Skip to main content

Rationally Designed DNA-Based Scaffolds and Switching Probes for Protein Sensing

  • Chapter
  • First Online:
Advances in Biochemical Engineering/Biotechnology

Abstract

The detection of a protein analyte and use of this type of information for disease diagnosis and physiological monitoring requires methods with high sensitivity and specificity that have to be also easy to use, rapid and, ideally, single step. In the last 10 years, a number of DNA-based sensing methods and sensors have been developed in order to achieve quantitative readout of protein biomarkers. Inspired by the speed, specificity, and versatility of naturally occurring chemosensors based on structure-switching biomolecules, significant efforts have been done to reproduce these mechanisms into the fabrication of artificial biosensors for protein detection. As an alternative, in scaffold DNA biosensors, different recognition elements (e.g., peptides, proteins, small molecules, and antibodies) can be conjugated to the DNA scaffold with high accuracy and precision in order to specifically interact with the target protein with high affinity and specificity. They have several advantages and potential, especially because the transduction signal can be drastically enhanced. Our aim here is to provide an overview of the best examples of structure switching-based and scaffold DNA sensors, as well as to introduce the reader to the rational design of innovative sensing mechanisms and strategies based on programmable functional DNA systems for protein detection.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Lequin RM (2005) Enzyme immunoassay (EIA)/enzyme-linked immunosorbent assay (ELISA). Clin Chem 51:2415–2418. https://doi.org/10.1373/clinchem.2005.051532

    Article  Google Scholar 

  2. Vanova V, Mitrevska K, Milosavljevic V, Hynek D, Richtera L, Adam V (2021) Peptide-based electrochemical biosensors utilized for protein detection. Biosens Bioelectron 180:113087. https://doi.org/10.1016/j.bios.2021.113087

    Article  Google Scholar 

  3. Strehlitz B, Nikolaus N, Stoltenburg R (2008) Protein detection with aptamer. Biosens Sens 8:4296–4307. https://www.mdpi.com/1424-8220/8/7/4296

    Google Scholar 

  4. Leca-Bouvier B, Blum LJ (2005) Biosensors for protein detection: a review. Anal Lett 38:1491–1517. https://doi.org/10.1081/AL-200065780

    Article  Google Scholar 

  5. Fortunati S, Pedrini F, Del Grosso E, Baranda Pellejero L, Bertucci A (2022) Design of specific nucleic acid-based biosensors for protein binding activity. Anal Sens 2:e202200037. https://doi.org/10.1002/anse.202200037

    Article  Google Scholar 

  6. Thévenot DR, Toth K, Durst RA, Wilson GS (2001) Electrochemical biosensors: recommended definitions and classification 1st International Union of Pure and Applied Chemistry: Physical Chemistry Division, Commission I.7 (Biophysical Chemistry); Analytical Chemistry Division, Commission V.5 (Electroanalytical). Biosens Bioelectron 16:121–131. https://doi.org/10.1016/S0956-5663(01)00115-4

    Article  Google Scholar 

  7. Turner APF (2013) Biosensors: sense and sensibility. Chem Soc Rev 42:3184–3196. https://doi.org/10.1039/c3cs35528d

    Article  Google Scholar 

  8. Justino CIL, Rocha-Santos TA, Duarte AC, Rocha-Santos TA (2010) Review of analytical figures of merit of sensors and biosensors in clinical applications. Trends Anal Chem 29:1172–1183. https://doi.org/10.1016/j.trac.2010.07.008

    Article  Google Scholar 

  9. Arakawa T, Dao DV, Mitsubayashi K (2022) Biosensors and chemical sensors for healthcare monitoring: a review. IEEJ Trans Electr Electron Eng 17:626–636. https://doi.org/10.1002/tee.23580

    Article  Google Scholar 

  10. Rosati G, Idili A, Parolo C, Fuentes-Chust C, Calucho E, Hu L, Castro e Silva C d C, Rivas L, Nguyen EP, Bergua JF, Alvárez-Diduk R, Muñoz J, Junot C, Penon O, Monferrer D, Delamarche E, Merkoçi A (2021) Nanodiagnostics to face SARS-CoV-2 and future pandemics: from an idea to the market and beyond. ACS Nano 15:17137–17149. https://doi.org/10.1021/acsnano.1c06839

    Article  Google Scholar 

  11. Sezgintürk MK (2020) Chapter one – introduction to commercial biosensors. In: Sezgintürk MKBT-CB, TA (ed) Commercial biosensors and their applications. Elsevier, pp 1–28. https://doi.org/10.1016/B978-0-12-818592-6.00001-3

  12. Vallée-Bélisle A, Plaxco KW (2010) Structure-switching biosensors: inspired by nature. Curr Opin Struct Biol 20:518–526. https://doi.org/10.1016/j.sbi.2010.05.001

    Article  Google Scholar 

  13. Masson JF (2017) Surface Plasmon resonance clinical biosensors for medical diagnostics. ACS Sensors 2:16–30. https://pubs.acs.org/doi/10.1021/acssensors.6b00763

    Google Scholar 

  14. Manimekala T, Sivasubramanian R, Dharmalingam G (2022) Nanomaterial-based biosensors using field-effect transistors: a review. J Electron Mater 51:1950–1973. https://doi.org/10.1007/s11664-022-09492-z

    Article  Google Scholar 

  15. Alvarez M, Lechuga LM (2010) Microcantilever-based platforms as biosensing tools. Analyst 135:827–836. https://doi.org/10.1039/B908503N

    Article  Google Scholar 

  16. Plaxco KW, Soh HT (2011) Switch based biosensors: a new approach towards real-time, in vivo molecular detection. Trends Biotechnol 29:1–5. https://doi.org/10.1016/j.tibtech.2010.10.005

    Article  Google Scholar 

  17. Gerstein M, Krebs W (1998) A database of macromolecular motions. Nucleic Acids Res 26:4280–4290. https://doi.org/10.1093/nar/26.18.4280

    Article  Google Scholar 

  18. Tyagi S, Kramer FR (1996) Molecular beacons: probes that fluoresce upon hybridization. Nat Biotechnol 14:303–308. https://doi.org/10.1038/nbt0396-303

    Article  Google Scholar 

  19. Yoshida W, Sode K, Ikebukuro K (2006) Aptameric enzyme subunit for biosensing based on enzymatic activity measurement. Anal Chem 78:3296–3303. https://doi.org/10.1021/ac060254o

    Article  Google Scholar 

  20. Stein V, Alexandrov K (2015) Synthetic protein switches: design principles and applications. Trends Biotechnol 33:101–110. https://doi.org/10.1016/j.tibtech.2014.11.010

    Article  Google Scholar 

  21. Stein V (2017) Synthetic protein switches: methods and protocols.1st edn. Humana, New York. https://doi.org/10.1007/978-1-4939-6940-1

  22. Beaucage SL, Caruthers MH (1981) Deoxynucleoside phosphoramidites – a new class of key intermediates for deoxypolynucleotide synthesis. Tetrahedron Lett 22:1859–1862. https://doi.org/10.1016/S0040-4039(01)90461-7

    Article  Google Scholar 

  23. Kosuri S, Church GM (2014) Large-scale de novo DNA synthesis: technologies and applications. Nat Methods 11:499–507. https://doi.org/10.1038/nmeth.2918

    Article  Google Scholar 

  24. Zhang Z, Sen P, Adhikari BR, Li Y, Soleymani L (2022) Development of nucleic-acid-based electrochemical biosensors for clinical applications. Angew Chem Int Ed:e202212496. https://doi.org/10.1002/anie.202212496

  25. Parolo C, Idili A, Ortega G, Csordas A, Hsu A, Arroyo-Currás N, Yang Q, Ferguson BS, Wang J, Plaxco KW (2020) Real-time monitoring of a protein biomarker. ACS Sensors 5:1877–1881. https://doi.org/10.1021/acssensors.0c01085

    Article  Google Scholar 

  26. Vallée-Bélisle A, Ricci F, Plaxco KW (2009) Thermodynamic basis for the optimization of binding-induced biomolecular switches and structure-switching biosensors. Proc Natl Acad Sci 106:13802–13807. https://doi.org/10.1073/pnas.0904005106

    Article  Google Scholar 

  27. Harroun SG, Prévost-Tremblay C, Lauzon D, Desrosiers A, Wang X, Pedro L, Vallée-Bélisle A (2018) Programmable DNA switches and their applications. Nanoscale 10:4607–4641

    Google Scholar 

  28. Idili A, Ricci F, Vallée-Bélisle A (2017) Determining the folding and binding free energy of DNA-based nanodevices and nanoswitches using urea titration curves. Nucleic Acids Res 45:7571–7580. https://doi.org/10.1093/nar/gkx498

    Article  Google Scholar 

  29. You Y, Tataurov AV, Owczarzy R (2011) Measuring thermodynamic details of DNA hybridization using fluorescence. Biopolymers 95:472–486. https://doi.org/10.1002/bip.21615

    Article  Google Scholar 

  30. Feagin TA, Maganzini N, Soh HT (2018) Strategies for creating structure-switching aptamers. ACS Sensors 3:1611–1615. https://doi.org/10.1021/acssensors.8b00516

    Article  Google Scholar 

  31. Munzar JD, Ng A, Juncker D (2019) Duplexed aptamers: history, design, theory, and application to biosensing. Chem Soc Rev 48:1390–1419. https://doi.org/10.1039/C8CS00880A

    Article  Google Scholar 

  32. Lackey HH, Peterson EM, Harris JM, Heemstra JM (2020) Probing the mechanism of structure-switching aptamer assembly by super-resolution localization of individual DNA molecules. Anal Chem 92:6909–6917. https://doi.org/10.1021/acs.analchem.9b05563

    Article  Google Scholar 

  33. Munzar JD, Ng A, Corrado M, Juncker D (2017) Complementary oligonucleotides regulate induced fit ligand binding in duplexed aptamers. Chem Sci 8:2251–2256. https://doi.org/10.1039/C6SC03993F

    Article  Google Scholar 

  34. Dillen A, Vandezande W, Daems D, Lammertyn J (2021) Unraveling the effect of the aptamer complementary element on the performance of duplexed aptamers: a thermodynamic study. Anal Bioanal Chem 413:4739–4750. https://doi.org/10.1007/s00216-021-03444-y

    Article  Google Scholar 

  35. Xiao Y, Lou X, Uzawa T, Plakos KJI, Plaxco KW, Soh HT (2009) An electrochemical sensor for single nucleotide polymorphism detection in serum based on a triple-stem DNA probe. J Am Chem Soc 131:15311–15316. https://doi.org/10.1021/ja905068s

    Article  Google Scholar 

  36. Jiang B, Li F, Yang C, Xie J, Xiang Y, Yuan R (2015) Aptamer pseudoknot-functionalized electronic sensor for reagentless and single-step detection of immunoglobulin E in human serum. Anal Chem 87:3094–3098. https://doi.org/10.1021/acs.analchem.5b00041

    Article  Google Scholar 

  37. Hamaguchi N, Ellington A, Stanton M (2001) Aptamer beacons for the direct detection of proteins. Anal Biochem 294:126–131. https://doi.org/10.1006/abio.2001.5169

    Article  Google Scholar 

  38. Xiao Y, Lubin AA, Heeger AJ, Plaxco KW (2005) Label-free electronic detection of thrombin in blood serum by using an aptamer-based sensor. Angew Chem Int Ed 44:5456–5459. https://doi.org/10.1002/anie.200500989

    Article  Google Scholar 

  39. Debiais M, Lelievre A, Smietana M, Müller S (2020) Splitting aptamers and nucleic acid enzymes for the development of advanced biosensors. Nucleic Acids Res 48:3400–3422. https://doi.org/10.1093/nar/gkaa132

    Article  Google Scholar 

  40. Stojanovic MN, de Prada P, Landry DW (2000) Fluorescent sensors based on aptamer self-assembly. J Am Chem Soc 122:11547–11548. https://doi.org/10.1021/ja0022223

    Article  Google Scholar 

  41. Yang K-A, Barbu M, Halim M, Pallavi P, Kim B, Kolpashchikov DM, Pecic S, Taylor S, Worgall TS, Stojanovic MN (2014) Recognition and sensing of low-epitope targets via ternary complexes with oligonucleotides and synthetic receptors. Nat Chem 6:1003–1008. https://doi.org/10.1038/nchem.2058

    Article  Google Scholar 

  42. Oh SS, Plakos K, Lou X, Xiao Y, Soh HT (2010) In vitro selection of structure-switching, self-reporting aptamers. Proc Natl Acad Sci 107:14053–14058. https://doi.org/10.1073/pnas.1009172107

    Article  Google Scholar 

  43. Sanford AA, Rangel AE, Feagin TA, Lowery RG, Argueta-Gonzalez HS, Heemstra JM (2021) RE-SELEX: restriction enzyme-based evolution of structure-switching aptamer biosensors. Chem Sci 12:11692–11702. https://doi.org/10.1039/D1SC02715H

    Article  Google Scholar 

  44. Idili A, Arroyo-Currás N, Ploense KL, Csordas AT, Kuwahara M, Kippin TE, Plaxco KW (2019) Seconds-resolved pharmacokinetic measurements of the chemotherapeutic irinotecan: in situ in the living body. Chem Sci 10:8164–8170. https://doi.org/10.1039/c9sc01495k

    Article  Google Scholar 

  45. Dauphin-Ducharme P, Yang K, Arroyo-Currás N, Ploense KL, Zhang Y, Gerson J, Kurnik M, Kippin TE, Stojanovic MN, Plaxco KW (2019) Electrochemical aptamer-based sensors for improved therapeutic drug monitoring and high-precision, feedback-controlled drug delivery. ACS Sensors 4:2832–2837. https://doi.org/10.1021/acssensors.9b01616

    Article  Google Scholar 

  46. Wu Y, Ranallo S, Del Grosso E, Chamoro-Garcia A, Ennis HL, Milosavić N, Yang K, Kippin T, Ricci F, Stojanovic M, Plaxco KW (2022) Using spectroscopy to guide the adaptation of aptamers into electrochemical aptamer-based sensors. Bioconjug Chem. https://doi.org/10.1021/acs.bioconjchem.2c00275

  47. Arroyo-Currás N, Dauphin-Ducharme P, Scida K, Chávez JL (2020) From the beaker to the body: translational challenges for electrochemical, aptamer-based sensors. Anal Methods 12:1288–1310. https://doi.org/10.1039/D0AY00026D

    Article  Google Scholar 

  48. Bayat P, Nosrati R, Alibolandi M, Rafatpanah H, Abnous K, Khedri M, Ramezani M (2018) SELEX methods on the road to protein targeting with nucleic acid aptamers. Biochimie 154:132–155. https://doi.org/10.1016/j.biochi.2018.09.001

    Article  Google Scholar 

  49. Wu Y, Belmonte I, Sykes KS, Xiao Y, White RJ (2019) Perspective on the future role of aptamers in analytical chemistry. Anal Chem 91:15335–15344. https://doi.org/10.1021/acs.analchem.9b03853

    Article  Google Scholar 

  50. Keefe AD, Pai S, Ellington A (2010) Aptamers as therapeutics. Nat Rev Drug Discov 9:537–550. https://doi.org/10.1038/nrd3141

    Article  Google Scholar 

  51. Liu S, Xu Y, Jiang X, Tan H, Ying B (2022) Translation of aptamers toward clinical diagnosis and commercialization. Biosens Bioelectron 208:114168. https://doi.org/10.1016/j.bios.2022.114168

    Article  Google Scholar 

  52. Yu H, Yang W, Alkhamis O, Canoura J, Yang KA, Xiao Y (2018) In vitro isolation of small-molecule-binding aptamers with intrinsic dye-displacement functionality. Nucleic Acids Res 46:E43. https://doi.org/10.1093/NAR/GKY026

    Article  Google Scholar 

  53. Nutiu R, Li Y (2005) In vitro selection of structure-switching signaling aptamers. Angew Chem Int Ed 44:1061–1065. https://doi.org/10.1002/anie.200461848

    Article  Google Scholar 

  54. Martini L, Meyer AJ, Ellefson JW, Milligan JN, Forlin M, Ellington AD, Mansy SS (2015) In vitro selection for small-molecule-triggered Strand displacement and riboswitch activity. ACS Synth Biol 4:1144–1150. https://doi.org/10.1021/acssynbio.5b00054

    Article  Google Scholar 

  55. Stoltenburg R, Nikolaus N, Strehlitz B (2012) Capture-SELEX: selection of DNA aptamers for aminoglycoside antibiotics. J Anal Methods Chem 1. https://doi.org/10.1155/2012/415697

  56. Qu H, Csordas AT, Wang J, Oh SS, Eisenstein MS, Soh HT (2016) Rapid and label-free strategy to isolate aptamers for metal ions. ACS Nano 10:7558–7565. https://doi.org/10.1021/acsnano.6b02558

    Article  Google Scholar 

  57. Li JJ, Fang X, Schuster SM, Tan W (2000) Molecular beacons: a novel approach to detect protein – DNA interactions. Angew Chem Int Ed 39:1049–1052. https://doi.org/10.1002/(SICI)1521-3773(20000317)39:6<1049::AID-ANIE1049>3.0.CO;2-2

    Article  Google Scholar 

  58. Nutiu R, Li Y (2003) Structure-switching signaling aptamers. J Am Chem Soc 125:4771–4778. https://doi.org/10.1021/ja028962o

    Article  Google Scholar 

  59. Li JJ, Fang X, Tan W (2002) Molecular aptamer beacons for real-time protein recognition. Biochem Biophys Res Commun 292:31–40. https://doi.org/10.1006/bbrc.2002.6581

    Article  Google Scholar 

  60. Giannetti A, Tombelli S (2021) Aptamer optical switches: from biosensing to intracellular sensing. Sens Actuators Rep 3. https://doi.org/10.1016/j.snr.2021.100030

  61. Deng B, Lin Y, Wang C, Li F, Wang Z, Zhang H, Li XF, Le XC (2014) Aptamer binding assays for proteins: the thrombin example – a review. Anal Chim Acta 837:1–15. https://doi.org/10.1016/j.aca.2014.04.055

    Article  Google Scholar 

  62. Zheng J, Yang R, Shi M, Wu C, Fang X, Li Y, Li J, Tan W (2015) Rationally designed molecular beacons for bioanalytical and biomedical applications. Chem Soc Rev 44:3036–3055. https://doi.org/10.1039/c5cs00020c

    Article  Google Scholar 

  63. Li L, Jiang Y, Cui C, Yang Y, Zhang P, Stewart K, Pan X, Li X, Yang L, Qiu L, Tan W (2018) Modulating aptamer specificity with pH-responsive DNA bonds. J Am Chem Soc 140:13335–13339. https://doi.org/10.1021/jacs.8b08047

    Article  Google Scholar 

  64. Li Y, Fang Q, Miao X, Zhang X, Zhao Y, Yan J, Zhang Y, Wu R, Nie B, Hirtz M, Liu J (2019) Aptamer conformation-cooperated enzyme-assisted surface-enhanced Raman scattering enabling ultrasensitive detection of cell surface protein biomarkers in blood samples. ACS Sensors 4:2605–2614. https://doi.org/10.1021/acssensors.9b00604

    Article  Google Scholar 

  65. Huizenga DE, Szostak JW (1995) A DNA aptamer that binds adenosine and ATP. Biochemistry 34:656–665. https://doi.org/10.1021/bi00002a033

    Article  Google Scholar 

  66. Chen A, Yan M, Yang S (2016) Split aptamers and their applications in sandwich aptasensors. Trends Anal Chem 80:581–593. https://doi.org/10.1016/j.trac.2016.04.006

    Article  Google Scholar 

  67. Liu J, Liu Y, Yang X, Wang K, Wang Q, Shi H, Li L (2013) Exciton energy transfer-based fluorescent sensing through aptamer-programmed self-assembly of quantum dots. Anal Chem 85:11121–11128. https://doi.org/10.1021/ac403023p

    Article  Google Scholar 

  68. Zhang QL, Wang LL, Liu Y, Lin J, Xu L (2021) A kinetically controlled platform for ligand-oligonucleotide transduction. Nat Commun 12:1–11. https://doi.org/10.1038/s41467-021-24962-4

    Article  Google Scholar 

  69. Zheng D, Seferos DS, Giljohann DA, Patel PC, Mirkin CA (2009) Aptamer nano-flares for molecular detection in living cells. Nano Lett 9:3258–3261. https://doi.org/10.1021/nl901517b

    Article  Google Scholar 

  70. Shi H, He X, Wang K, Wu X, Ye X, Guo Q, Tan W, Qing Z, Yang X, Zhou B (2011) Activatable aptamer probe for contrast-enhanced in vivo cancer imaging based on cell membrane protein-triggered conformation alteration. Proc Natl Acad Sci U S A 108:3900–3905. https://doi.org/10.1073/pnas.1016197108

    Article  Google Scholar 

  71. Wang J, Zhu G, You M, Song E, Shukoor MI, Zhang K, Altman MB, Chen Y, Zhu Z, Huang CZ, Tan W (2012) Assembly of aptamer switch probes and photosensitizer on gold nanorods for targeted photothermal and photodynamic cancer therapy. ACS Nano 6:5070–5077. https://doi.org/10.1021/nn300694v

    Article  Google Scholar 

  72. Zhang J, Smaga LP, Satyavolu NSR, Chan J, Lu Y (2017) DNA aptamer-based activatable probes for photoacoustic imaging in living mice. J Am Chem Soc 139:17225–17228. https://doi.org/10.1021/jacs.7b07913

    Article  Google Scholar 

  73. Baker BR, Lai RY, Wood MS, Doctor EH, Heeger AJ, Plaxco KW (2006) An electronic, aptamer-based small-molecule sensor for the rapid, label-free detection of cocaine in adulterated samples and biological fluids. J Am Chem Soc 128:3138–3139. https://doi.org/10.1021/ja056957p

    Article  Google Scholar 

  74. Xiao Y, Piorek BD, Plaxco KW, Heegert AJ (2005) A reagentless signal-on architecture for electronic, aptamer-based sensors via target-induced strand displacement. J Am Chem Soc 127:17990–17991. https://doi.org/10.1021/ja056555h

    Article  Google Scholar 

  75. Plaxco KW, Idili A, Gerson J, Kippin T (2021) Seconds-resolved, in situ measurements of plasma phenylalanine disposition kinetics in living rats. Anal Chem 93:4023–4032. https://doi.org/10.1021/acs.analchem.0c05024

    Article  Google Scholar 

  76. Arroyo-Currás N, Dauphin-Ducharme P, Ortega G, Ploense KL, Kippin TE, Plaxco KW (2018) Subsecond-resolved molecular measurements in the living body using chronoamperometrically interrogated aptamer-based sensors. ACS Sensors 3:360–366. https://doi.org/10.1021/acssensors.7b00787

    Article  Google Scholar 

  77. Li H, Dauphin-Ducharme P, Arroyo-Currás N, Tran CH, Vieira PA, Li S, Shin C, Somerson J, Kippin TE, Plaxco KW (2017) A biomimetic phosphatidylcholine-terminated monolayer greatly improves the in vivo performance of electrochemical aptamer-based sensors. Angew Chem Int Ed 56:7492–7495. https://doi.org/10.1002/anie.201700748

    Article  Google Scholar 

  78. Arroyo-Currás N, Somerson J, Vieira PA, Ploense KL, Kippin TE, Plaxco KW (2017) Real-time measurement of small molecules directly in awake, ambulatory animals. Proc Natl Acad Sci U S A 114:645–650. https://doi.org/10.1073/pnas.1613458114

    Article  Google Scholar 

  79. White RJ, Phares N, Lubin AA, Xiao Y, Plaxco KW (2008) Optimization of electrochemical aptamer-based sensors via optimization of probe packing density and surface chemistry. Langmuir. https://doi.org/10.1021/la800801v

  80. Chamorro-Garcia A, Gerson J, Flatebo C, Fetter L, Downs AM, Emmons N, Ennis HL, Milosavić N, Yang K, Stojanovic M, Ricci F, Kippin TE, Plaxco KW (2023) Real-time, seconds-resolved measurements of plasma methotrexate in situ in the living body. ACS Sensors 8:150–157. https://doi.org/10.1021/acssensors.2c01894

    Article  Google Scholar 

  81. Xiao Y, Lai RY, Plaxco KW (2007) Preparation of electrode-immobilized, redox-modified oligonucleotides for electrochemical DNA and aptamer-based sensing. Nat Protoc 2:2875–2880. https://doi.org/10.1038/nprot.2007.413

    Article  Google Scholar 

  82. Lai RY, Plaxco KW, Heeger AJ (2007) Aptamer-based electrochemical detection of picomolar platelet-derived growth factor directly in blood serum. Anal Chem 79:229–233. https://doi.org/10.1021/ac061592s

    Article  Google Scholar 

  83. Liu Y, Tuleouva N, Ramanculov E, Revzin A (2010) Aptamer-based electrochemical biosensor for interferon gamma detection. Anal Chem 82:8131–8136. https://doi.org/10.1021/ac101409t

    Article  Google Scholar 

  84. Liu Y, Zhou Q, Revzin A (2013) An aptasensor for electrochemical detection of tumor necrosis factor in human blood. Analyst 138:4321–4326. https://doi.org/10.1039/C3AN00818E

    Article  Google Scholar 

  85. Ma F, Ho C, Cheng AKH, Yu H-Z (2013) Immobilization of redox-labeled hairpin DNA aptamers on gold: electrochemical quantitation of epithelial tumor marker mucin 1. Electrochim Acta 110:139–145. https://doi.org/10.1016/j.electacta.2013.02.088

    Article  Google Scholar 

  86. Zhao S, Yang W, Lai RY (2011) A folding-based electrochemical aptasensor for detection of vascular endothelial growth factor in human whole blood. Biosens Bioelectron 26:2442–2447. https://doi.org/10.1016/j.bios.2010.10.029

    Article  Google Scholar 

  87. Idili A, Parolo C, Alvarez-Diduk R, Merkoçi A (2021) Rapid and efficient detection of the SARS-CoV-2 spike protein using an electrochemical aptamer-based sensor. ACS Sensors 6:3093–3101. https://doi.org/10.1021/acssensors.1c01222

    Article  Google Scholar 

  88. Ricci F, Vallée-Bélisle A, Simon AJ, Porchetta A, Plaxco KW (2016) Using Nature’s “Tricks” to rationally tune the binding properties of biomolecular receptors. Acc Chem Res 49:1884–1892. https://doi.org/10.1021/acs.accounts.6b00276

    Article  Google Scholar 

  89. Ortega G, Chamorro-Garcia A, Ricci F, Plaxco KW (2023) On the rational design of cooperative receptors. Annu Rev Biophys. https://doi.org/10.1146/annurev-biophys-091222-082247

  90. Luo X, Morrin A, Killard AJ, Smyth MR (2006) Application of nanoparticles in electrochemical sensors and biosensors. Electroanalysis 18:319–326. https://doi.org/10.1002/elan.200503415

    Article  Google Scholar 

  91. Zhu C, Yang G, Li H, Du D, Lin Y (2015) Electrochemical sensors and biosensors based on nanomaterials and nanostructures. Anal Chem 87:230–249. https://doi.org/10.1021/ac5039863

    Article  Google Scholar 

  92. Bin X, Sargent EH, Kelley SO (2010) Nanostructuring of sensors determines the efficiency of biomolecular capture. Anal Chem 82:5928–5931. https://doi.org/10.1021/ac101164n

    Article  Google Scholar 

  93. Farnham PJ (2009) Insights from genomic profiling of transcription factors. Nat Rev Genet 10:605–616. https://doi.org/10.1038/nrg2636

    Article  Google Scholar 

  94. Vallée-Bélisle A, Bonham AJ, Reich NO, Ricci F, Plaxco KW (2011) Transcription factor beacons for the quantitative detection of DNA binding activity. J Am Chem Soc 133:13836–13839. https://doi.org/10.1021/ja204775k

    Article  Google Scholar 

  95. Bonham AJ, Hsieh K, Ferguson BS, Vallée-Bélisle A, Ricci F, Soh HT, Plaxco KW (2012) Quantification of transcription factor binding in cell extracts using an electrochemical, structure-switching biosensor. J Am Chem Soc 134:3346–3348. https://doi.org/10.1021/ja2115663

    Article  Google Scholar 

  96. Li B, Xie S, Xia A, Suo T, Huang H, Zhang X, Chen Y, Zhou X (2020) Recent advance in the sensing of biomarker transcription factors. Trends Anal Chem 132:116039. https://doi.org/10.1038/nrg2636

    Article  Google Scholar 

  97. Bertucci A, Guo J, Oppmann N, Glab A, Ricci F, Caruso F, Cavalieri F (2018) Probing transcription factor binding activity and downstream gene silencing in living cells with a DNA nanoswitch. Nanoscale 10:2034–2044. https://doi.org/10.1039/c7nr07814e

    Article  Google Scholar 

  98. Glab A, Bertucci A, Martino F, Wojnilowicz M, Amodio A, Venanzi M, Ricci F, Forte G, Caruso F, Cavalieri F (2020) Dissecting the intracellular signalling and fate of a DNA nanosensor by super-resolution and quantitative microscopy. Nanoscale 12:15402–15413. https://doi.org/10.1039/d0nr03087b

    Article  Google Scholar 

  99. Bertucci A, Porchetta A, Del Grosso E, Patiño T, Idili A, Ricci F (2020) Protein-controlled actuation of dynamic nucleic acid networks by using synthetic DNA translators. Angew Chem 132:20758–20762. https://doi.org/10.1002/ange.202008553

    Article  Google Scholar 

  100. Adornetto G, Porchetta A, Palleschi G, Plaxco KW, Ricci F (2015) A general approach to the design of allosteric, transcription factor-regulated DNAzymes. Chem Sci 6:3692–3696. https://doi.org/10.1039/C5SC00228A

    Article  Google Scholar 

  101. Li B, Chen Y, Wang J, Lu Q, Zhu W, Luo J, Hong J, Zhou X (2019) Detecting transcription factors with allosteric DNA-silver nanocluster switches. Anal Chim Acta 1048:168–177. https://doi.org/10.1016/j.aca.2018.10.023

    Article  Google Scholar 

  102. Ciccia A, Elledge SJ (2010) The DNA damage response: making it safe to play with knives. Mol Cell 40:179–204. https://doi.org/10.1016/j.molcel.2010.09.019

    Article  Google Scholar 

  103. Hoeijmakers JHJ (2001) Genome maintenance mechanisms for preventing cancer. Nature 411:366–374. https://doi.org/10.1038/35077232

    Article  Google Scholar 

  104. Parsons JL, Tait PS, Finch D, Dianova II, Allinson SL, Dianov GL (2008) CHIP-mediated degradation and DNA damage-dependent stabilization regulate base excision repair proteins. Mol Cell 29:477–487. https://doi.org/10.1016/j.molcel.2007.12.027

    Article  Google Scholar 

  105. Kunkel TA, Erie DA (2005) DNA mismatch repair. Annu Rev Biochem 74:681–710. https://doi.org/10.1146/annurev.biochem.74.082803.133243

    Article  Google Scholar 

  106. de Laat WL, Jaspers NGJ, Hoeijmakers JHJ (1999) Molecular mechanism of nucleotide excision repair. Genes Dev 13:768–785. https://genesdev.cshlp.org/content/13/7/768

    Google Scholar 

  107. Gerson SL (2004) MGMT: its role in cancer aetiology and cancer therapeutics. Nat Rev Cancer 4:296–307. https://doi.org/10.1038/nrc1319

    Article  Google Scholar 

  108. Mateo J, Carreira S, Sandhu S, Miranda S, Mossop H, Perez-Lopez R, Nava Rodrigues D, Robinson D, Omlin A, Tunariu N, Boysen G, Porta N, Flohr P, Gillman A, Figueiredo I, Paulding C, Seed G, Jain S, Ralph C, Protheroe A, Hussain S, Jones R, Elliott T, McGovern U, Bianchini D, Goodall J, Zafeiriou Z, Williamson CT, Ferraldeschi R, Riisnaes R, Ebbs B, Fowler G, Roda D, Yuan W, Wu Y-M, Cao X, Brough R, Pemberton H, A’Hern R, Swain A, Kunju LP, Eeles R, Attard G, Lord CJ, Ashworth A, Rubin MA, Knudsen KE, Feng FY, Chinnaiyan AM, Hall E, de Bono JS (2015) DNA-repair defects and olaparib in metastatic prostate cancer. N Engl J Med 373:1697–1708. https://doi.org/10.1056/NEJMoa1506859

    Article  Google Scholar 

  109. Kiwerska K, Szyfter K (2019) DNA repair in cancer initiation, progression, and therapy – a double-edged sword. J Appl Genet 60:329–334. https://doi.org/10.1007/s13353-019-00516-9

    Article  Google Scholar 

  110. Helleday T, Petermann E, Lundin C, Hodgson B, Sharma RA (2008) DNA repair pathways as targets for cancer therapy. Nat Rev Cancer 8:193–204. https://doi.org/10.1038/nrc2342

    Article  Google Scholar 

  111. Paz-Elizur T, Elinger D, Leitner-Dagan Y, Blumenstein S, Krupsky M, Berrebi A, Schechtman E, Livneh Z (2007) Development of an enzymatic DNA repair assay for molecular epidemiology studies: distribution of OGG activity in healthy individuals. DNA Repair (Amst) 6:45–60. https://doi.org/10.1016/j.dnarep.2006.08.003

    Article  Google Scholar 

  112. Wilson DL, Kool ET (2018) Fluorescent probes of DNA repair. ACS Chem Biol 13:1721–1733. https://doi.org/10.1021/acschembio.7b00919

    Article  Google Scholar 

  113. Hu D, Huang Z, Pu F, Ren J, Qu X (2011) A label-free, quadruplex-based functional molecular beacon (LFG4-MB) for fluorescence turn-on detection of DNA and nuclease. Chem A Eur J 17:1635–1641. https://doi.org/10.1002/chem.201001331

    Article  Google Scholar 

  114. Lu YJ, Hu DP, Deng Q, Wang ZY, Huang BH, Fang YX, Zhang K, Wong WL (2015) Sensitive and selective detection of uracil-DNA glycosylase activity with a new pyridinium luminescent switch-on molecular probe. Analyst 140:5998–6004. https://doi.org/10.1039/c5an01158b

    Article  Google Scholar 

  115. Leung KH, He HZ, Ma VPY, Zhong HJ, Chan DSH, Zhou J, Mergny JL, Leung CH, Ma DL (2013) Detection of base excision repair enzyme activity using a luminescent g-quadruplex selective switch-on probe. Chem Commun 49:5630–5632. https://doi.org/10.1039/c3cc41129j

    Article  Google Scholar 

  116. He HZ, Leung KH, Wang W, Chan DSH, Leung CH, Ma DL (2014) Label-free luminescence switch-on detection of T4 polynucleotide kinase activity using a G-quadruplex-selective probe. Chem Commun 50:5313–5315. https://doi.org/10.1039/c3cc47444e

    Article  Google Scholar 

  117. Lu L, Shiu-Hin Chan D, Kwong DWJ, He H-Z, Leung C-H, Ma D-L (2014) Detection of nicking endonuclease activity using a G-quadruplex-selective luminescent switch-on probe. Chem Sci 5:4561–4568. https://doi.org/10.1039/C4SC02032D

    Article  Google Scholar 

  118. Farag N, Mattossovich R, Merlo R, Nierzwicki Ł, Palermo G, Porchetta A, Perugino G, Ricci F (2021) Folding-upon-repair DNA nanoswitches for monitoring the activity of DNA repair enzymes. Angew Chem Int Ed 60:7283–7289. https://doi.org/10.1002/anie.202016223

    Article  Google Scholar 

  119. Wang X, Yi X, Huang Z, He J, Wu Z, Chu X, Jiang JH (2021) “Repaired and Activated” DNAzyme enables the monitoring of DNA alkylation repair in live cells. Angew Chem Int Ed 60:19889–19896. https://doi.org/10.1002/anie.202106557

    Article  Google Scholar 

  120. Huang J, Wang J, Wu Z, He J, Jiang JH (2022) Profiling demethylase activity using epigenetically inactivated DNAzyme. Biosens Bioelectron 207. https://doi.org/10.1016/j.bios.2022.114186

  121. Seeman NC, Sleiman HF (2017) DNA nanotechnology. Nat Rev Mater 3:17068. https://doi.org/10.1038/natrevmats.2017.68

    Article  Google Scholar 

  122. Lu C-H, Cecconello A, Willner I (2016) Recent advances in the synthesis and functions of reconfigurable interlocked DNA nanostructures. J Am Chem Soc 138:5172–5185. https://doi.org/10.1021/jacs.6b00694

    Article  Google Scholar 

  123. Hong F, Zhang F, Liu Y, Yan H (2017) DNA origami: scaffolds for creating higher order structures. Chem Rev 117:12584–12640. https://doi.org/10.1021/acs.chemrev.6b00825

    Article  Google Scholar 

  124. Takahashi S, Sugimoto N (2021) Watson–Crick versus Hoogsteen base pairs: chemical strategy to encode and express genetic information in life. Acc Chem Res 54:2110–2120. https://doi.org/10.1021/acs.accounts.0c00734

    Article  Google Scholar 

  125. Zhang H, Li F, Dever B, Wang C, Li X-F, Le XC (2013) Assembling DNA through affinity binding to achieve ultrasensitive protein detection. Angew Chem Int Ed 52:10698–10705. https://doi.org/10.1002/anie.201210022

    Article  Google Scholar 

  126. Seeman NC (1982) Nucleic acid junctions and lattices. J Theor Biol 99:237–247. https://doi.org/10.1016/0022-5193(82)90002-9

    Article  Google Scholar 

  127. Seeman NC (2003) DNA in a material world. Nature 421:427–431. https://doi.org/10.1038/nature01406

    Article  Google Scholar 

  128. Green LN, Subramanian HKK, Mardanlou V, Kim J, Hariadi RF, Franco E (2019) Autonomous dynamic control of DNA nanostructure self-assembly. Nat Chem 11:510–520. https://doi.org/10.1038/s41557-019-0251-8

    Article  Google Scholar 

  129. Gentile S, Del Grosso E, Prins LJ, Ricci F (2021) Reorganization of self-assembled DNA-based polymers using orthogonally addressable building blocks. Angew Chem Int Ed 60:12911–12917. https://doi.org/10.1002/anie.202101378

    Article  Google Scholar 

  130. Ranallo S, Sorrentino D, Ricci F (2019) Orthogonal regulation of DNA nanostructure self-assembly and disassembly using antibodies. Nat Commun 10:5509. https://doi.org/10.1038/s41467-019-13104-6

    Article  Google Scholar 

  131. Rothemund PWK (2006) Folding DNA to create nanoscale shapes and patterns. Nature 440:297–302. https://doi.org/10.1038/nature04586

    Article  Google Scholar 

  132. Dey S, Fan C, Gothelf KV, Li J, Lin C, Liu L, Liu N, Nijenhuis MAD, Saccà B, Simmel FC, Yan H, Zhan P (2021) DNA origami. Nat Rev Methods Prim 1:13. https://doi.org/10.1038/s43586-020-00009-8

    Article  Google Scholar 

  133. Douglas SM, Marblestone AH, Teerapittayanon S, Vazquez A, Church GM, Shih WM (2009) Rapid prototyping of 3D DNA-origami shapes with caDNAno. Nucleic Acids Res 37:5001–5006. https://doi.org/10.1093/nar/gkp436

    Article  Google Scholar 

  134. Zhao Z, Fu J, Dhakal S, Johnson-Buck A, Liu M, Zhang T, Woodbury NW, Liu Y, Walter NG, Yan H (2016) Nanocaged enzymes with enhanced catalytic activity and increased stability against protease digestion. Nat Commun 7:10619. https://doi.org/10.1038/ncomms10619

    Article  Google Scholar 

  135. Ijäs H, Hakaste I, Shen B, Kostiainen MA, Linko V (2019) Reconfigurable DNA origami nanocapsule for pH-controlled encapsulation and display of cargo. ACS Nano 13:5959–5967. https://doi.org/10.1021/acsnano.9b01857

    Article  Google Scholar 

  136. Grossi G, Dalgaard Ebbesen Jepsen M, Kjems J, Andersen ES (2017) Control of enzyme reactions by a reconfigurable DNA nanovault. Nat Commun 8:992. https://doi.org/10.1038/s41467-017-01072-8

    Article  Google Scholar 

  137. Lanphere C, Offenbartl-Stiegert D, Dorey A, Pugh G, Georgiou E, Xing Y, Burns JR, Howorka S (2021) Design, assembly, and characterization of membrane-spanning DNA nanopores. Nat Protoc 16:86–130. https://doi.org/10.1038/s41596-020-0331-7

    Article  Google Scholar 

  138. Xing Y, Dorey A, Jayasinghe L, Howorka S (2022) Highly shape- and size-tunable membrane nanopores made with DNA. Nat Nanotechnol 17:708–713. https://doi.org/10.1038/s41565-022-01116-1

    Article  Google Scholar 

  139. Selnihhin D, Sparvath SM, Preus S, Birkedal V, Andersen ES (2018) Multifluorophore DNA origami beacon as a biosensing platform. ACS Nano 12:5699–5708. https://doi.org/10.1021/acsnano.8b01510

    Article  Google Scholar 

  140. Cash KJ, Ricci F, Plaxco KW (2009) An electrochemical sensor for the detection of protein−small molecule interactions directly in serum and other complex matrices. J Am Chem Soc 131:6955–6957. https://doi.org/10.1021/ja9011595

    Article  Google Scholar 

  141. Bonham AJ, Paden NG, Ricci F, Plaxco KW (2013) Detection of IP-10 protein marker in undiluted blood serum via an electrochemical E-DNA scaffold sensor. Analyst 138:5580–5583. https://doi.org/10.1039/C3AN01079A

    Article  Google Scholar 

  142. Ogden NE, Kurnik M, Parolo C, Plaxco KW (2019) An electrochemical scaffold sensor for rapid syphilis diagnosis. Analyst 144:5277–5283. https://doi.org/10.1039/C9AN00455F

    Article  Google Scholar 

  143. Kang D, Parolo C, Sun S, Ogden NE, Dahlquist FW, Plaxco KW (2018) Expanding the scope of protein-detecting electrochemical DNA “Scaffold” sensors. ACS Sensors 3:1271–1275. https://doi.org/10.1021/acssensors.8b00311

    Article  Google Scholar 

  144. Parolo C, Greenwood AS, Ogden NE, Kang D, Hawes C, Ortega G, Arroyo-Currás N, Plaxco KW (2020) E-DNA scaffold sensors and the reagentless, single-step, measurement of HIV-diagnostic antibodies in human serum. Microsyst Nanoeng 6:13. https://doi.org/10.1038/s41378-019-0119-5

    Article  Google Scholar 

  145. Rant U, Arinaga K, Fujita S, Yokoyama N, Abstreiter G, Tornow M (2004) Dynamic electrical switching of DNA layers on a metal surface. Nano Lett 4:2441–2445. https://doi.org/10.1021/nl0484494

    Article  Google Scholar 

  146. Langer A, Hampel PA, Kaiser W, Knezevic J, Welte T, Villa V, Maruyama M, Svejda M, Jähner S, Fischer F, Strasser R, Rant U (2013) Protein analysis by time-resolved measurements with an electro-switchable DNA chip. Nat Commun 4:2099. https://doi.org/10.1038/ncomms3099

    Article  Google Scholar 

  147. Das J, Gomis S, Chen JB, Yousefi H, Ahmed S, Mahmud A, Zhou W, Sargent EH, Kelley SO (2021) Reagentless biomolecular analysis using a molecular pendulum. Nat Chem 13:428–434. https://doi.org/10.1038/s41557-021-00644-y

    Article  Google Scholar 

  148. Yousefi H, Mahmud A, Chang D, Das J, Gomis S, Chen JB, Wang H, Been T, Yip L, Coomes E, Li Z, Mubareka S, McGeer A, Christie N, Gray-Owen S, Cochrane A, Rini JM, Sargent EH, Kelley SO (2021) Detection of SARS-CoV-2 viral particles using direct, reagent-free electrochemical sensing. J Am Chem Soc 143:1722–1727. https://doi.org/10.1021/jacs.0c10810

    Article  Google Scholar 

  149. Idili A, Bonini A, Parolo C, Alvarez-Diduk R, Di Francesco F, Merkoçi A (2022) A programmable electrochemical Y-shaped DNA scaffold sensor for the single-step detection of antibodies and proteins in untreated biological fluids. Adv Funct Mater:2201881. https://doi.org/10.1002/adfm.202201881

  150. Mahshid SS, Camiré S, Ricci F, Vallée-Bélisle A (2015) A highly selective electrochemical DNA-based sensor that employs steric hindrance effects to detect proteins directly in whole blood. J Am Chem Soc 137:15596–15599. https://doi.org/10.1021/jacs.5b04942

    Article  Google Scholar 

  151. Mahshid SS, Vallée-Bélisle A, Kelley SO (2017) Biomolecular steric hindrance effects are enhanced on nanostructured microelectrodes. Anal Chem 89:9751–9757. https://doi.org/10.1021/acs.analchem.7b01595

    Article  Google Scholar 

  152. Mahshid SS, Ricci F, Kelley SO, Vallée-Bélisle A (2017) Electrochemical DNA-based immunoassay that employs steric hindrance to detect small molecules directly in whole blood. ACS Sensors 2:718–723. https://doi.org/10.1021/acssensors.7b00176

    Article  Google Scholar 

  153. Zhou W, Mahshid SS, Wang W, Vallée-Bélisle A, Zandstra PW, Sargent EH, Kelley SO (2017) Steric hindrance assay for secreted factors in stem cell culture. ACS Sensors 2:495–500. https://doi.org/10.1021/acssensors.7b00136

    Article  Google Scholar 

  154. Mocenigo M, Porchetta A, Rossetti M, Brass E, Tonini L, Puzzi L, Tagliabue E, Triulzi T, Marini B, Ricci F, Ippodrino R (2020) Rapid, cost-effective peptide/nucleic acid-based platform for therapeutic antibody monitoring in clinical samples. ACS Sens 5:3109–3115. https://doi.org/10.1021/acssensors.0c01046

    Article  Google Scholar 

  155. Porchetta A, Ippodrino R, Marini B, Caruso A, Caccuri F, Ricci F (2018) Programmable nucleic acid nanoswitches for the rapid, single-step detection of antibodies in bodily fluids. J Am Chem Soc 140:947–953. https://doi.org/10.1021/jacs.7b09347

    Article  Google Scholar 

  156. Rossetti M, Ippodrino R, Marini B, Palleschi G, Porchetta A (2018) Antibody-mediated small molecule detection using programmable DNA-switches. Anal Chem 90:8196–8201. https://doi.org/10.1021/acs.analchem.8b01584

    Article  Google Scholar 

  157. Baranda Pellejero L, Mahdifar M, Ercolani G, Watson J, Brown T, Ricci F (2020) Using antibodies to control DNA-templated chemical reactions. Nat Commun 11:6242. https://doi.org/10.1038/s41467-020-20024-3

    Article  Google Scholar 

  158. Baranda Pellejero L, Nijenhuis MAD, Ricci F, Gothelf KV (2022) Protein-templated reactions using DNA-antibody conjugates. Small:2200971. https://doi.org/10.1002/smll.202200971

  159. Rossetti M, Brannetti S, Mocenigo M, Marini B, Ippodrino R, Porchetta A (2020) Harnessing effective molarity to design an electrochemical DNA-based platform for clinically relevant antibody detection. Angew Chem Int Ed 59:14973–14978. https://doi.org/10.1002/anie.202005124

    Article  Google Scholar 

  160. Hu J, Yu Y, Brooks JC, Godwin LA, Somasundaram S, Torabinejad F, Kim J, Shannon C, Easley CJ (2014) A reusable electrochemical proximity assay for highly selective, real-time protein quantitation in biological matrices. J Am Chem Soc 136:8467–8474. https://doi.org/10.1021/ja503679q

    Article  Google Scholar 

  161. Hu J, Wang T, Kim J, Shannon C, Easley CJ (2012) Quantitation of femtomolar protein levels via direct readout with the electrochemical proximity assay. J Am Chem Soc 134:7066–7072. https://doi.org/10.1021/ja3000485

    Article  Google Scholar 

  162. Wang X, Gao H, Qi H, Gao Q, Zhang C (2018) Proximity hybridization-regulated immunoassay for cell surface protein and protein-overexpressing cancer cells via electrochemiluminescence. Anal Chem 90:3013–3018. https://doi.org/10.1021/acs.analchem.7b04359

    Article  Google Scholar 

  163. Wen G, Ju H (2016) Enhanced photoelectrochemical proximity assay for highly selective protein detection in biological matrixes. Anal Chem 88:8339–8345. https://doi.org/10.1021/acs.analchem.6b02740

    Article  Google Scholar 

  164. Ren K, Wu J, Yan F, Ju H (2014) Ratiometric electrochemical proximity assay for sensitive one-step protein detection. Sci Rep 4:4360. https://doi.org/10.1038/srep04360

    Article  Google Scholar 

  165. Bezerra AB, Kurian ASNN, Easley CJ (2021) Nucleic-acid driven cooperative bioassays using probe proximity or split-probe techniques. Anal Chem 93:198–214. https://doi.org/10.1021/acs.analchem.0c04364

    Article  Google Scholar 

  166. Vallée-Bélisle A, Ricci F, Uzawa T, Xia F, Plaxco KW (2012) Bioelectrochemical switches for the quantitative detection of antibodies directly in whole blood. J Am Chem Soc 134:15197–15200. https://doi.org/10.1021/ja305720w

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro Porchetta .

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chamorro, A., Rossetti, M., Bagheri, N., Porchetta, A. (2023). Rationally Designed DNA-Based Scaffolds and Switching Probes for Protein Sensing. In: Advances in Biochemical Engineering/Biotechnology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10_2023_235

Download citation

  • DOI: https://doi.org/10.1007/10_2023_235

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

Publish with us

Policies and ethics