). Am J Physiol Cell Physiol 282(3):487

    Google Scholar 

  • Yagci A, Werner A, Murer H, Biber J (1992) Effect of rabbit duodenal mRNA on phosphate transport in Xenopus laevis oocytes: dependence on 1,25-dihydroxy-vitamin-D3. Pflugers Arch 422(3):211–216

    CAS  PubMed  Google Scholar 

  • Zhang D, Maalouf NM, Adams-Huet B, Moe OW, Sakhaee K (2014) Effects of sex and postmenopausal estrogen use on serum phosphorus levels: a cross-sectional study of the National Health and nutrition examination survey (NHANES) 2003-2006. Am J Kidney Dis 63(2):198–205

    CAS  PubMed  Google Scholar 

  • Zhang Y, Wu S, Lu R, Zhou D, Zhou J, Carmeliet G, Petrof E, Claud EC, Sun J (2015) Tight junction CLDN2 gene is a direct target of the vitamin D receptor. Sci Rep 5:10642

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Research in the Alexander laboratory is funded by grants from the Women and Children’s Health Research Institute, which is supported by the Stollery Children’s Hospital Foundation, the Canadian Institutes of Health Research, the Kidney Foundation of Canada and the National Sciences and Engineering Research Council of Canada. Dr. Alexander is a Stollery Science laboratory Distinguished Researcher and the Canada Research Chair in Renal Epithelial Transport Physiology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Todd Alexander .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

MacDonald, T., Saurette, M., Beggs, M.R., Todd Alexander, R. (2020). Developmental Changes in Phosphate Homeostasis. In: Pedersen, S.H.F. (eds) Reviews of Physiology, Biochemistry and Pharmacology. Reviews of Physiology, Biochemistry and Pharmacology, vol 179. Springer, Cham. https://doi.org/10.1007/112_2020_52

Download citation

Publish with us

Policies and ethics