Skip to main content

The Stress-Response MAP Kinase Signaling in Cardiac Arrhythmias

  • Chapter
  • First Online:
Reviews of Physiology, Biochemistry and Pharmacology, Vol. 172

Part of the book series: Reviews of Physiology, Biochemistry and Pharmacology ((REVIEWS,volume 172))

Abstract

Stress-response kinases, the mitogen-activated protein kinases (MAPKs) are activated in response to the challenge of a myriad of stressors. c-Jun N-terminal kinase (JNK), extracellular signal-regulated kinases (ERKs), and p38 MAPKs are the predominant members of the MAPK family in the heart. Extensive studies have revealed critical roles of activated MAPKs in the processes of cardiac injury and heart failure and many other cardiovascular diseases. Recently, emerging evidence suggests that MAPKs also promote the development of cardiac arrhythmias. Thus, understanding the functional impact of MAPKs in the heart could shed new light on the development of novel therapeutic approaches to improve cardiac function and prevent arrhythmia development in the patients. This review will summarize the recent findings on the role of MAPKs in cardiac remodeling and arrhythmia development and point to the critical need of future studies to further elucidate the fundamental mechanisms of MAPK activation and arrhythmia development in the heart.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AERP:

Atrial effective refractory period

AF:

Atrial fibrillation

APD:

Action potential duration

Ca2+ :

Calcium

CABG:

Coronary artery bypass graft

CaMKII:

Calcium/calmodulin dependent protein kinase II

CDC42:

Cell division protein 42 homolog

CL:

Cycle length

CVD:

Cardiovascular disease

DAD:

Delayed afterdepolarizations

EAD:

Early afterdepolarizations

Egr-1:

Early growth response protein

ERK:

Extracellular signal regulated kinase

HF:

Heart failure

HL-1:

Mouse atrial myocyte line from Louisiana State University

I/R:

Ischemia reperfusion

ICa:

L-type calcium channel

JNK:

c-Jun N-terminal kinase

LA:

Left atrium

LAD:

Left anterior descending

MAPK:

Mitogen-activated protein kinase

MI:

Myocardial infarction

MKK:

Mitogen-activated protein kinase kinase

NCX:

Sodium calcium exchange channel

p38:

Member of MAPK family

PLB:

Phospholamban

Pro:

Proline amino acid residue

Rac1:

Ras-related C3 botulinum toxin substance 1

RyR:

Calcium-triggered calcium release channel

Ser:

Serine amino acid residue

SERCA:

Sarcoplasmic reticulum calcium ion-ATPase

SP-1:

Transcription factor SP-1

SR:

Sarcoplasmic reticulum

TAC:

Transverse aortic constriction

Thr-Gly-Tyr:

Threonine, glycine, tyrosine amino acid sequence

References

  • Ai X, Pogwizd SM (2005) Connexin 43 downregulation and dephosphorylation in nonischemic heart failure is associated with enhanced colocalized protein phosphatase type 2A. Circ Res 96:54–63

    Article  CAS  PubMed  Google Scholar 

  • Ai X, Curran JW, Shannon TR, Bers DM, Pogwizd SM (2005) Ca2+/calmodulin-dependent protein kinase modulates cardiac ryanodine receptor phosphorylation and sarcoplasmic reticulum Ca2+ leak in heart failure. Circ Res 97:1314–1322

    Article  CAS  PubMed  Google Scholar 

  • Aleong RG, Sauer WH, Davis G, Bristow MR (2014) New-onset atrial fibrillation predicts heart failure progression. Am J Med 127:963–971

    Article  PubMed  Google Scholar 

  • Allessie MA, Bonke FI, Schopman FJ (1976) Circus movement in rabbit atrial muscle as a mechanism of tachycardia. II. The role of nonuniform recovery of excitability in the occurrence of unidirectional block, as studied with multiple microelectrodes. Circ Res 39:168–177

    Article  CAS  PubMed  Google Scholar 

  • Anyukhovsky EP, Sosunov EA, Chandra P, Rosen TS, Boyden PA, Danilo P Jr, Rosen MR (2005) Age-associated changes in electrophysiologic remodeling: a potential contributor to initiation of atrial fibrillation. Cardiovasc Res 66:353–363

    Article  CAS  PubMed  Google Scholar 

  • Avruch J, Khokhlatchev A, Kyriakis JM, Luo Z, Tzivion G, Vavvas D, Zhang XF (2001) Ras activation of the Raf kinase: tyrosine kinase recruitment of the MAP kinase cascade. Recent Prog Horm Res 56:127–155

    Article  CAS  PubMed  Google Scholar 

  • Baba S, Dun W, Hirose M, Boyden PA (2006) Sodium current function in adult and aged canine atrial cells. Am J Physiol Heart Circ Physiol 291:H756–H761

    Article  CAS  PubMed  Google Scholar 

  • Balijepalli RC, Lokuta AJ, Maertz NA, Buck JM, Haworth RA, Valdivia HH, Kamp TJ (2003) Depletion of T-tubules and specific subcellular changes in sarcolemmal proteins in tachycardia-induced heart failure. Cardiovasc Res 59:67–77

    Article  CAS  PubMed  Google Scholar 

  • Bassani JW, Yuan W, Bers DM (1995) Fractional SR Ca release is regulated by trigger Ca and SR Ca content in cardiac myocytes. Am J Physiol 268:C1313–C1319

    CAS  PubMed  Google Scholar 

  • Beckman KB, Ames BN (1998) The free radical theory of aging matures. Physiol Rev 78:547–581

    CAS  PubMed  Google Scholar 

  • Belmin J, Bernard C, Corman B, Merval R, Esposito B, Tedgui A (1995) Increased production of tumor necrosis factor and interleukin-6 by arterial wall of aged rats. Am J Physiol 268:H2288–H2293

    CAS  PubMed  Google Scholar 

  • Benjamin EJ, Levy D, Vaziri SM, D’Agostino RB, Belanger AJ, Wolf PA (1994) Independent risk factors for atrial fibrillation in a population-based cohort. The Framingham Heart Study. JAMA 271:840–844

    Article  CAS  PubMed  Google Scholar 

  • Benjamin EJ, Wolf PA, D’Agostino RB, Silbershatz H, Kannel WB, Levy D (1998) Impact of atrial fibrillation on the risk of death: the Framingham Heart Study. Circulation 98:946–952

    Article  CAS  PubMed  Google Scholar 

  • Benjamin EJ, Chen PS, Bild DE, Mascette AM, Albert CM, Alonso A, Calkins H, Connolly SJ, Curtis AB, Darbar D, Ellinor PT, Go AS, Goldschlager NF, Heckbert SR, Jalife J, Kerr CR, Levy D, Lloyd-Jones DM, Massie BM, Nattel S, Olgin JE, Packer DL, Po SS, Tsang TS, Van Wagoner DR, Waldo AL, Wyse DG (2009) Prevention of atrial fibrillation: report from a national heart, lung, and blood institute workshop. Circulation 119:606–618

    Article  PubMed  PubMed Central  Google Scholar 

  • Berlin JR (1995) Spatiotemporal changes of Ca2+ during electrically evoked contractions in atrial and ventricular cells. Am J Physiol 269:H1165–H1170

    CAS  PubMed  Google Scholar 

  • Bers DM (2000) Calcium fluxes involved in control of cardiac myocyte contraction. Circ Res 87:275–281

    Article  CAS  PubMed  Google Scholar 

  • Bers DM (2014) Cardiac sarcoplasmic reticulum calcium leak: basis and roles in cardiac dysfunction. Annu Rev Physiol 76:107–127

    Article  CAS  PubMed  Google Scholar 

  • Blasco RB, Francoz S, Santamaria D, Canamero M, Dubus P, Charron J, Baccarini M, Barbacid M (2011) c-Raf, but not B-Raf, is essential for development of K-Ras oncogene-driven non-small cell lung carcinoma. Cancer Cell 19:652–663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bogoyevitch MA, Kobe B (2006) Uses for JNK: the many and varied substrates of the c-Jun N-terminal kinases. Microbiol Mol Biol Rev 70:1061–1095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bogoyevitch MA, Gillespie-Brown J, Ketterman AJ, Fuller SJ, Ben-Levy R, Ashworth A, Marshall CJ, Sugden PH (1996) Stimulation of the stress-activated mitogen-activated protein kinase subfamilies in perfused heart. p38/RK mitogen-activated protein kinases and c-Jun N-terminal kinases are activated by ischemia/reperfusion. Circ Res 79:162–173

    Article  CAS  PubMed  Google Scholar 

  • Boluyt MO, Loyd AM, Roth MH, Randall MJ, Song EY (2003) Activation of JNK in rat heart by exercise: effect of training. Am J Physiol Heart Circ Physiol 285:H2639–H2647

    Article  CAS  PubMed  Google Scholar 

  • Brette F, Orchard C (2003) T-tubule function in mammalian cardiac myocytes. Circ Res 92:1182–1192

    Article  CAS  PubMed  Google Scholar 

  • Brozzi F, Eizirik DL (2016) ER stress and the decline and fall of pancreatic beta cells in type 1 diabetes. Ups J Med Sci 121:133–139

    Article  PubMed  PubMed Central  Google Scholar 

  • Burashnikov A, Antzelevitch C (2003) Reinduction of atrial fibrillation immediately after termination of the arrhythmia is mediated by late phase 3 early afterdepolarization-induced triggered activity. Circulation 107:2355–2360

    Article  PubMed  Google Scholar 

  • Burstein B, Nattel S (2008) Atrial structural remodeling as an antiarrhythmic target. J Cardiovasc Pharmacol 52:4–10

    Article  CAS  PubMed  Google Scholar 

  • Calkins H, Kuck KH, Cappato R, Brugada J, Camm AJ, Chen SA, Crijns HJ, Damiano RJ Jr, Davies DW, DiMarco J, Edgerton J, Ellenbogen K, Ezekowitz MD, Haines DE, Haissaguerre M, Hindricks G, Iesaka Y, Jackman W, Jalife J, Jais P, Kalman J, Keane D, Kim YH, Kirchhof P, Klein G, Kottkamp H., Kumagai K, Lindsay BD, Mansour M, Marchlinski FE, McCarthy PM, Mont JL, Morady F, Nademanee K, Nakagawa H, Natale A, Nattel S, Packer DL, Pappone C, Prystowsky E, Raviele A, Reddy V, Ruskin JN, Shemin RJ, Tsao HM, Wilber D, Heart Rhythm Society Task Force on Catheter, Surgical Ablation of Atrial Fibrillation (2012) 2012 HRS/EHRA/ECAS expert consensus statement on catheter and surgical ablation of atrial fibrillation: recommendations for patient selection, procedural techniques, patient management and follow-up, definitions, endpoints, and research trial design: a report of the Heart Rhythm Society (HRS) Task Force on Catheter and Surgical Ablation of Atrial Fibrillation. Developed in partnership with the European Heart Rhythm Association (EHRA), a registered branch of the European Society of Cardiology (ESC) and the European Cardiac Arrhythmia Society (ECAS); and in collaboration with the American College of Cardiology (ACC), American Heart Association (AHA), the Asia Pacific Heart Rhythm Society (APHRS), and the Society of Thoracic Surgeons (STS). Endorsed by the governing bodies of the American College of Cardiology Foundation, the American Heart Association, the European Cardiac Arrhythmia Society, the European Heart Rhythm Association, the Society of Thoracic Surgeons, the Asia Pacific Heart Rhythm Society, and the Heart Rhythm Society. Heart Rhythm 9:632–696.e621

    Google Scholar 

  • Cardin S, Li D, Thorin-Trescases N, Leung TK, Thorin E, Nattel S (2003) Evolution of the atrial fibrillation substrate in experimental congestive heart failure: angiotensin-dependent and -independent pathways. Cardiovasc Res 60:315–325

    Article  CAS  PubMed  Google Scholar 

  • Carson PE, Johnson GR, Dunkman WB, Fletcher RD, Farrell L, Cohn JN (1993) The influence of atrial fibrillation on prognosis in mild to moderate heart failure. The V-HeFT Studies. The V-HeFT VA Cooperative Studies Group. Circulation 87:VI102–VI110

    CAS  PubMed  Google Scholar 

  • Chelu MG, Sarma S, Sood S, Wang S, van Oort RJ, Skapura DG, Li N, Santonastasi M, Muller FU, Schmitz W, Schotten U, Anderson ME, Valderrabano M, Dobrev D, Wehrens XH (2009) Calmodulin kinase II-mediated sarcoplasmic reticulum Ca2+ leak promotes atrial fibrillation in mice. J Clin Invest 119:1940–1951

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Z, Gibson TB, Robinson F, Silvestro L, Pearson G, Xu B, Wright A, Vanderbilt C, Cobb MH (2001) MAP kinases. Chem Rev 101:2449–2476

    Article  CAS  PubMed  Google Scholar 

  • Chiang DY, Kongchan N, Beavers DL, Alsina KM, Voigt N, Neilson JR, Jakob H, Martin JF, Dobrev D, Wehrens XH, Li N (2014) Loss of microRNA-106b-25 cluster promotes atrial fibrillation by enhancing ryanodine receptor type-2 expression and calcium release. Circ Arrhythm Electrophysiol 7:1214–1222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christ T, Boknik P, Wohrl S, Wettwer E, Graf EM, Bosch RF, Knaut M, Schmitz W, Ravens U, Dobrev D (2004) L-type Ca2+ current downregulation in chronic human atrial fibrillation is associated with increased activity of protein phosphatases. Circulation 110:2651–2657

    Article  CAS  PubMed  Google Scholar 

  • Clark DM, Plumb VJ, Epstein AE, Kay GN (1997) Hemodynamic effects of an irregular sequence of ventricular cycle lengths during atrial fibrillation. J Am Coll Cardiol 30:1039–1045

    Article  CAS  PubMed  Google Scholar 

  • Cook SA, Sugden PH, Clerk A (1999) Activation of c-Jun N-terminal kinases and p38-mitogen-activated protein kinases in human heart failure secondary to ischaemic heart disease. J Mol Cell Cardiol 31:1429–1434

    Article  CAS  PubMed  Google Scholar 

  • Court NW, dos Remedios CG, Cordell J, Bogoyevitch MA (2002) Cardiac expression and subcellular localization of the p38 mitogen-activated protein kinase member, stress-activated protein kinase-3 (SAPK3). J Mol Cell Cardiol 34:413–426

    Article  CAS  PubMed  Google Scholar 

  • Cowie MR, Mosterd A, Wood DA, Deckers JW, Poole-Wilson PA, Sutton GC, Grobbee DE (1997) The epidemiology of heart failure. Eur Heart J 18:208–225

    Article  CAS  PubMed  Google Scholar 

  • Cuenda A, Rousseau S (2007) p38 MAP-kinases pathway regulation, function and role in human diseases. Biochim Biophys Acta 1773:1358–1375

    Article  CAS  PubMed  Google Scholar 

  • Das M, Jiang F, Sluss HK, Zhang C, Shokat KM, Flavell RA, Davis RJ (2007) Suppression of p53-dependent senescence by the JNK signal transduction pathway. Proc Natl Acad Sci U S A 104:15759–15764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davis RJ (2000) Signal transduction by the JNK group of MAP kinases. Cell 103:239–252

    Article  CAS  PubMed  Google Scholar 

  • DeSantiago J, Maier LS, Bers DM (2002) Frequency-dependent acceleration of relaxation in the heart depends on CaMKII, but not phospholamban. J Mol Cell Cardiol 34:975–984

    Article  CAS  PubMed  Google Scholar 

  • Desantiago J, Ai X, Islam M, Acuna G, Ziolo MT, Bers DM, Pogwizd SM (2008) Arrhythmogenic effects of beta2-adrenergic stimulation in the failing heart are attributable to enhanced sarcoplasmic reticulum Ca load. Circ Res 102:1389–1397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dibb KM, Clarke JD, Horn MA, Richards MA, Graham HK, Eisner DA, Trafford AW (2009) Characterization of an extensive transverse tubular network in sheep atrial myocytes and its depletion in heart failure. Circ Heart Fail 2:482–489

    Article  PubMed  Google Scholar 

  • Di Lenarda A, Scherillo M, Maggioni AP, Acquarone N, Ambrosio GB, Annicchiarico M, Bellis P, Bellotti P, De Maria R, Lavecchia R, Lucci D, Mathieu G, Opasich C, Porcu M, Tavazzi L, Cafiero M (2003) Current presentation and management of heart failure in cardiology and internal medicine hospital units: a tale of two worlds – the TEMISTOCLE study. Am Heart J 146:E12

    Article  PubMed  Google Scholar 

  • Dinanian S, Boixel C, Juin C, Hulot JS, Coulombe A, Rucker-Martin C, Bonnet N, Le Grand B, Slama M, Mercadier JJ, Hatem SN (2008) Downregulation of the calcium current in human right atrial myocytes from patients in sinus rhythm but with a high risk of atrial fibrillation. Eur Heart J 29:1190–1197

    Article  PubMed  Google Scholar 

  • Dingar D, Merlen C, Grandy S, Gillis MA, Villeneuve LR, Mamarbachi AM, Fiset C, Allen BG (2010) Effect of pressure overload-induced hypertrophy on the expression and localization of p38 MAP kinase isoforms in the mouse heart. Cell Signal 22:1634–1644

    Article  CAS  PubMed  Google Scholar 

  • Dries DL, Exner DV, Gersh BJ, Domanski MJ, Waclawiw MA, Stevenson LW (1998) Atrial fibrillation is associated with an increased risk for mortality and heart failure progression in patients with asymptomatic and symptomatic left ventricular systolic dysfunction: a retrospective analysis of the SOLVD trials. Studies of Left Ventricular Dysfunction. J Am Coll Cardiol 32:695–703

    Article  CAS  PubMed  Google Scholar 

  • Dupont E, Ko Y, Rothery S, Coppen SR, Baghai M, Haw M, Severs NJ (2001) The gap-junctional protein connexin40 is elevated in patients susceptible to postoperative atrial fibrillation. Circulation 103:842–849

    Article  CAS  PubMed  Google Scholar 

  • Ehrlich JR, Nattel S, Hohnloser SH (2002) Atrial fibrillation and congestive heart failure: specific considerations at the intersection of two common and important cardiac disease sets. J Cardiovasc Electrophysiol 13:399–405

    Article  PubMed  Google Scholar 

  • Elvan A, Huang XD, Pressler ML, Zipes DP (1997) Radiofrequency catheter ablation of the atria eliminates pacing-induced sustained atrial fibrillation and reduces connexin 43 in dogs. Circulation 96:1675–1685

    Article  CAS  PubMed  Google Scholar 

  • Esposito G, Prasad SV, Rapacciuolo A, Mao L, Koch WJ, Rockman HA (2001) Cardiac overexpression of a G(q) inhibitor blocks induction of extracellular signal-regulated kinase and c-Jun NH(2)-terminal kinase activity in in vivo pressure overload. Circulation 103:1453–1458

    Article  CAS  PubMed  Google Scholar 

  • Forbes MS, Van Niel EE, Purdy-Ramos SI (1990) The atrial myocardial cells of mouse heart: a structural and stereological study. J Struct Biol 103:266–279

    Article  CAS  PubMed  Google Scholar 

  • Franzini-Armstrong C, Protasi F, Tijskens P (2005) The assembly of calcium release units in cardiac muscle. Ann N Y Acad Sci 1047:76–85

    Article  CAS  PubMed  Google Scholar 

  • Freestone NS, Ribaric S, Scheuermann M, Mauser U, Paul M, Vetter R (2000) Differential lusitropic responsiveness to beta-adrenergic stimulation in rat atrial and ventricular cardiac myocytes. Pflugers Arch 441:78–87

    Article  CAS  PubMed  Google Scholar 

  • Frisk M, Koivumaki JT, Norseng PA, Maleckar MM, Sejersted OM, Louch WE (2014) Variable t-tubule organization and Ca2+ homeostasis across the atria. Am J Physiol Heart Circ Physiol 307:H609–H620

    Article  CAS  PubMed  Google Scholar 

  • Go AS, Hylek EM, Phillips KA, Chang Y, Henault LE, Selby JV, Singer DE (2001) Prevalence of diagnosed atrial fibrillation in adults: national implications for rhythm management and stroke prevention: the AnTicoagulation and Risk Factors in Atrial Fibrillation (ATRIA) Study. JAMA 285:2370–2375

    Article  CAS  PubMed  Google Scholar 

  • Greiser M, Neuberger HR, Harks E, El-Armouche A, Boknik P, de Haan S, Verheyen F, Verheule S, Schmitz W, Ravens U, Nattel S, Allessie MA, Dobrev D, Schotten U (2009) Distinct contractile and molecular differences between two goat models of atrial dysfunction: AV block-induced atrial dilatation and atrial fibrillation. J Mol Cell Cardiol 46:385–394

    Article  CAS  PubMed  Google Scholar 

  • Guo T, Ai X, Shannon TR, Pogwizd SM, Bers DM (2007) Intra-sarcoplasmic reticulum free [Ca2+] and buffering in arrhythmogenic failing rabbit heart. Circ Res 101:802–810

    Article  CAS  PubMed  Google Scholar 

  • Hagiwara Y, Miyoshi S, Fukuda K, Nishiyama N, Ikegami Y, Tanimoto K, Murata M, Takahashi E, Shimoda K, Hirano T, Mitamura H, Ogawa S (2007) SHP2-mediated signaling cascade through gp130 is essential for LIF-dependent I CaL, [Ca2+]i transient, and APD increase in cardiomyocytes. J Mol Cell Cardiol 43:710–716

    Article  CAS  PubMed  Google Scholar 

  • Haq S, Choukroun G, Lim H, Tymitz KM, del Monte F, Gwathmey J, Grazette L, Michael A, Hajjar R, Force T, Molkentin JD (2001) Differential activation of signal transduction pathways in human hearts with hypertrophy versus advanced heart failure. Circulation 103:670–677

    Article  CAS  PubMed  Google Scholar 

  • Hatano N, Mori Y, Oh-hora M, Kosugi A, Fujikawa T, Nakai N, Niwa H, Miyazaki J, Hamaoka T, Ogata M (2003) Essential role for ERK2 mitogen-activated protein kinase in placental development. Genes Cells 8:847–856

    Article  CAS  PubMed  Google Scholar 

  • Hazzalin CA, Le Panse R, Cano E, Mahadevan LC (1998) Anisomycin selectively desensitizes signalling components involved in stress kinase activation and fos and jun induction. Mol Cell Biol 18:1844–1854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He BJ, Joiner ML, Singh MV, Luczak ED, Swaminathan PD, Koval OM, Kutschke W, Allamargot C, Yang J, Guan X, Zimmerman K, Grumbach IM, Weiss RM, Spitz DR, Sigmund CD, Blankesteijn WM, Heymans S, Mohler PJ, Anderson ME (2011) Oxidation of CaMKII determines the cardiotoxic effects of aldosterone. Nat Med 17:1610–1618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heinzel FR, Bito V, Biesmans L, Wu M, Detre E, von Wegner F, Claus P, Dymarkowski S, Maes F, Bogaert J, Rademakers F, D’Hooge J, Sipido K (2008) Remodeling of T-tubules and reduced synchrony of Ca2+ release in myocytes from chronically ischemic myocardium. Circ Res 102:338–346

    Article  CAS  PubMed  Google Scholar 

  • Hershberger RE, Nauman D, Walker TL, Dutton D, Burgess D (2003) Care processes and clinical outcomes of continuous outpatient support with inotropes (COSI) in patients with refractory endstage heart failure. J Card Fail 9:180–187

    Article  PubMed  Google Scholar 

  • Ho PD, Zechner DK, He H, Dillmann WH, Glembotski CC, McDonough PM (1998) The Raf-MEK-ERK cascade represents a common pathway for alteration of intracellular calcium by Ras and protein kinase C in cardiac myocytes. J Biol Chem 273:21730–21735

    Article  CAS  PubMed  Google Scholar 

  • Ho PD, Fan JS, Hayes NL, Saada N, Palade PT, Glembotski CC, McDonough PM (2001) Ras reduces L-type calcium channel current in cardiac myocytes. Corrective effects of L-channels and SERCA2 on [Ca(2+)](i) regulation and cell morphology. Circ Res 88:63–69

    Article  CAS  PubMed  Google Scholar 

  • Hoch B, Meyer R, Hetzer R, Krause EG, Karczewski P (1999) Identification and expression of delta-isoforms of the multifunctional Ca2+/calmodulin-dependent protein kinase in failing and nonfailing human myocardium. Circ Res 84:713–721

    Article  CAS  PubMed  Google Scholar 

  • Huang JL, Tai CT, Chen JT, Ting CT, Chen YT, Chang MS, Chen SA (2003) Effect of atrial dilatation on electrophysiologic properties and inducibility of atrial fibrillation. Basic Res Cardiol 98:16–24

    Article  PubMed  Google Scholar 

  • Huang C, Ding W, Li L, Zhao D (2006) Differences in the aging-associated trends of the monophasic action potential duration and effective refractory period of the right and left atria of the rat. Circ J 70:352–357

    Article  PubMed  Google Scholar 

  • Huang H, Joseph LC, Gurin MI, Thorp EB, Morrow JP (2014) Extracellular signal-regulated kinase activation during cardiac hypertrophy reduces sarcoplasmic/endoplasmic reticulum calcium ATPase 2 (SERCA2) transcription. J Mol Cell Cardiol 75:58–63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ibrahim M, Al Masri A, Navaratnarajah M, Siedlecka U, Soppa GK, Moshkov A, Al-Saud SA, Gorelik J, Yacoub MH, Terracciano CM (2010) Prolonged mechanical unloading affects cardiomyocyte excitation-contraction coupling, transverse-tubule structure, and the cell surface. FASEB J 24:3321–3329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ismahil MA, Hamid T, Bansal SS, Patel B, Kingery JR, Prabhu SD (2014) Remodeling of the mononuclear phagocyte network underlies chronic inflammation and disease progression in heart failure: critical importance of the cardiosplenic axis. Circ Res 114:266–282

    Article  CAS  PubMed  Google Scholar 

  • Janse MJ, Wit AL (1989) Electrophysiological mechanisms of ventricular arrhythmias resulting from myocardial ischemia and infarction. Physiol Rev 69:1049–1169

    CAS  PubMed  Google Scholar 

  • January CT, Wann LS, Alpert JS, Calkins H, Cigarroa JE, Cleveland JC Jr, Conti JB, Ellinor PT, Ezekowitz MD, Field ME, Murray KT, Sacco RL, Stevenson WG, Tchou PJ, Tracy CM, Yancy CW (2014) 2014 AHA/ACC/HRS guideline for the management of patients with atrial fibrillation: a report of the American College of Cardiology/American Heart Association Task Force on practice guidelines and the Heart Rhythm Society. Circulation 130:e199–e267

    Article  PubMed  PubMed Central  Google Scholar 

  • Jeong CW, Yoo KY, Lee SH, Jeong HJ, Lee CS, Kim SJ (2012) Curcumin protects against regional myocardial ischemia/reperfusion injury through activation of RISK/GSK-3beta and inhibition of p38 MAPK and JNK. J Cardiovasc Pharmacol Ther 17:387–394

    Article  CAS  PubMed  Google Scholar 

  • Jones SA, Lancaster MK, Boyett MR (2004) Ageing-related changes of connexins and conduction within the sinoatrial node. J Physiol 560:429–437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Judge S, Leeuwenburgh C (2007) Cardiac mitochondrial bioenergetics, oxidative stress, and aging. Am J Physiol Cell Physiol 292:C1983–C1992

    Article  CAS  PubMed  Google Scholar 

  • Juhaszova M, Rabuel C, Zorov DB, Lakatta EG, Sollott SJ (2005) Protection in the aged heart: preventing the heart-break of old age? Cardiovasc Res 66:233–244

    Article  CAS  PubMed  Google Scholar 

  • Kanagaratnam P, Cherian A, Stanbridge RD, Glenville B, Severs NJ, Peters NS (2004) Relationship between connexins and atrial activation during human atrial fibrillation. J Cardiovasc Electrophysiol 15:206–216

    Article  PubMed  Google Scholar 

  • Kannel WB, Benjamin EJ (2008) Status of the epidemiology of atrial fibrillation. Med Clin North Am 92:17–40, ix

    Google Scholar 

  • Kannel WB, Abbott RD, Savage DD, McNamara PM (1982) Epidemiologic features of chronic atrial fibrillation: the Framingham study. N Engl J Med 306:1018–1022

    Article  CAS  PubMed  Google Scholar 

  • Kannel WB, Abbott RD, Savage DD, McNamara PM (1983) Coronary heart disease and atrial fibrillation: the Framingham study. Am Heart J 106:389–396

    Article  CAS  PubMed  Google Scholar 

  • Kannel WB, Wolf PA, Benjamin EJ, Levy D (1998) Prevalence, incidence, prognosis, and predisposing conditions for atrial fibrillation: population-based estimates. Am J Cardiol 82:2N–9N

    Article  CAS  PubMed  Google Scholar 

  • Karin M, Gallagher E (2005) From JNK to pay dirt: jun kinases, their biochemistry, physiology and clinical importance. IUBMB Life 57:283–295

    Article  CAS  PubMed  Google Scholar 

  • Kohno M, Pouyssegur J (1986) Alpha-thrombin-induced tyrosine phosphorylation of 43,000- and 41,000-Mr proteins is independent of cytoplasmic alkalinization in quiescent fibroblasts. Biochem J 238:451–457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kostin S, Klein G, Szalay Z, Hein S, Bauer EP, Schaper J (2002) Structural correlate of atrial fibrillation in human patients. Cardiovasc Res 54:361–379

    Article  CAS  PubMed  Google Scholar 

  • Krahn AD, Manfreda J, Tate RB, Mathewson FA, Cuddy TE (1995) The natural history of atrial fibrillation: incidence, risk factors, and prognosis in the Manitoba Follow-Up Study. Am J Med 98:476–484

    Article  CAS  PubMed  Google Scholar 

  • Kyoi S, Otani H, Matsuhisa S, Akita Y, Tatsumi K, Enoki C, Fujiwara H, Imamura H, Kamihata H, Iwasaka T (2006) Opposing effect of p38 MAP kinase and JNK inhibitors on the development of heart failure in the cardiomyopathic hamster. Cardiovasc Res 69:888–898

    Article  CAS  PubMed  Google Scholar 

  • Kyriakis JM, Avruch J (2001) Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation. Physiol Rev 81:807–869

    CAS  PubMed  Google Scholar 

  • Lenaerts I, Bito V, Heinzel FR, Driesen RB, Holemans P, D'Hooge J, Heidbuchel H, Sipido KR, Willems R (2009) Ultrastructural and functional remodeling of the coupling between Ca2+ influx and sarcoplasmic reticulum Ca2+ release in right atrial myocytes from experimental persistent atrial fibrillation. Circ Res 105:876–885

    Article  CAS  PubMed  Google Scholar 

  • Li D, Shinagawa K, Pang L, Leung TK, Cardin S, Wang Z, Nattel S (2001) Effects of angiotensin-converting enzyme inhibition on the development of the atrial fibrillation substrate in dogs with ventricular tachypacing-induced congestive heart failure. Circulation 104:2608–2614

    Article  CAS  PubMed  Google Scholar 

  • Li SY, Du M, Dolence EK, Fang CX, Mayer GE, Ceylan-Isik AF, LaCour KH, Yang X, Wilbert CJ, Sreejayan N, Ren J (2005a) Aging induces cardiac diastolic dysfunction, oxidative stress, accumulation of advanced glycation endproducts and protein modification. Aging Cell 4:57–64

    Article  CAS  PubMed  Google Scholar 

  • Li M, Georgakopoulos D, Lu G, Hester L, Kass DA, Hasday J, Wang Y (2005b) p38 MAP kinase mediates inflammatory cytokine induction in cardiomyocytes and extracellular matrix remodeling in heart. Circulation 111:2494–2502

    Article  CAS  PubMed  Google Scholar 

  • Li C, Gao Y, Tian J, Shen J, Xing Y, Liu Z (2011) Sophocarpine administration preserves myocardial function from ischemia-reperfusion in rats via NF-kappaB inactivation. J Ethnopharmacol 135:620–625

    Article  CAS  PubMed  Google Scholar 

  • Li C, Wang T, Zhang C, Xuan J, Su C, Wang Y (2016) Quercetin attenuates cardiomyocyte apoptosis via inhibition of JNK and p38 mitogen-activated protein kinase signaling pathways. Gene 577:275–280

    Article  CAS  PubMed  Google Scholar 

  • Linne AB, Liedholm H, Jendteg S, Israelsson B (2000) Health care costs of heart failure: results from a randomised study of patient education. Eur J Heart Fail 2:291–297

    Article  CAS  PubMed  Google Scholar 

  • Lip GY (2013) Stroke and bleeding risk assessment in atrial fibrillation: when, how, and why? Eur Heart J 34:1041–1049

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Gu J, Fan Y, Shi H, Jiang M (2013) Baicalin attenuates acute myocardial infarction of rats via mediating the mitogen-activated protein kinase pathway. Biol Pharm Bull 36:988–994

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Wang J, Qi SY, Ru LS, Ding C, Wang HJ, Zhao JS, Li JJ, Li AY, Wang DM (2014) Reduced endoplasmic reticulum stress might alter the course of heart failure via caspase-12 and JNK pathways. Can J Cardiol 30:368–375

    Article  PubMed  Google Scholar 

  • Louch WE, Mork HK, Sexton J, Stromme TA, Laake P, Sjaastad I, Sejersted OM (2006) T-tubule disorganization and reduced synchrony of Ca2+ release in murine cardiomyocytes following myocardial infarction. J Physiol 574:519–533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lowes VL, Ip NY, Wong YH (2002) Integration of signals from receptor tyrosine kinases and g protein-coupled receptors. Neurosignals 11:5–19

    Article  CAS  PubMed  Google Scholar 

  • Lyon AR, MacLeod KT, Zhang Y, Garcia E, Kanda GK, Lab MJ, Korchev YE, Harding SE, Gorelik J (2009) Loss of T-tubules and other changes to surface topography in ventricular myocytes from failing human and rat heart. Proc Natl Acad Sci U S A 106:6854–6859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maier LS, Zhang T, Chen L, DeSantiago J, Brown JH, Bers DM (2003) Transgenic CaMKIIdeltaC overexpression uniquely alters cardiac myocyte Ca2+ handling: reduced SR Ca2+ load and activated SR Ca2+ release. Circ Res 92:904–911

    Article  CAS  PubMed  Google Scholar 

  • Mandapati R, Skanes A, Chen J, Berenfeld O, Jalife J (2000) Stable microreentrant sources as a mechanism of atrial fibrillation in the isolated sheep heart. Circulation 101:194–199

    Article  CAS  PubMed  Google Scholar 

  • Marinissen MJ, Chiariello M, Pallante M, Gutkind JS (1999) A network of mitogen-activated protein kinases links G protein-coupled receptors to the c-jun promoter: a role for c-Jun NH2-terminal kinase, p38s, and extracellular signal-regulated kinase 5. Mol Cell Biol 19:4289–4301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maruyama J, Naguro I, Takeda K, Ichijo H (2009) Stress-activated MAP kinase cascades in cellular senescence. Curr Med Chem 16:1229–1235

    Article  CAS  PubMed  Google Scholar 

  • Marx SO, Reiken S, Hisamatsu Y, Jayaraman T, Burkhoff D, Rosemblit N, Marks AR (2000) PKA phosphorylation dissociates FKBP12.6 from the calcium release channel (ryanodine receptor): defective regulation in failing hearts. Cell 101:365–376

    Article  CAS  PubMed  Google Scholar 

  • Milano G, Morel S, Bonny C, Samaja M, von Segesser LK, Nicod P, Vassalli G (2007) A peptide inhibitor of c-Jun NH2-terminal kinase reduces myocardial ischemia-reperfusion injury and infarct size in vivo. Am J Physiol Heart Circ Physiol 292:H1828–H1835

    Article  CAS  PubMed  Google Scholar 

  • Miyamoto T, Takeishi Y, Takahashi H, Shishido T, Arimoto T, Tomoike H, Kubota I (2004) Activation of distinct signal transduction pathways in hypertrophied hearts by pressure and volume overload. Basic Res Cardiol 99:328–337

    Article  CAS  PubMed  Google Scholar 

  • Moriguchi T, Toyoshima F, Gotoh Y, Iwamatsu A, Irie K, Mori E, Kuroyanagi N, Hagiwara M, Matsumoto K, Nishida E (1996) Purification and identification of a major activator for p38 from osmotically shocked cells. Activation of mitogen-activated protein kinase kinase 6 by osmotic shock, tumor necrosis factor-alpha, and H2O2. J Biol Chem 271:26981–26988

    Article  CAS  PubMed  Google Scholar 

  • Muslin AJ (2005) Role of raf proteins in cardiac hypertrophy and cardiomyocyte survival. Trends Cardiovasc Med 15:225–229

    Article  CAS  PubMed  Google Scholar 

  • Nadruz W Jr, Kobarg CB, Kobarg J, Franchini KG (2004) c-Jun is regulated by combination of enhanced expression and phosphorylation in acute-overloaded rat heart. Am J Physiol Heart Circ Physiol 286:H760–H767

    Article  CAS  PubMed  Google Scholar 

  • Nadruz W Jr, Corat MA, Marin TM, Guimaraes Pereira GA, Franchini KG (2005) Focal adhesion kinase mediates MEF2 and c-Jun activation by stretch: role in the activation of the cardiac hypertrophic genetic program. Cardiovasc Res 68:87–97

    Article  CAS  PubMed  Google Scholar 

  • Nao T, Ohkusa T, Hisamatsu Y, Inoue N, Matsumoto T, Yamada J, Shimizu A, Yoshiga Y, Yamagata T, Kobayashi S, Yano M, Hamano K, Matsuzaki M (2003) Comparison of expression of connexin in right atrial myocardium in patients with chronic atrial fibrillation versus those in sinus rhythm. Am J Cardiol 91:678–683

    Article  CAS  PubMed  Google Scholar 

  • Nattel S, Maguy A, Le Bouter S, Yeh YH (2007) Arrhythmogenic ion-channel remodeling in the heart: heart failure, myocardial infarction, and atrial fibrillation. Physiol Rev 87:425–456

    Article  CAS  PubMed  Google Scholar 

  • Nattel S, Burstein B, Dobrev D (2008) Atrial remodeling and atrial fibrillation: mechanisms and implications. Circ Arrhythm Electrophysiol 1:62–73

    Article  PubMed  Google Scholar 

  • Neef S, Dybkova N, Sossalla S, Ort KR, Fluschnik N, Neumann K, Seipelt R, Schondube FA, Hasenfuss G, Maier LS (2010) CaMKII-dependent diastolic SR Ca2+ leak and elevated diastolic Ca2+ levels in right atrial myocardium of patients with atrial fibrillation. Circ Res 106:1134–1144

    Article  CAS  PubMed  Google Scholar 

  • Neuberger HR, Mewis C, van Veldhuisen DJ, Schotten U, van Gelder IC, Allessie MA, Bohm M (2007) Management of atrial fibrillation in patients with heart failure. Eur Heart J 28:2568–2577

    Article  CAS  PubMed  Google Scholar 

  • Neuman RB, Bloom HL, Shukrullah I, Darrow LA, Kleinbaum D, Jones DP, Dudley SC Jr (2007) Oxidative stress markers are associated with persistent atrial fibrillation. Clin Chem 53:1652–1657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nishida K, Yamaguchi O, Hirotani S, Hikoso S, Higuchi Y, Watanabe T, Takeda T, Osuka S, Morita T, Kondoh G, Uno Y, Kashiwase K, Taniike M, Nakai A, Matsumura Y, Miyazaki J, Sudo T, Hongo K, Kusakari Y, Kurihara S, Chien KR, Takeda J, Hori M, Otsu K (2004) p38alpha mitogen-activated protein kinase plays a critical role in cardiomyocyte survival but not in cardiac hypertrophic growth in response to pressure overload. Mol Cell Biol 24:10611–10620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oral H, Ozaydin M, Sticherling C, Tada H, Scharf C, Chugh A, Lai SW, Pelosi F Jr, Knight BP, Strickberger SA, Morady F (2003) Effect of atrial fibrillation duration on probability of immediate recurrence after transthoracic cardioversion. J Cardiovasc Electrophysiol 14:182–185

    Article  PubMed  Google Scholar 

  • Packer M (1985) Sudden unexpected death in patients with congestive heart failure: a second frontier. Circulation 72:681–685

    Article  CAS  PubMed  Google Scholar 

  • Pan J, Singh US, Takahashi T, Oka Y, Palm-Leis A, Herbelin BS, Baker KM (2005) PKC mediates cyclic stretch-induced cardiac hypertrophy through Rho family GTPases and mitogen-activated protein kinases in cardiomyocytes. J Cell Physiol 202:536–553

    Article  CAS  PubMed  Google Scholar 

  • Petrich BG, Eloff BC, Lerner DL, Kovacs A, Saffitz JE, Rosenbaum DS, Wang Y (2004) Targeted activation of c-Jun N-terminal kinase in vivo induces restrictive cardiomyopathy and conduction defects. J Biol Chem 279:15330–15338

    Article  CAS  PubMed  Google Scholar 

  • Polontchouk L, Haefliger JA, Ebelt B, Schaefer T, Stuhlmann D, Mehlhorn U, Kuhn-Regnier F, De Vivie ER, Dhein S (2001) Effects of chronic atrial fibrillation on gap junction distribution in human and rat atria. J Am Coll Cardiol 38:883–891

    Article  CAS  PubMed  Google Scholar 

  • Purcell NH, Wilkins BJ, York A, Saba-El-Leil MK, Meloche S, Robbins J, Molkentin JD (2007) Genetic inhibition of cardiac ERK1/2 promotes stress-induced apoptosis and heart failure but has no effect on hypertrophy in vivo. Proc Natl Acad Sci U S A 104:14074–14079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raingeaud J, Gupta S, Rogers JS, Dickens M, Han J, Ulevitch RJ, Davis RJ (1995) Pro-inflammatory cytokines and environmental stress cause p38 mitogen-activated protein kinase activation by dual phosphorylation on tyrosine and threonine. J Biol Chem 270:7420–7426

    Article  CAS  PubMed  Google Scholar 

  • Raman M, Chen W, Cobb MH (2007) Differential regulation and properties of MAPKs. Oncogene 26:3100–3112

    Article  CAS  PubMed  Google Scholar 

  • Ramos JW (2008) The regulation of extracellular signal-regulated kinase (ERK) in mammalian cells. Int J Biochem Cell Biol 40:2707–2719

    Article  CAS  PubMed  Google Scholar 

  • Remy G, Risco AM, Inesta-Vaquera FA, Gonzalez-Teran B, Sabio G, Davis RJ, Cuenda A (2010) Differential activation of p38MAPK isoforms by MKK6 and MKK3. Cell Signal 22:660–667

    Article  CAS  PubMed  Google Scholar 

  • Ren J, Zhang S, Kovacs A, Wang Y, Muslin AJ (2005) Role of p38alpha MAPK in cardiac apoptosis and remodeling after myocardial infarction. J Mol Cell Cardiol 38:617–623

    Article  CAS  PubMed  Google Scholar 

  • Rensma PL, Allessie MA, Lammers WJ, Bonke FI, Schalij MJ (1988) Length of excitation wave and susceptibility to reentrant atrial arrhythmias in normal conscious dogs. Circ Res 62:395–410

    Article  CAS  PubMed  Google Scholar 

  • Respress JL, van Oort RJ, Li N, Rolim N, Dixit SS, deAlmeida A, Voigt N, Lawrence WS, Skapura DG, Skardal K, Wisloff U, Wieland T, Ai X, Pogwizd SM, Dobrev D, Wehrens XH (2012) Role of RyR2 phosphorylation at S2814 during heart failure progression. Circ Res 110:1474–1483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rich MW (2009) Epidemiology of atrial fibrillation. J Interv Card Electrophysiol 25:3–8

    Article  PubMed  Google Scholar 

  • Richards MA, Clarke JD, Saravanan P, Voigt N, Dobrev D, Eisner DA, Trafford AW, Dibb KM (2011) Transverse tubules are a common feature in large mammalian atrial myocytes including human. Am J Physiol Heart Circ Physiol 301:H1996–H2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ronkainen JJ, Hanninen SL, Korhonen T, Koivumaki JT, Skoumal R, Rautio S, Ronkainen VP, Tavi P (2011) Ca2+-calmodulin-dependent protein kinase II represses cardiac transcription of the L-type calcium channel alpha(1C)-subunit gene (Cacna1c) by DREAM translocation. J Physiol 589:2669–2686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rose BA, Force T, Wang Y (2010) Mitogen-activated protein kinase signaling in the heart: angels versus demons in a heart-breaking tale. Physiol Rev 90:1507–1546

    Article  CAS  PubMed  Google Scholar 

  • Roussel E, Gaudreau M, Plante E, Drolet MC, Breault C, Couet J, Arsenault M (2008) Early responses of the left ventricle to pressure overload in Wistar rats. Life Sci 82:265–272

    Article  CAS  PubMed  Google Scholar 

  • Saba-El-Leil MK, Vella FD, Vernay B, Voisin L, Chen L, Labrecque N, Ang SL, Meloche S (2003) An essential function of the mitogen-activated protein kinase Erk2 in mouse trophoblast development. EMBO Rep 4:964–968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakabe K, Fukuda N, Nada T, Shinohara H, Tamura Y, Wakatsuki T, Nishikado A, Oki T (2003) Age-related changes in the electrophysiologic properties of the atrium in patients with no history of atrial fibrillation. Jpn Heart J 44:385–393

    Article  PubMed  Google Scholar 

  • Sakabe M, Fujiki A, Nishida K, Sugao M, Nagasawa H, Tsuneda T, Mizumaki K, Inoue H (2004) Enalapril prevents perpetuation of atrial fibrillation by suppressing atrial fibrosis and over-expression of connexin43 in a canine model of atrial pacing-induced left ventricular dysfunction. J Cardiovasc Pharmacol 43:851–859

    Article  CAS  PubMed  Google Scholar 

  • Sanders P, Morton JB, Davidson NC, Spence SJ, Vohra JK, Sparks PB, Kalman JM (2003) Electrical remodeling of the atria in congestive heart failure: electrophysiological and electroanatomic mapping in humans. Circulation 108:1461–1468

    Article  PubMed  Google Scholar 

  • Satomi-Kobayashi S, Ueyama T, Mueller S, Toh R, Masano T, Sakoda T, Rikitake Y, Miyoshi J, Matsubara H, Oh H, Kawashima S, Hirata K, Takai Y (2009) Deficiency of nectin-2 leads to cardiac fibrosis and dysfunction under chronic pressure overload. Hypertension 54:825–831

    Article  CAS  PubMed  Google Scholar 

  • Scharf M, Neef S, Freund R, Geers-Knorr C, Franz-Wachtel M, Brandis A, Krone D, Schneider H, Groos S, Menon MB, Chang KC, Kraft T, Meissner JD, Boheler KR, Maier LS, Gaestel M, Scheibe RJ (2013) Mitogen-activated protein kinase-activated protein kinases 2 and 3 regulate SERCA2a expression and fiber type composition to modulate skeletal muscle and cardiomyocyte function. Mol Cell Biol 33:2586–2602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schulman H, Hanson PI, Meyer T (1992) Decoding calcium signals by multifunctional CaM kinase. Cell Calcium 13:401–411

    Article  CAS  PubMed  Google Scholar 

  • Seta K, Sadoshima J (2002) What is the unique function of SAPK3/p38gamma in cardiac myocytes? J Mol Cell Cardiol 34:597–600

    Article  CAS  PubMed  Google Scholar 

  • Shannon TR, Ginsburg KS, Bers DM (2000) Potentiation of fractional sarcoplasmic reticulum calcium release by total and free intra-sarcoplasmic reticulum calcium concentration. Biophys J 78:334–343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song CL, Liu B, Diao HY, Shi YF, Zhang JC, Li YX, Liu N, Yu YP, Wang G, Wang JP, Li Q (2016) Down-regulation of microRNA-320 suppresses cardiomyocyte apoptosis and protects against myocardial ischemia and reperfusion injury by targeting IGF-1. Oncotarget 7:39740–39757

    PubMed  Google Scholar 

  • Sossalla S, Fluschnik N, Schotola H, Ort KR, Neef S, Schulte T, Wittkopper K, Renner A, Schmitto JD, Gummert J, El-Armouche A, Hasenfuss G, Maier LS (2010) Inhibition of elevated Ca2+/calmodulin-dependent protein kinase II improves contractility in human failing myocardium. Circ Res 107:1150–1161

    Article  CAS  PubMed  Google Scholar 

  • Sturgill TW, Ray LB, Erikson E, Maller JL (1988) Insulin-stimulated MAP-2 kinase phosphorylates and activates ribosomal protein S6 kinase II. Nature 334:715–718

    Article  CAS  PubMed  Google Scholar 

  • Sun A, Zou Y, Wang P, Xu D, Gong H, Wang S, Qin Y, Zhang P, Chen Y, Harada M, Isse T, Kawamoto T, Fan H, Yang P, Akazawa H, Nagai T, Takano H, Ping P, Komuro I, Ge J (2014) Mitochondrial aldehyde dehydrogenase 2 plays protective roles in heart failure after myocardial infarction via suppression of the cytosolic JNK/p53 pathway in mice. J Am Heart Assoc 3:e000779

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sun F, Duan W, Zhang Y, Zhang L, Qile M, Liu Z, Qiu F, Zhao D, Lu Y, Chu W (2015) Simvastatin alleviates cardiac fibrosis induced by infarction via up-regulation of TGF-beta receptor III expression. Br J Pharmacol 172:3779–3792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takahashi E, Fukuda K, Miyoshi S, Murata M, Kato T, Ita M, Tanabe T, Ogawa S (2004) Leukemia inhibitory factor activates cardiac L-Type Ca2+ channels via phosphorylation of serine 1829 in the rabbit Cav1.2 subunit. Circ Res 94:1242–1248

    Article  CAS  PubMed  Google Scholar 

  • Timmermans C, Rodriguez LM, Smeets JL, Wellens HJ (1998) Immediate reinitiation of atrial fibrillation following internal atrial defibrillation. J Cardiovasc Electrophysiol 9:122–128

    Article  CAS  PubMed  Google Scholar 

  • van der Velden HM, van Kempen MJ, Wijffels MC, van Zijverden M, Groenewegen WA, Allessie MA, Jongsma HJ (1998) Altered pattern of connexin40 distribution in persistent atrial fibrillation in the goat. J Cardiovasc Electrophysiol 9:596–607

    Article  PubMed  Google Scholar 

  • van der Velden HM, Ausma J, Rook MB, Hellemons AJ, van Veen TA, Allessie MA, Jongsma HJ (2000) Gap junctional remodeling in relation to stabilization of atrial fibrillation in the goat. Cardiovasc Res 46:476–486

    Article  PubMed  Google Scholar 

  • Van Wagoner DR, Pond AL, Lamorgese M, Rossie SS, McCarthy PM, Nerbonne JM (1999) Atrial L-type Ca2+ currents and human atrial fibrillation. Circ Res 85:428–436

    Article  CAS  PubMed  Google Scholar 

  • Venetucci LA, Trafford AW, O'Neill SC, Eisner DA (2008) The sarcoplasmic reticulum and arrhythmogenic calcium release. Cardiovasc Res 77:285–292

    Article  CAS  PubMed  Google Scholar 

  • Villar AV, Garcia R, Llano M, Cobo M, Merino D, Lantero A, Tramullas M, Hurle JM, Hurle MA, Nistal JF (2013) BAMBI (BMP and activin membrane-bound inhibitor) protects the murine heart from pressure-overload biomechanical stress by restraining TGF-beta signaling. Biochim Biophys Acta 1832:323–335

    Article  CAS  PubMed  Google Scholar 

  • Wada T, Stepniak E, Hui L, Leibbrandt A, Katada T, Nishina H, Wagner EF, Penninger JM (2008) Antagonistic control of cell fates by JNK and p38-MAPK signaling. Cell Death Differ 15:89–93

    Article  CAS  PubMed  Google Scholar 

  • Wakili R, Yeh YH, Yan Qi X, Greiser M, Chartier D, Nishida K, Maguy A, Villeneuve LR, Boknik P, Voigt N, Krysiak J, Kaab S, Ravens U, Linke WA, Stienen GJ, Shi Y, Tardif JC, Schotten U, Dobrev D, Nattel S (2010) Multiple potential molecular contributors to atrial hypocontractility caused by atrial tachycardia remodeling in dogs. Circ Arrhythm Electrophysiol 3:530–541

    Article  CAS  PubMed  Google Scholar 

  • Walden AP, Dibb KM, Trafford AW (2009) Differences in intracellular calcium homeostasis between atrial and ventricular myocytes. J Mol Cell Cardiol 46:463–473

    Article  CAS  PubMed  Google Scholar 

  • Walton MK, Fozzard HA (1983) The conducted action potential. Models and comparison to experiments. Biophys J 44:9–26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Huang S, Sah VP, Ross J Jr, Brown JH, Han J, Chien KR (1998) Cardiac muscle cell hypertrophy and apoptosis induced by distinct members of the p38 mitogen-activated protein kinase family. J Biol Chem 273:2161–2168

    Article  CAS  PubMed  Google Scholar 

  • Wang SQ, Song LS, Lakatta EG, Cheng H (2001) Ca2+ signalling between single L-type Ca2+ channels and ryanodine receptors in heart cells. Nature 410:592–596

    Article  CAS  PubMed  Google Scholar 

  • Wattigney WA, Mensah GA, Croft JB (2003) Increasing trends in hospitalization for atrial fibrillation in the United States, 1985 through 1999: implications for primary prevention. Circulation 108:711–716

    Article  PubMed  Google Scholar 

  • Wellbrock C, Karasarides M, Marais R (2004) The RAF proteins take centre stage. Nat Rev Mol Cell Biol 5:875–885

    Article  CAS  PubMed  Google Scholar 

  • Wetzel U, Boldt A, Lauschke J, Weigl J, Schirdewahn P, Dorszewski A, Doll N, Hindricks G, Dhein S, Kottkamp H (2005) Expression of connexins 40 and 43 in human left atrium in atrial fibrillation of different aetiologies. Heart 91:166–170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Whitmarsh AJ, Davis RJ (1996) Transcription factor AP-1 regulation by mitogen-activated protein kinase signal transduction pathways. J Mol Med (Berl) 74:589–607

    Article  CAS  Google Scholar 

  • Widmann C, Gibson S, Jarpe MB, Johnson GL (1999) Mitogen-activated protein kinase: conservation of a three-kinase module from yeast to human. Physiol Rev 79:143–180

    CAS  PubMed  Google Scholar 

  • Wijffels MC, Kirchhof CJ, Dorland R, Allessie MA (1995) Atrial fibrillation begets atrial fibrillation. A study in awake chronically instrumented goats. Circulation 92:1954–1968

    Article  CAS  PubMed  Google Scholar 

  • Wolf PA, Dawber TR, Thomas HE Jr, Kannel WB (1978) Epidemiologic assessment of chronic atrial fibrillation and risk of stroke: the Framingham study. Neurology 28:973–977

    Article  CAS  PubMed  Google Scholar 

  • Workman AJ, Pau D, Redpath CJ, Marshall GE, Russell JA, Norrie J, Kane KA, Rankin AC (2009) Atrial cellular electrophysiological changes in patients with ventricular dysfunction may predispose to AF. Heart Rhythm 6:445–451

    Article  PubMed  Google Scholar 

  • Wu Y, MacMillan LB, McNeill RB, Colbran RJ, Anderson ME (1999) CaM kinase augments cardiac L-type Ca2+ current: a cellular mechanism for long Q-T arrhythmias. Am J Physiol 276:H2168–H2178

    CAS  PubMed  Google Scholar 

  • Wu X, Zhao W, Corrillo E, Chen W, Yan J, Bers DM, Robia S, Ai X (2014) Novel stress signaling JNK regulates CaMKIIδ activity and expression in aged human atrium. AHA annunal meeting (Abstract)

    Google Scholar 

  • Xiao B, Chen D, Luo S, Hao W, Jing F, Liu T, Wang S, Geng Y, Li L, Xu W, Zhang Y, Liao X, Zuo D, Wu Y, Li M, Ma Q (2016) Extracellular translationally controlled tumor protein promotes colorectal cancer invasion and metastasis through Cdc42/JNK/MMP9 signaling. Oncotarget. doi:10.18632/oncotarget.10315

    Google Scholar 

  • Xie Y, Sato D, Garfinkel A, Qu Z, Weiss JN (2010) So little source, so much sink: requirements for afterdepolarizations to propagate in tissue. Biophys J 99:1408–1415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan J, Kong W, Zhang Q, Beyer EC, Walcott G, Fast VG, Ai X (2013) c-Jun N-terminal kinase activation contributes to reduced connexin43 and development of atrial arrhythmias. Cardiovasc Res 97:589–597

    Article  CAS  PubMed  Google Scholar 

  • Yan J, Thomson JK, Wu X, Zhao W, Pollard AE, Ai X (2014) Novel methods of automated quantification of gap junction distribution and interstitial collagen quantity from animal and human atrial tissue sections. PLoS One 9:e104357

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yang Z, Shen W, Rottman JN, Wikswo JP, Murray KT (2005) Rapid stimulation causes electrical remodeling in cultured atrial myocytes. J Mol Cell Cardiol 38:299–308

    Article  CAS  PubMed  Google Scholar 

  • Yao Y, Li W, Wu J, Germann UA, Su MS, Kuida K, Boucher DM (2003) Extracellular signal-regulated kinase 2 is necessary for mesoderm differentiation. Proc Natl Acad Sci U S A 100:12759–12764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yarza R, Vela S, Solas M, Ramirez MJ (2015) c-Jun N-terminal kinase (JNK) signaling as a therapeutic target for Alzheimer’s disease. Front Pharmacol 6:321

    PubMed  Google Scholar 

  • Yeh HI, Chang HM, Lu WW, Lee YN, Ko YS, Severs NJ, Tsai CH (2000) Age-related alteration of gap junction distribution and connexin expression in rat aortic endothelium. J Histochem Cytochem 48:1377–1389

    Article  CAS  PubMed  Google Scholar 

  • Yeh YH, Wakili R, Qi XY, Chartier D, Boknik P, Kaab S, Ravens U, Coutu P, Dobrev D, Nattel S (2008) Calcium-handling abnormalities underlying atrial arrhythmogenesis and contractile dysfunction in dogs with congestive heart failure. Circ Arrhythm Electrophysiol 1:93–102

    Article  CAS  PubMed  Google Scholar 

  • Yeh CC, Li H, Malhotra D, Turcato S, Nicholas S, Tu R, Zhu BQ, Cha J, Swigart PM, Myagmar BE, Baker AJ, Simpson PC, Mann MJ (2010) Distinctive ERK and p38 signaling in remote and infarcted myocardium during post-MI remodeling in the mouse. J Cell Biochem 109:1185–1191

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yoon S, Seger R (2006) The extracellular signal-regulated kinase: multiple substrates regulate diverse cellular functions. Growth Factors 24:21–44

    Article  CAS  PubMed  Google Scholar 

  • Zarubin T, Han J (2005) Activation and signaling of the p38 MAP kinase pathway. Cell Res 15:11–18

    Article  CAS  PubMed  Google Scholar 

  • Zechner D, Thuerauf DJ, Hanford DS, McDonough PM, Glembotski CC (1997) A role for the p38 mitogen-activated protein kinase pathway in myocardial cell growth, sarcomeric organization, and cardiac-specific gene expression. J Cell Biol 139:115–127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang S, Han J, Sells MA, Chernoff J, Knaus UG, Ulevitch RJ, Bokoch GM (1995) Rho family GTPases regulate p38 mitogen-activated protein kinase through the downstream mediator Pak1. J Biol Chem 270:23934–23936

    Article  CAS  PubMed  Google Scholar 

  • Zhang T, Maier LS, Dalton ND, Miyamoto S, Ross J Jr, Bers DM, Brown JH (2003) The deltaC isoform of CaMKII is activated in cardiac hypertrophy and induces dilated cardiomyopathy and heart failure. Circ Res 92:912–919

    Article  CAS  PubMed  Google Scholar 

  • Zhang R, Dzhura I, Grueter CE, Thiel W, Colbran RJ, Anderson ME (2005) A dynamic alpha-beta inter-subunit agonist signaling complex is a novel feedback mechanism for regulating L-type Ca2+ channel opening. FASEB J 19:1573–1575

    CAS  PubMed  Google Scholar 

  • Zhang Y, Liu Y, Zhu XH, Zhang XD, Jiang DS, Bian ZY, Zhang XF, Chen K, Wei X, Gao L, Zhu LH, Yang Q, Fan GC, Lau WB, Ma X, Li H (2014) Dickkopf-3 attenuates pressure overload-induced cardiac remodelling. Cardiovasc Res 102:35–45

    Article  CAS  PubMed  Google Scholar 

  • Zhang G, Gao S, Li X, Zhang L, Tan H, Xu L, Chen Y, Geng Y, Lin Y, Aertker B, Sun Y (2015) Pharmacological postconditioning with lactic acid and hydrogen rich saline alleviates myocardial reperfusion injury in rats. Sci Rep 5:9858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng M, Dilly K, Dos Santos Cruz J, Li M, Gu Y, Ursitti JA, Chen J, Ross J Jr, Chien KR, Lederer JW, Wang Y (2004) Sarcoplasmic reticulum calcium defect in Ras-induced hypertrophic cardiomyopathy heart. Am J Physiol Heart Circ Physiol 286:H424–H433

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by National Institutes of Health (R01HL113640 to XA).

Disclosures

The author has no disclosures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xun Ai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ai, X., Yan, J., Carrillo, E., Ding, W. (2016). The Stress-Response MAP Kinase Signaling in Cardiac Arrhythmias. In: Nilius, B., de Tombe, P., Gudermann, T., Jahn, R., Lill, R., Petersen, O. (eds) Reviews of Physiology, Biochemistry and Pharmacology, Vol. 172. Reviews of Physiology, Biochemistry and Pharmacology, vol 172. Springer, Cham. https://doi.org/10.1007/112_2016_8

Download citation

Publish with us

Policies and ethics