Skip to main content

Sustainable Production of Pigments from Cyanobacteria

  • Chapter
  • First Online:
Cyanobacteria in Biotechnology

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 183))

Abstract

Pigments are intensely coloured compounds used in many industries to colour other materials. The demand for naturally synthesised pigments is increasing and their production can be incorporated into circular bioeconomy approaches. Natural pigments are produced by bacteria, cyanobacteria, microalgae, macroalgae, plants and animals. There is a huge unexplored biodiversity of prokaryotic cyanobacteria which are microscopic phototrophic microorganisms that have the ability to capture solar energy and CO2 and use it to synthesise a diverse range of sugars, lipids, amino acids and biochemicals including pigments. This makes them attractive for the sustainable production of a wide range of high-value products including industrial chemicals, pharmaceuticals, nutraceuticals and animal-feed supplements. The advantages of cyanobacteria production platforms include comparatively high growth rates, their ability to use freshwater, seawater or brackish water and the ability to cultivate them on non-arable land. The pigments derived from cyanobacteria and microalgae include chlorophylls, carotenoids and phycobiliproteins that have useful properties for advanced technical and commercial products. Development and optimisation of strain-specific pigment-based cultivation strategies support the development of economically feasible pigment biorefinery scenarios with enhanced pigment yields, quality and price. Thus, this chapter discusses the origin, properties, strain selection, production techniques and market opportunities of cyanobacterial pigments.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ASE:

Accelerated solvent extraction

ATP:

Adenosine triphosphate

BDW:

Biomass dry weight

CAGR:

Compound annual growth rate

Chl:

Chlorophyll

Cytb6:

Cytochrome b6

EFSA:

European Food Safety Authority

ETC:

Electron transport chain

Fd:

Ferredoxin

FDA:

Food and Drug Administration

FNR:

Ferredoxin NADP+ reductase

FRP:

Fluorescence recovery protein

HPH:

High-pressure homogenisation

HRP:

High-rate pond

LCA:

Life-cycle assessment

LCM:

Linker (protein) core membrane

MEP:

Methylerythritol phosphate

NADPH:

Nicotinamide adenine dinucleotide phosphate

NPQ:

Non-photochemical quenching

OCP:

Orange carotenoid protein

PAR:

Photosynthetically active radiation

PBP:

Phycobiliproteins

PBR:

Photobioreactor

PC:

Phycocyanin

PCB:

Phycocyanobilin

PE:

Phycoerythrin

PEB:

Phycoerythrobilin

PEF:

Pulsed-electric field

PLE:

Pressurised liquid extraction

PQ:

Plastoquinone

PS:

Photosystem

PUB:

Phycourobilin

PVB:

Phycoviolobilin

RC:

Reaction centre

SCCO2:

Super critical carbon dioxide

TEA:

Techno-economic assessment

References

  1. McCarthy T (2013) The story of earth & life: a southern African perspective on a 4.6-billion-year journey. Penguin Random House South Africa

    Google Scholar 

  2. Ringsmuth AK, Landsberg MJ, Hankamer B (2016) Can photosynthesis enable a global transition from fossil fuels to solar fuels, to mitigate climate change and fuel-supply limitations? Renew Sustain Energy Rev 62:134–163

    CAS  Google Scholar 

  3. Blankenship RE, Hartman H (1998) The origin and evolution of oxygenic photosynthesis. Trends Biochem Sci 23(3):94–97

    CAS  PubMed  Google Scholar 

  4. Grossman AR et al (1995) Light-harvesting complexes in oxygenic photosynthesis: diversity, control, and evolution. Annu Rev Genet 29(1):231–288

    CAS  PubMed  Google Scholar 

  5. Wilmotte A (1994) Molecular evolution and taxonomy of the cyanobacteria. In: The molecular biology of cyanobacteria. Springer, pp 1–25

    Google Scholar 

  6. Karapetyan N (1974) Evolution of photosystems of photosynthetic organisms. In: Cosmochemical evolution and the origins of life. Springer, pp 253–256

    Google Scholar 

  7. Grotjohann I, Jolley C, Fromme P (2004) Evolution of photosynthesis and oxygen evolution: implications from the structural comparison of photosystems I and II. Phys Chem Chem Phys 6(20):4743–4753

    CAS  Google Scholar 

  8. Hoek C et al (1995) Algae: an introduction to phycology. Cambridge University Press

    Google Scholar 

  9. Hariskos I, Posten C (2014) Biorefinery of microalgae–opportunities and constraints for different production scenarios. Biotechnol J 9(6):739–752

    PubMed  Google Scholar 

  10. Mandal MK, Chanu NK, Chaurasia N (2020) Cyanobacterial pigments and their fluorescence characteristics: applications in research and industry. In: Advances in cyanobacterial biology. Elsevier, pp 55–72

    Google Scholar 

  11. Bai M-D et al (2011) Microalgal pigments potential as byproducts in lipid production. J Taiwan Inst Chem Eng 42(5):783–786

    CAS  Google Scholar 

  12. Cervantes-Llanos M et al (2018) Beneficial effects of oral administration of C-phycocyanin and phycocyanobilin in rodent models of experimental autoimmune encephalomyelitis. Life Sci 194:130–138

    CAS  PubMed  Google Scholar 

  13. Liu Q, Li W, Qin S (2020) Therapeutic effect of phycocyanin on acute liver oxidative damage caused by X-ray. Biomed Pharmacother 130:110553

    CAS  PubMed  Google Scholar 

  14. Ravi M et al (2015) Molecular mechanism of anti-cancer activity of phycocyanin in triple-negative breast cancer cells. BMC Cancer 15(1):1–13

    Google Scholar 

  15. Reynoso-Camacho R et al (2011) Dietary supplementation of lutein reduces colon carcinogenesis in DMH-treated rats by modulating K-ras, PKB, and β-catenin proteins. Nutr Cancer 63(1):39–45

    CAS  PubMed  Google Scholar 

  16. Manivasagan P et al (2018) Marine natural pigments as potential sources for therapeutic applications. Crit Rev Biotechnol 38(5):745–761

    CAS  PubMed  Google Scholar 

  17. Begum H et al (2016) Availability and utilization of pigments from microalgae. Crit Rev Food Sci Nutr 56(13):2209–2222

    CAS  PubMed  Google Scholar 

  18. Eastaugh N et al (2007) Pigment compendium: a dictionary of historical pigments. Routledge

    Google Scholar 

  19. Capelli B, Bagchi D, Cysewski GR (2013) Synthetic astaxanthin is significantly inferior to algal-based astaxanthin as an antioxidant and may not be suitable as a human nutraceutical supplement. Forum Nutr 12(4):145–152

    CAS  Google Scholar 

  20. Morocho-Jacome AL et al (2020) (Bio) technological aspects of microalgae pigments for cosmetics. Appl Microbiol Biotechnol:1–10

    Google Scholar 

  21. Joshi V et al (2003) Microbial pigments

    Google Scholar 

  22. Cortez R et al (2017) Natural pigments: stabilization methods of anthocyanins for food applications. Compr Rev Food Sci Food Saf 16(1):180–198

    CAS  PubMed  Google Scholar 

  23. D'Amato D et al (2017) Green, circular, bio economy: a comparative analysis of sustainability avenues. J Clean Prod 168:716–734

    Google Scholar 

  24. Giampietro M (2019) On the circular bioeconomy and decoupling: implications for sustainable growth. Ecol Econ 162:143–156

    Google Scholar 

  25. GrandViewResearch (2020) Dyes and pigments market size, share & trends analysis report by product (dyes (reactive, vat, acid, direct, disperse), pigment (organic, inorganic)), by application, by region, and segment forecasts, 2020–2027. [Cited 2021 14/01/2021]; Available from: https://www.grandviewresearch.com/industry-analysis/dyes-and-pigments-market#:~:text=The%20global%20dyes%20and%20pigments%20market%20size%20was%20estimated%20at,USD%2034.7%20billion%20in%202020

  26. Jimenez C et al (2003) The feasibility of industrial production of Spirulina (Arthrospira) in southern Spain. Aquaculture 217(1-4):179–190

    Google Scholar 

  27. Delrue F et al (2017) Optimization of Arthrospira platensis (Spirulina) growth: from laboratory scale to pilot scale. Fermentation 3(4):59

    Google Scholar 

  28. Vanthoor-Koopmans M et al (2013) Biorefinery of microalgae for food and fuel. Bioresour Technol 135:142–149

    CAS  PubMed  Google Scholar 

  29. Aslam A et al (2020) Biorefinery of microalgae for nonfuel products. In: Microalgae cultivation for biofuels production. Elsevier, pp 197–209

    Google Scholar 

  30. Halim R (2020) Industrial extraction of microalgal pigments. In: Pigments from microalgae handbook. Springer, pp 265–308

    Google Scholar 

  31. Mirkovic T et al (2017) Light absorption and energy transfer in the antenna complexes of photosynthetic organisms. Chem Rev 117(2):249–293

    CAS  PubMed  Google Scholar 

  32. Zouni A et al (2001) Crystal structure of photosystem II from Synechococcus elongatus at 3.8 Å resolution. Nature 409(6821):739–743

    CAS  PubMed  Google Scholar 

  33. Minagawa J, Takahashi Y (2004) Structure, function and assembly of photosystem II and its light-harvesting proteins. Photosynth Res 82(3):241–263

    CAS  PubMed  Google Scholar 

  34. Fischer WW, Hemp J, Johnson JE (2016) Evolution of oxygenic photosynthesis. Annu Rev Earth Planet Sci 44:647–683

    CAS  Google Scholar 

  35. Kannaujiya VK et al (2020) Phycobiliproteins in microalgae: occurrence, distribution, and biosynthesis. In: Pigments from microalgae handbook. Springer, pp 43–68

    Google Scholar 

  36. Ben-Shem A, Frolow F, Nelson N (2003) Crystal structure of plant photosystem I. Nature 426(6967):630–635

    CAS  PubMed  Google Scholar 

  37. Brettel K, Leibl W (2001) Electron transfer in photosystem I. Biochim Biophys Acta (BBA) – Bioenergetics 1507(1–3):100–114

    CAS  PubMed  Google Scholar 

  38. Jordan P et al (2001) Three-dimensional structure of cyanobacterial photosystem I at 2.5 Å resolution. Nature 411(6840):909–917

    CAS  PubMed  Google Scholar 

  39. Golbeck JH, Bryant DA (1991) Photosystem I. In: Current topics in bioenergetics, vol 16, pp 83–177

    Google Scholar 

  40. Chitnis PR (2001) Photosystem I: function and physiology. Annu Rev Plant Biol 52(1):593–626

    CAS  Google Scholar 

  41. MacIntyre HL et al (2002) Photoacclimation of photosynthesis irradiance response curves and photosynthetic pigments in microalgae and cyanobacteria 1. J Phycol 38(1):17–38

    Google Scholar 

  42. Glazer AN (1988) [31] Phycobiliproteins. In: Methods in enzymology. Elsevier, pp 291–303

    Google Scholar 

  43. Yeremenko NG (2004) Functional flexibility of photosystem I in cyanobacteria. Universiteit van Amsterdam

    Google Scholar 

  44. Mikami K, Hosokawa M (2013) Biosynthetic pathway and health benefits of fucoxanthin, an algae-specific xanthophyll in brown seaweeds. Int J Mol Sci 14(7):13763–13781

    PubMed  PubMed Central  Google Scholar 

  45. Deepika C (2018) Extraction and spectral characterization of R-phycoerythrin from Macroalgae–Kappaphycus alvarezii. Extraction 5(12)

    Google Scholar 

  46. Liotenberg S et al (1996) Effect of the nitrogen source on phycobiliprotein synthesis and cell reserves in a chromatically adapting filamentous cyanobacterium. Microbiology 142(3):611–622

    CAS  PubMed  Google Scholar 

  47. Vega J et al (2020) Cyanobacteria and red macroalgae as potential sources of antioxidants and UV radiation-absorbing compounds for cosmeceutical applications. Mar Drugs 18(12):659

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Glazer AN (1994) Adaptive variations in phycobilisome structure. In: Advances in molecular and cell biology. Elsevier, pp 119–149

    Google Scholar 

  49. Shively J et al (2019) Intracellular structures of prokaryotes: inclusions, compartments and assemblages. In: Encyclopedia of microbiology. Elsevier, pp 716–738

    Google Scholar 

  50. Hernandez-Prieto MA, Chen M (2021) Light harvesting modulation in photosynthetic organisms. In: Shen J-R, Satoh K, Allakhverdiev SI (eds) Photosynthesis: molecular approaches to solar energy conversion. Springer, Cham, pp 223–246

    Google Scholar 

  51. Pandey V, Pandey A, Sharma V (2013) Biotechnological applications of cyanobacterial phycobiliproteins. Int J Curr Microbiol App Sci 2(9):89–97

    Google Scholar 

  52. Dumay J et al (2014) Phycoerythrins: valuable proteinic pigments in red seaweeds. Adv Bot Res 71:321–343

    Google Scholar 

  53. Glazer A, Cohen-Bazire G (1971) Subunit structure of the phycobiliproteins of blue-green algae. Proc Natl Acad Sci 68(7):1398–1401

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Kerfeld CA, Kirilovsky D (2013) Structural, mechanistic and genomic insights into OCP-mediated photoprotection. Adv Bot Res 65:1–26

    CAS  Google Scholar 

  55. Batard P et al (2002) Use of phycoerythrin and allophycocyanin for fluorescence resonance energy transfer analyzed by flow cytometry: advantages and limitations. Cytometry 48(2):97–105

    CAS  PubMed  Google Scholar 

  56. Hamouda RA, El-Naggar NE-A (2021) Cyanobacteria-based microbial cell factories for production of industrial products. In: Microbial cell factories engineering for production of biomolecules. Elsevier, pp 277–302

    Google Scholar 

  57. Wyman M, Gregory R, Carr N (1985) Novel role for phycoerythrin in a marine cyanobacterium, Synechococcus strain DC2. Science 230(4727):818–820

    CAS  PubMed  Google Scholar 

  58. Manoa (2022) Light in the ocean. Available from: https://manoa.hawaii.edu/exploringourfluidearth/physical/ocean-depths/light-ocean

  59. Stryer L, Glazer AN (1985) Phycobiliprotein fluorescent conjugates. Google Patents

    Google Scholar 

  60. Li W et al (2019) Phycobiliproteins: molecular structure, production, applications, and prospects. Biotechnol Adv 37(2):340–353

    CAS  PubMed  Google Scholar 

  61. Singh SP, Häder D-P, Sinha RP (2010) Cyanobacteria and ultraviolet radiation (UVR) stress: mitigation strategies. Ageing Res Rev 9(2):79–90

    CAS  PubMed  Google Scholar 

  62. Fookes CJ, Jeffrey S (1989) The structure of chlorophyll c 3, a novel marine photosynthetic pigment. J Chem Soc Chem Commun 23:1827–1828

    Google Scholar 

  63. Strain HH, Manning WM, Hardin G (1943) Chlorophyll c (chlorofucine) of diatoms and dinoflagellates. J Biol Chem 148(3):655–668

    CAS  Google Scholar 

  64. Miyashita H et al (1996) Chlorophyll d as a major pigment. Nature 383(6599):402–402

    CAS  Google Scholar 

  65. Trampe E, Kühl M (2016) Chlorophyll f distribution and dynamics in cyanobacterial beachrock biofilms. J Phycol 52(6):990–996

    CAS  PubMed  Google Scholar 

  66. Chen M et al (2010) A red-shifted chlorophyll. Science 329(5997):1318–1319

    CAS  PubMed  Google Scholar 

  67. Scheer H (2006) An overview of chlorophylls and bacteriochlorophylls: biochemistry, biophysics, functions and applications. Chlorophylls Bacteriochlorophylls:1–26

    Google Scholar 

  68. Mullet JE, Burke JJ, Arntzen CJ (1980) Chlorophyll proteins of photosystem I. Plant Physiol 65(5):814–822

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Blankenship RE (2014) Molecular mechanisms of photosynthesis. Wiley

    Google Scholar 

  70. Cherepanov DA et al (2020) Evidence that chlorophyll f functions solely as an antenna pigment in far-red-light photosystem I from Fischerella thermalis PCC 7521. Biochim Biophys Acta (BBA) – Bioenergetics 1861(5–6):148184

    CAS  PubMed  Google Scholar 

  71. Loughlin P, Lin Y, Chen M (2013) Chlorophyll d and Acaryochloris marina: current status. Photosynth Res 116(2):277–293

    CAS  PubMed  Google Scholar 

  72. Green BR, Durnford DG (1996) The chlorophyll-carotenoid proteins of oxygenic photosynthesis. Annu Rev Plant Biol 47(1):685–714

    CAS  Google Scholar 

  73. Niyogi KK, Truong TB (2013) Evolution of flexible non-photochemical quenching mechanisms that regulate light harvesting in oxygenic photosynthesis. Curr Opin Plant Biol 16(3):307–314

    CAS  PubMed  Google Scholar 

  74. Henríquez V et al (2016) Carotenoids in microalgae. In: Carotenoids in nature. Springer, pp 219–237

    Google Scholar 

  75. Young A, Britton G (2012) Carotenoids in photosynthesis. Springer Science & Business Media

    Google Scholar 

  76. Yabuzaki J (2017) Carotenoids database: structures, chemical fingerprints and distribution among organisms. Database

    Google Scholar 

  77. Britton G, Liaaen-Jensen S, Pfander H (2012) Carotenoids: handbook. Birkhäuser

    Google Scholar 

  78. Gruszecki WI, Strzałka K (2005) Carotenoids as modulators of lipid membrane physical properties. Biochim Biophys Acta 1740(2):108–115

    CAS  PubMed  Google Scholar 

  79. Tóth TN et al (2015) Carotenoids are essential for the assembly of cyanobacterial photosynthetic complexes. Biochim Biophys Acta (BBA) – Bioenergetics 1847(10):1153–1165

    PubMed  Google Scholar 

  80. Qin G et al (2007) Disruption of phytoene desaturase gene results in albino and dwarf phenotypes in Arabidopsis by impairing chlorophyll, carotenoid, and gibberellin biosynthesis. Cell Res 17(5):471–482

    CAS  PubMed  Google Scholar 

  81. Armstrong G (1999) Carotenoid genetics and biochemistry

    Google Scholar 

  82. Paliwal C et al (2016) Microalgal carotenoids: potential nutraceutical compounds with chemotaxonomic importance. Algal Res 15:24–31

    Google Scholar 

  83. Amagata T (2010) Natural products structural diversity-II secondary metabolites: sources, structures and chemical biology. Comp Nat Prod II 2:581–621

    Google Scholar 

  84. Zakar T et al (2016) Carotenoids assist in cyanobacterial photosystem II assembly and function. Front Plant Sci 7:295

    PubMed  PubMed Central  Google Scholar 

  85. Balevicius V et al (2017) Fine control of chlorophyll-carotenoid interactions defines the functionality of light-harvesting proteins in plants. Sci Rep 7(1):1–10

    CAS  Google Scholar 

  86. Aro E-M, Virgin I, Andersson B (1993) Photoinhibition of photosystem II. Inactivation, protein damage and turnover. Biochim Biophys Acta (BBA) – Bioenergetics 1143(2):113–134

    CAS  PubMed  Google Scholar 

  87. Loll B et al (2005) Towards complete cofactor arrangement in the 3.0 Å resolution structure of photosystem II. Nature 438(7070):1040–1044

    CAS  PubMed  Google Scholar 

  88. Umena Y et al (2011) Crystal structure of oxygen-evolving photosystem II at a resolution of 19 Å 473(7345):55

    Google Scholar 

  89. Gisriel CJ et al (2022) Structure of a photosystem I-ferredoxin complex from a marine cyanobacterium provides insights into far-red light photoacclimation. J Biol Chem 298(1)

    Google Scholar 

  90. Sozer O et al (2010) Involvement of carotenoids in the synthesis and assembly of protein subunits of photosynthetic reaction centers of Synechocystis sp. PCC 6803. Plant Cell Physiol 51(5):823–835

    CAS  PubMed  Google Scholar 

  91. Butler W, Kitajima M (1975) Energy transfer between photosystem II and photosystem I in chloroplasts. Biochim Biophys Acta (BBA) – Bioenergetics 396(1):72–85

    CAS  PubMed  Google Scholar 

  92. Rakhimberdieva MG et al (2004) Carotenoid-induced quenching of the phycobilisome fluorescence in photosystem II-deficient mutant of Synechocystis sp. FEBS Lett 574(1-3):85–88

    CAS  PubMed  Google Scholar 

  93. Wilson A et al (2008) A photoactive carotenoid protein acting as light intensity sensor. Proc Natl Acad Sci 105(33):12075–12080

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Barber J (1998) Photosystem two. Biochim Biophys Acta (BBA) – Bioenergetics 1365(1-2):269–277

    CAS  PubMed  Google Scholar 

  95. Jahns P, Holzwarth AR (2012) The role of the xanthophyll cycle and of lutein in photoprotection of photosystem II. Biochim Biophys Acta (BBA) – Bioenergetics 1817(1):182–193

    CAS  PubMed  Google Scholar 

  96. Negi S et al (2020) Light regulation of light-harvesting antenna size substantially enhances photosynthetic efficiency and biomass yield in green algae. Plant J

    Google Scholar 

  97. Stitt M (1996) Metabolic regulation of photosynthesis. In: Photosynthesis and the environment. Springer, pp 151–190

    Google Scholar 

  98. Golbeck JH (2007) Photosystem I: the light-driven plastocyanin: ferredoxin oxidoreductase, vol 24. Springer Science & Business Media

    Google Scholar 

  99. Kusama Y et al (2015) Zeaxanthin and echinenone protect the repair of photosystem II from inhibition by singlet oxygen in Synechocystis sp. PCC 6803. Plant Cell Physiol 56(5):906–916

    CAS  PubMed  Google Scholar 

  100. Sinha RP, Häder D-P (2008) UV-protectants in cyanobacteria. Plant Sci 174(3):278–289

    CAS  Google Scholar 

  101. Pathak J et al (2019) Cyanobacterial secondary metabolite scytonemin: a potential photoprotective and pharmaceutical compound. Proc Natl Acad Sci India Sect B Biol Sci:1–15

    Google Scholar 

  102. Grant CS, Louda J (2013) Scytonemin-imine, a mahogany-colored UV/Vis sunscreen of cyanobacteria exposed to intense solar radiation. Org Geochem 65:29–36

    CAS  Google Scholar 

  103. Couradeau E et al (2016) Bacteria increase arid-land soil surface temperature through the production of sunscreens. Nat Commun 7(1):1–7

    Google Scholar 

  104. Rastogi RP, Sonani RR, Madamwar D (2015) Cyanobacterial sunscreen scytonemin: role in photoprotection and biomedical research. Appl Biochem Biotechnol 176(6):1551–1563

    CAS  PubMed  Google Scholar 

  105. Garcia-Pichel F, Sherry ND, Castenholz RW (1992) Evidence for an ultraviolet sunscreen role of the extracellular pigment scytonemin in the terrestrial cyanobacterium Chiorogloeopsis sp. Photochem Photobiol 56(1):17–23

    CAS  PubMed  Google Scholar 

  106. Gupta S et al (2007) Use of natural carotenoids for pigmentation in fishes

    Google Scholar 

  107. Becquerel E (1874) Action des rayons differemment refrangibles sur l'iodure et le bromure d'argent; influence des matieres colorantes. Compt Rend Acad Sci [Paris] 79:185

    Google Scholar 

  108. Liebler DC (1993) Antioxidant reactions of carotenoids a. Ann N Y Acad Sci 691(1):20–31

    CAS  PubMed  Google Scholar 

  109. Metibemu DS et al (2020) Carotenoid isolates of Spondias mombin demonstrate anticancer effects in DMBA-induced breast cancer in Wistar rats through X-linked inhibitor of apoptosis protein (XIAP) antagonism and anti-inflammation. J Food Biochem:e13523

    Google Scholar 

  110. Kang MR et al (2020) Inhibition of skin inflammation by scytonemin, an ultraviolet sunscreen pigment. Mar Drugs 18(6):300

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Hussein MM et al (2020) Anti-obesity effects of individual or combination treatment with Spirulina platensis and green coffee bean aqueous extracts in high-fat diet-induced obese rats. All Life 13(1):328–338

    CAS  Google Scholar 

  112. Zhang L, Wang H (2015) Multiple mechanisms of anti-cancer effects exerted by astaxanthin. Mar Drugs 13(7):4310–4330

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Fakhri S et al (2019) The neuroprotective effects of astaxanthin: therapeutic targets and clinical perspective. Molecules 24(14):2640

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Udayan A, Arumugam M, Pandey A (2017) Nutraceuticals from algae and cyanobacteria. In: Algal Green chemistry. Elsevier, pp 65–89

    Google Scholar 

  115. FDA (2020) CFR – code of federal regulations title 21 – Sec. 73.530 Spirulina extract. [Cited 2021 20/10/2021]; Available from: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?fr=73.530

  116. Ghosh T, Mishra S (2020) A natural cyanobacterial protein C-phycoerythrin as an HS−selective optical probe in aqueous systems. Spectrochim Acta A Mol Biomol Spectrosc 239:118469

    CAS  PubMed  Google Scholar 

  117. Kechkeche D et al (2018) Semiconductor nanoplatelets: a new class of ultrabright fluorescent probes for cytometric and imaging applications. ACS Appl Mater Interfaces 10(29):24739–24749

    CAS  PubMed  Google Scholar 

  118. Lopes G, Clarinha D, Vasconcelos V (2020) Carotenoids from cyanobacteria: a biotechnological approach for the topical treatment of psoriasis. Microorganisms 8(2):302

    CAS  PubMed  PubMed Central  Google Scholar 

  119. GrandViewResearch (2016) Carotenoids market size worth $1.74 billion by 2025. [Cited 2021 12/10/2021]; Available from: https://www.grandviewresearch.com/press-release/global-carotenoids-market

  120. Rammuni M et al (2019) Comparative assessment on the extraction of carotenoids from microalgal sources: astaxanthin from H. pluvialis and β-carotene from D. salina. Food Chem 277:128–134

    CAS  PubMed  Google Scholar 

  121. ValueMarketResearch (2020) Global chlorophyll extract market report by type (liquid, tablet and powder), by application (food additive, cosmetics and dietary supplement) and by regions – industry trends, size, share, growth, estimation and Forecast, 20192026. [Cited 2020 14/12/2020]; Available from: https://www.valuemarketresearch.com/report/chlorophyll-extract-market#:~:text=The%20latest%20report%20by%20Value,CAGR%20from%202019%20to%202025

  122. Pulz O, Gross W (2004) Valuable products from biotechnology of microalgae. Appl Microbiol Biotechnol 65(6):635–648

    CAS  PubMed  Google Scholar 

  123. Spolaore P et al (2006) Commercial applications of microalgae. J Biosci Bioeng 101(2):87–96

    CAS  PubMed  Google Scholar 

  124. Ambati RR et al (2014) Astaxanthin: sources, extraction, stability, biological activities and its commercial applications – a review. Mar Drugs 12(1):128–152

    PubMed  PubMed Central  Google Scholar 

  125. Lim KC et al (2018) Astaxanthin as feed supplement in aquatic animals. Rev Aquac 10(3):738–773

    Google Scholar 

  126. Krinsky NI, Landrum JT, Bone RA (2003) Biologic mechanisms of the protective role of lutein and zeaxanthin in the eye. Annu Rev Nutr 23(1):171–201

    CAS  PubMed  Google Scholar 

  127. Stringham JM, Hammond Jr BR (2005) Dietary lutein and zeaxanthin: possible effects on visual function. Nutr Rev 63(2):59–64

    PubMed  Google Scholar 

  128. Fuji L, Co CI (2004) New dietary ingredient notification for astaxanthin extracted from haematococcus algae. US Food Frug Adm 1:1–6

    Google Scholar 

  129. Ngamwonglumlert L, Devahastin S, Chiewchan N (2017) Natural colorants: pigment stability and extraction yield enhancement via utilization of appropriate pretreatment and extraction methods. Crit Rev Food Sci Nutr 57(15):3243–3259

    CAS  PubMed  Google Scholar 

  130. VerifiedMarketResearch (2021) Global cosmetic pigments market size by elemental composition, by type, by application, by geographic scope and forecast. 25/08/2021]; Available from: https://www.verifiedmarketresearch.com/product/cosmetic-pigments-market/

  131. Pangestuti R et al (2020) Cosmetics and cosmeceutical applications of microalgae pigments. In: Pigments from microalgae handbook. Springer, pp 611–633

    Google Scholar 

  132. Alfeus A (2016) Cyanobacteria as a source of compounds with cosmetics potential

    Google Scholar 

  133. Gao X et al (2021) Biotechnological production of the sunscreen pigment Scytonemin in cyanobacteria: progress and strategy. Mar Drugs 19(3):129

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Abed RM, Dobretsov S, Sudesh K (2009) Applications of cyanobacteria in biotechnology. J Appl Microbiol 106(1):1–12

    CAS  PubMed  Google Scholar 

  135. Darvin ME et al (2011) The role of carotenoids in human skin. Molecules 16(12):10491–10506

    PubMed Central  Google Scholar 

  136. Scarmo S et al (2010) Significant correlations of dermal total carotenoids and dermal lycopene with their respective plasma levels in healthy adults. Arch Biochem Biophys 504(1):34–39

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Richa RR et al (2011) Biotechnological potential of mycosporine-like amino acids and phycobiliproteins of cyanobacterial origin. Biotechnol Bioinformatics Bioeng 1:159–171

    Google Scholar 

  138. Sekar S, Chandramohan M (2008) Phycobiliproteins as a commodity: trends in applied research, patents and commercialization. J Appl Phycol 20(2):113–136

    Google Scholar 

  139. Nowruzi B, Sarvari G, Blanco S (2020) The cosmetic application of cyanobacterial secondary metabolites. Algal Res 49:101959

    Google Scholar 

  140. Galetović A et al (2020) Use of phycobiliproteins from Atacama cyanobacteria as food colorants in a dairy beverage prototype. Foods 9(2):244

    PubMed  PubMed Central  Google Scholar 

  141. Manirafasha E et al (2016) Phycobiliprotein: potential microalgae derived pharmaceutical and biological reagent. Biochem Eng J 109:282–296

    CAS  Google Scholar 

  142. Czerwonka A et al (2018) Anticancer effect of the water extract of a commercial Spirulina (Arthrospira platensis) product on the human lung cancer A549 cell line. Biomed Pharmacother 106:292–302

    CAS  PubMed  Google Scholar 

  143. Sumantran VN et al (2000) Differential regulation of apoptosis in normal versus transformed mammary epithelium by lutein and retinoic acid. Cancer Epidemiol Prev Biomark 9(3):257–263

    CAS  Google Scholar 

  144. Zhang G, Zhang Z, Liu Z (2013) Scytonemin inhibits cell proliferation and arrests cell cycle through downregulating Plk1 activity in multiple myeloma cells. Tumor Biol 34(4):2241–2247

    CAS  Google Scholar 

  145. Stevenson C et al (2002) Scytonemin-a marine natural product inhibitor of kinases key in hyperproliferative inflammatory diseases. Inflamm Res 51(2):112

    CAS  PubMed  Google Scholar 

  146. Hitchcock A, Hunter CN, Canniffe DP (2020) Progress and challenges in engineering cyanobacteria as chassis for light-driven biotechnology. J Microbial Biotechnol 13(2):363–367

    Google Scholar 

  147. Ambati RR et al (2019) Industrial potential of carotenoid pigments from microalgae: current trends and future prospects. Crit Rev Food Sci Nutr 59(12):1880–1902

    CAS  PubMed  Google Scholar 

  148. Han Y et al (2020) Exploring nutrient and light limitation of algal production in a shallow turbid reservoir. Environ Pollut:116210

    Google Scholar 

  149. Radzun KA et al (2015) Automated nutrient screening system enables high-throughput optimisation of microalgae production conditions. Biotechnol Biofuels 8(1):65

    PubMed  PubMed Central  Google Scholar 

  150. Sarma T, Ahuja G, Khattar J (2000) Effect of nutrients and aeration on O 2 evolution and photosynthetic pigments of Anabœna torulosa during akinete differentiation. Folia Microbiol 45(5):434–438

    CAS  Google Scholar 

  151. Zhu C et al (2018) Large-scale cultivation of Spirulina in a floating horizontal photobioreactor without aeration or an agitation device. Appl Microbiol Biotechnol 102(20):8979–8987

    CAS  PubMed  Google Scholar 

  152. Béchet Q et al (2011) Universal temperature model for shallow algal ponds provides improved accuracy. Environ Sci Technol 45(8):3702–3709

    PubMed  Google Scholar 

  153. Rai SV, Rajashekhar M (2014) Effect of pH, salinity and temperature on the growth of six species of marine phytoplankton. J Algal Biomass Util 5(4):55–59

    Google Scholar 

  154. Ravelonandro PH et al (2011) Improvement of the growth of Arthrospira (Spirulina) platensis from Toliara (Madagascar): effect of agitation, salinity and CO2 addition. Food Bioprod Process 89(3):209–216

    CAS  Google Scholar 

  155. Pushparaj B et al (1997) As integrated culture system for outdoor production of microalgae and cyanobacteria. J Appl Phycol 9(2):113–119

    Google Scholar 

  156. Moreno J et al (2003) Outdoor cultivation of a nitrogen-fixing marine cyanobacterium, Anabaena sp. ATCC 33047. Biomol Eng 20(4-6):191–197

    CAS  PubMed  Google Scholar 

  157. Carlozzi P (2003) Dilution of solar radiation through “culture” lamination in photobioreactor rows facing south–north: a way to improve the efficiency of light utilization by cyanobacteria (Arthrospira platensis). Biotechnol Bioeng 81(3):305–315

    CAS  PubMed  Google Scholar 

  158. Leema JM et al (2010) High value pigment production from Arthrospira (Spirulina) platensis cultured in seawater. Bioresour Technol 101(23):9221–9227

    PubMed  Google Scholar 

  159. Walter A et al (2011) Study of phycocyanin production from Spirulina platensis under different light spectra. Braz Arch Biol Technol 54(4):675–682

    CAS  Google Scholar 

  160. Deshmukh DV, Puranik PR (2012) Statistical evaluation of nutritional components impacting phycocyanin production in Synechocystis sp. Braz J Microbiol 43:348–355

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Zeng X et al (2012) Autotrophic cultivation of Spirulina platensis for CO2 fixation and phycocyanin production. Chem Eng J 183:192–197

    CAS  Google Scholar 

  162. Chainapong T, Traichaiyaporn S, Deming RL (2012) Effect of light quality on biomass and pigment production in photoautotrophic and mixotrophic cultures of Spirulina platensis. J Agric Technol 2012(8):1593–1604

    Google Scholar 

  163. Chen C-Y et al (2013) Engineering strategies for simultaneous enhancement of C-phycocyanin production and CO2 fixation with Spirulina platensis. Bioresour Technol 145:307–312

    CAS  PubMed  Google Scholar 

  164. Xie Y et al (2015) Fed-batch strategy for enhancing cell growth and C-phycocyanin production of Arthrospira (Spirulina) platensis under phototrophic cultivation. Bioresour Technol 180:281–287

    CAS  PubMed  Google Scholar 

  165. Salama A et al (2015) Maximising phycocyanin extraction from a newly identified Egyptian cyanobacteria strain: Anabaena oryzae SOS13. Int Food Res J 22(2)

    Google Scholar 

  166. Rosales Loaiza N et al (2016) Comparative growth and biochemical composition of four strains of Nostoc and Anabaena (cyanobacteria, Nostocales) in relation to sodium nitrate. Acta Biol Colomb 21(2):347–354

    Google Scholar 

  167. Lee NK et al (2017) Higher production of C-phycocyanin by nitrogen-free (diazotrophic) cultivation of Nostoc sp. NK and simplified extraction by dark-cold shock. Bioresour Technol 227:164–170

    CAS  PubMed  Google Scholar 

  168. Kovac D et al (2017) The production of biomass and phycobiliprotein pigments in filamentous cyanobacteria: the impact of light and carbon sources. Appl Biochem Microbiol 53(5):539–545

    CAS  Google Scholar 

  169. Lee SY, Nielsen J, Stephanopoulos G (2021) Cyanobacteria biotechnology. Wiley

    Google Scholar 

  170. Assuncao J et al (2021) Synechocystis salina: potential bioactivity and combined extraction of added-value metabolites. J Appl Phycol 33(6):3731–3746

    CAS  Google Scholar 

  171. Sarnaik A et al (2018) Recombinant Synechococcus elongatus PCC 7942 for improved zeaxanthin production under natural light conditions. Algal Res 36:139–151

    Google Scholar 

  172. Roles J et al (2020) Charting a development path to deliver cost competitive microalgae-based fuels. Algal Res 45:101721

    Google Scholar 

  173. Schmidt S, Raven JA, Paungfoo-Lonhienne C (2013) The mixotrophic nature of photosynthetic plants. Funct Plant Biol 40(5):425–438

    CAS  PubMed  Google Scholar 

  174. Borsari RRJ et al (2007) Mixotrophic growth of Nostoc sp. on glucose, sucrose and sugarcane molasses for phycobiliprotein production. Acta Sci Biol Sci 29(1):9–13

    CAS  Google Scholar 

  175. Chen T et al (2006) Mixotrophic culture of high selenium-enriched Spirulina platensis on acetate and the enhanced production of photosynthetic pigments. Enzyme Microb Technol 39(1):103–107

    CAS  Google Scholar 

  176. Guoce Y et al (2011) Growth and physiological features of cyanobacterium Anabaena sp. strain PCC 7120 in a glucose-mixotrophic culture. Chin J Chem Eng 19(1):108–115

    Google Scholar 

  177. Moon M et al (2013) Mixotrophic growth with acetate or volatile fatty acids maximizes growth and lipid production in Chlamydomonas reinhardtii. Algal Res 2(4):352–357

    Google Scholar 

  178. Rajendran L, Nagarajan NG, Karuppan M (2020) Enhanced biomass and lutein production by mixotrophic cultivation of Scenedesmus sp. using crude glycerol in an airlift photobioreactor. Biochem Eng J 161:107684

    CAS  Google Scholar 

  179. Schwarz A et al (2020) Influence of heterotrophic and mixotrophic cultivation on growth behaviour of terrestrial cyanobacteria. Algal Res 52:102125

    Google Scholar 

  180. Zhang CC et al (1989) Molecular and genetical analysis of the fructose-glucose transport system in the cyanobacterium Synechocystis PCC6803. Mol Microbiol 3(9):1221–1229

    CAS  PubMed  Google Scholar 

  181. Ekman M et al (2013) A Nostoc punctiforme sugar transporter necessary to establish a cyanobacterium-plant symbiosis. Plant Physiol 161(4):1984–1992

    CAS  PubMed  PubMed Central  Google Scholar 

  182. McEwen JT et al (2013) Engineering Synechococcus elongatus PCC 7942 for continuous growth under diurnal conditions. Appl Environ Microbiol 79(5):1668–1675

    CAS  PubMed  PubMed Central  Google Scholar 

  183. Wolk CP, Shaffer PW (1976) Heterotrophic micro-and macrocultures of a nitrogen-fixing cyanobacterium. Arch Microbiol 110(2):145–147

    CAS  PubMed  Google Scholar 

  184. Marquez FJ et al (1995) Enhancement of biomass and pigment production during growth of Spirulina platensis in mixotrophic culture. J Chem Technol Biotechnol 62(2):159–164

    CAS  Google Scholar 

  185. Vonshak A, Cheung SM, Chen F (2000) Mixotrophic growth modifies the response of Spirulina (Arthrospira) platensis (cyanobacteria) cells to light. J Phycol 36(4):675–679

    CAS  PubMed  Google Scholar 

  186. Markou G, Vandamme D, Muylaert KJWR (2014) Microalgal and cyanobacterial cultivation: the supply of nutrients. 65:186–202

    Google Scholar 

  187. Chi Z et al (2013) Bicarbonate-based integrated carbon capture and algae production system with alkalihalophilic cyanobacterium. Bioresour Technol 133:513–521

    CAS  PubMed  Google Scholar 

  188. Rubin E, De Coninck HJUCUPTCCFCS (2005) Part, IPCC special report on carbon dioxide capture and storage. 2:14

    Google Scholar 

  189. Isleten-Hosoglu M, Gultepe I, Elibol MJBEJ (2012) Optimization of carbon and nitrogen sources for biomass and lipid production by Chlorella saccharophila under heterotrophic conditions and development of Nile red fluorescence based method for quantification of its neutral lipid content. 61:11–19

    Google Scholar 

  190. Vaccari DA, Strigul NJC (2011) Extrapolating phosphorus production to estimate resource reserves. 84(6):792–797

    Google Scholar 

  191. Powell N et al (2008) Factors influencing luxury uptake of phosphorus by microalgae in waste stabilization ponds. 42(16):5958–5962

    Google Scholar 

  192. Singh NK, Parmar A, Madamwar D (2009) Optimization of medium components for increased production of C-phycocyanin from Phormidium ceylanicum and its purification by single step process. Bioresour Technol 100(4):1663–1669

    CAS  PubMed  Google Scholar 

  193. Chigri F, Soll J, Vothknecht UCJTPJ (2005) Calcium regulation of chloroplast protein import. 42(6):821–831

    Google Scholar 

  194. Roh MH et al (1998) Direct measurement of calcium transport across chloroplast inner-envelope vesicles. 118(4):1447–1454

    Google Scholar 

  195. Brand JJ, Becker DWJJOB (1984) Evidence for direct roles of calcium in photosynthesis. J Bioenerg Biomembr 16(4):239–249

    CAS  PubMed  Google Scholar 

  196. Khattar J et al (2015) Hyperproduction of phycobiliproteins by the cyanobacterium Anabaena fertilissima PUPCCC 410.5 under optimized culture conditions. Algal Res 12:463–469

    Google Scholar 

  197. Ahad RIA, Syiem MB (2019) Influence of calcium on cadmium uptake and toxicity to the cyanobacterium Nostoc muscorum Meg 1. Biotechnol Res Innov 3(2):231–241

    Google Scholar 

  198. Kieke M et al (2016) Degradation rates and products of pure magnesium exposed to different aqueous media under physiological conditions. 17(3-4):131–143

    Google Scholar 

  199. Finkle BJ, Appleman DJPP (1953) The effect of magnesium concentration on growth of Chlorella. Plant Physiol 28(4):664

    CAS  PubMed  PubMed Central  Google Scholar 

  200. Huber SC, Maury WJPP (1980) Effects of magnesium on intact chloroplasts: I Evidence for activation of (sodium) potassium/proton exchange across the chloroplast envelope. Plant Physiol 65(2):350–354

    CAS  PubMed  PubMed Central  Google Scholar 

  201. Shaul OJB (2002) Magnesium transport and function in plants: the tip of the iceberg. Biometals 15(3):307–321

    Google Scholar 

  202. Lee J et al (2021) Rapid phosphate uptake via an ABC transporter induced by sulfate deficiency in Synechocystis sp. PCC 6803. Algal Res 60:102530

    Google Scholar 

  203. Sutak R et al (2012) A comparative study of iron uptake mechanisms in marine microalgae: iron binding at the cell surface is a critical Step1 [W][OA]

    Google Scholar 

  204. Greene RM et al (1992) Iron-induced changes in light harvesting and photochemical energy conversion processes in eukaryotic marine algae. Plant Physiol 100(2):565–575

    CAS  PubMed  PubMed Central  Google Scholar 

  205. Mogany T et al (2018) Elucidating the role of nutrients in C-phycocyanin production by the halophilic cyanobacterium Euhalothece sp. J Appl Phycol 30(4):2259–2271

    CAS  Google Scholar 

  206. Cerhan JR et al (2003) Antioxidant micronutrients and risk of rheumatoid arthritis in a cohort of older women. Am J Epidemiol 157(4):345–354

    PubMed  Google Scholar 

  207. Carvalho AP et al (2006) Metabolic relationships between macro-and micronutrients, and the eicosapentaenoic acid and docosahexaenoic acid contents of Pavlova lutheri. 38(3–4):358–366

    Google Scholar 

  208. Kaushik MS et al (2015) Role of manganese in protection against oxidative stress under iron starvation in cyanobacterium Anabaena 7120. J Basic Microbiol 55(6):729–740

    CAS  PubMed  Google Scholar 

  209. Johnson HL et al (2007) Copper and zinc tolerance of two tropical microalgae after copper acclimation. Environ Toxicol 22(3):234–244

    CAS  PubMed  Google Scholar 

  210. Chay TC, Surif S, Heng LY (2005) A copper toxicity biosensor using immobilized cyanobacteria, Anabaena torulosa. Sens Lett 3(1–2):49–54

    CAS  Google Scholar 

  211. Jardim WF, Pearson H (1985) Copper toxicity to cyanobacteria and its dependence on extracellular ligand concentration and degradation. Microb Ecol 11(2):139–148

    CAS  PubMed  Google Scholar 

  212. Khairy HJWASJ (2009) Toxicity and accumulation of copper in Nannochloropsis oculata (Eustigmatophyceae, Heterokonta). 6(3):378–384

    Google Scholar 

  213. Levy JL et al (2008) Uptake and internalisation of copper by three marine microalgae: comparison of copper-sensitive and copper-tolerant species. Aquat Toxicol 89(2):82–93

    CAS  PubMed  Google Scholar 

  214. Devi YM, Mehta S (2014) Changes in antioxidative enzymes of cyanobacterium Nostoc muscorum under copper (Cu2+) stress. Sci Vision 14:207–214

    Google Scholar 

  215. Zhou G-J et al (2012) Biosorption of zinc and copper from aqueous solutions by two freshwater green microalgae Chlorella pyrenoidosa and Scenedesmus obliquus. 19(7):2918–2929

    Google Scholar 

  216. Zhou T et al (2018) Characterization of additional zinc ions on the growth, biochemical composition and photosynthetic performance from Spirulina platensis. Bioresour Technol 269:285–291

    CAS  PubMed  Google Scholar 

  217. Mohanty P (1989) Effect of elevated levels of zinc on growth of Synechococcus 6301. Zentralblatt fuer Mikrobiologie 144(7):531–536

    CAS  Google Scholar 

  218. Carrano CJ et al (2009) Boron and marine life: a new look at an enigmatic bioelement. Mar Biotechnol (NY) 11(4):431

    CAS  PubMed  Google Scholar 

  219. Amin SA et al (2007) Boron binding by a siderophore isolated from marine bacteria associated with the toxic dinoflagellate Gymnodinium catenatum. J Am Chem Soc 129(3):478–479

    CAS  PubMed  Google Scholar 

  220. Rahman IY et al (2009) Removal of boron from produced water by Co-precipitation/adsorption for reverse osmosis concentrate. p 156

    Google Scholar 

  221. Tarko T, Duda-Chodak A, Kobus M (2012) Influence of growth medium composition on synthesis of bioactive compounds and antioxidant properties of selected strains of Arthrospira cyanobacteria. Czech J Food Sci 30(3):258–267

    CAS  Google Scholar 

  222. Holm-Hansen O, Gerloff GC, Skoog FJPP (1954) Cobalt as an essential element for blue-green algae. 7(4):665–675

    Google Scholar 

  223. Babu TS, Sabat S, Mohanty P (1992) Alterations in photosystem II organization by cobalt treatment in the cyanobacterium Spirulina piatensis. J Plant Biochem Biotechnol 1(1):61–63

    CAS  Google Scholar 

  224. Fay P, de Vasconcelos L (1974) Nitrogen metabolism and ultrastructure in Anabaena cylindrica. Arch Microbiol 99(1):221–230

    CAS  PubMed  Google Scholar 

  225. Glass JB (2011) Molybdenum biogeochemistry in an evolutionary context: nitrogen assimilation, microbial storage and environmental budgets. Arizona State University

    Google Scholar 

  226. Pilon-Smits EA, Quinn CF (2010) Selenium metabolism in plants. In: Cell biology of metals and nutrients. Springer, pp 225–241

    Google Scholar 

  227. Huang Z et al (2007) Characterization and antioxidant activity of selenium-containing phycocyanin isolated from Spirulina platensis. Food Chem 100(3):1137–1143

    CAS  Google Scholar 

  228. Malhotra B, Glass ADJPP (1995) Potassium fluxes in Chlamydomonas reinhardtii (I. Kinetics and electrical potentials). Plant Physiol 108(4):1527–1536

    CAS  PubMed  PubMed Central  Google Scholar 

  229. Shabala S, Cuin TAJPP (2008) Potassium transport and plant salt tolerance. Physiol Plant 133(4):651–669

    CAS  PubMed  Google Scholar 

  230. Seale D, Boraas M, Warren GJWR (1987) Effects of sodium and phosphate on growth of cyanobacteria. 21(6):625–631

    Google Scholar 

  231. Kebede EJJOAP (1997) Response of Spirulina platensis (= Arthrospira fusiformis) from Lake Chitu, Ethiopia, to salinity stress from sodium salts. 9(6):551–558

    Google Scholar 

  232. Rao AR et al (2007) Effect of salinity on growth of green alga Botryococcus braunii and its constituents. Bioresour Technol 98(3):560–564

    CAS  PubMed  Google Scholar 

  233. Jepsen PM et al (2019) Effects of salinity, commercial salts, and water type on cultivation of the cryptophyte microalgae Rhodomonas salina and the calanoid copepod Acartia tonsa. 50(1):104–118

    Google Scholar 

  234. Sharma G et al (2014) Effect of carbon content, salinity and pH on Spirulina platensis for phycocyanin, allophycocyanin and phycoerythrin accumulation. J Microb Biochem Technol 6:202–206

    Google Scholar 

  235. Ptacnik R, Andersen T, Tamminen T (2010) Performance of the Redfield ratio and a family of nutrient limitation indicators as thresholds for phytoplankton N vs. P limitation. Ecosystems 13(8):1201–1214

    CAS  Google Scholar 

  236. Ho TY et al (2003) The elemental composition of some marine phytoplankton 1. J Phycol 39(6):1145–1159

    CAS  Google Scholar 

  237. Quigg A et al (2003) The evolutionary inheritance of elemental stoichiometry in marine phytoplankton. Nature 425(6955):291–294

    CAS  PubMed  Google Scholar 

  238. Tett P, Droop M, Heaney S (1985) The Redfield ratio and phytoplankton growth rate. J Mar Biol Assoc U K 65(2):487–504

    Google Scholar 

  239. Chaiklahan R et al (2010) Cultivation of Spirulina platensis using pig wastewater in a semi-continuous process. J Microbiol Biotechnol 20(3):609–614

    CAS  PubMed  Google Scholar 

  240. Lim HR et al (2021) Perspective of Spirulina culture with wastewater into a sustainable circular bioeconomy. Environ Pollut 284:117492

    CAS  PubMed  Google Scholar 

  241. Wolf J et al (2015) High-throughput screen for high performance microalgae strain selection and integrated media design. Algal Res 11:313–325

    Google Scholar 

  242. Afroz S, Singh R. Cultivation of super food–Spirulina (Blue-green Algae): an agribusiness outlook

    Google Scholar 

  243. Olguin E, Sánchez-Galván G (2011) Phycoremediation: current challenges and applications

    Google Scholar 

  244. Schenk P (2016) On-farm algal ponds to provide protein for northern cattle. Meat and Lifestock Australia, North Sydney NSW

    Google Scholar 

  245. Wolf J (2015) Effective scale up of microalgal systems for the production of biomass and biofuels

    Google Scholar 

  246. Kumar K et al (2015) Recent trends in the mass cultivation of algae in raceway ponds. Renew Sustain Energy Rev 51:875–885

    CAS  Google Scholar 

  247. Colosi LM et al (2012) Will algae produce the green? Using published life cycle assessments as a starting point for economic evaluation of future algae-to-energy systems. Biofuels 3(2):129–142

    CAS  Google Scholar 

  248. Beal CM et al (2012) Energy return on Investment for Algal biofuel production coupled with wastewater treatment. Water Environ Res 84(9):692–710

    CAS  PubMed  Google Scholar 

  249. Travieso L et al (2001) A helical tubular photobioreactor producing Spirulina in a semicontinuous mode. Int Biodeter Biodegr 47(3):151–155

    CAS  Google Scholar 

  250. Ferreira L et al (2012) Arthrospira (spirulina) platensis cultivation in tubular photobioreactor: use of no-cost CO2 from ethanol fermentation. Appl Energy 92:379–385

    CAS  Google Scholar 

  251. Oncel S, Sukan FV (2008) Comparison of two different pneumatically mixed column photobioreactors for the cultivation of Artrospira platensis (Spirulina platensis). Bioresour Technol 99(11):4755–4760

    CAS  PubMed  Google Scholar 

  252. Zhang S et al (2021) Observation of Spirulina platensis cultivation in a prototype household bubble column photobioreactor during 107 days. Biotechnol Biotechnol Equip 35(1):1669–1679

    CAS  Google Scholar 

  253. Araújo R et al (2021) Current status of the algae production industry in Europe: an emerging sector of the blue bioeconomy. Front Mar Sci 7:1247

    Google Scholar 

  254. Droop MR (1973) Some thoughts on nutrient limitation in algae 1. J Phycol 9(3):264–272

    CAS  Google Scholar 

  255. Barbosa M (2003) Microalgal photobioreactors: scale-up and optimisation

    Google Scholar 

  256. Gaylarde C (2020) Influence of environment on microbial colonization of historic stone buildings with emphasis on cyanobacteria. Heritage 3(4):1469–1482

    Google Scholar 

  257. Jeon Y-C, Cho C-W, Yun Y-S (2006) Combined effects of light intensity and acetate concentration on the growth of unicellular microalga Haematococcus pluvialis. Enzyme Microb Technol 39(3):490–495

    CAS  Google Scholar 

  258. Wang W et al (2019) Structural basis for blue-green light harvesting and energy dissipation in diatoms. Science 363(6427)

    Google Scholar 

  259. Pereira S, Otero A (2020) Haematococcus pluvialis bioprocess optimization: effect of light quality, temperature and irradiance on growth, pigment content and photosynthetic response. Algal Res 51:102027

    Google Scholar 

  260. Kirilovsky D, Kerfeld CA (2013) The orange carotenoid protein: a blue-green light photoactive protein. Photochem Photobiol Sci 12(7):1135–1143

    CAS  PubMed  Google Scholar 

  261. Kirilovsky D, Kerfeld CA (2016) Cyanobacterial photoprotection by the orange carotenoid protein. Nat Plants 2(12):1–7

    Google Scholar 

  262. Bondanza M et al (2020) The multiple roles of the protein in the photoactivation of orange carotenoid protein. Chem 6(1):187–203

    CAS  Google Scholar 

  263. McConnell MD et al (2002) Regulation of the distribution of chlorophyll and phycobilin-absorbed excitation energy in cyanobacteria. A structure-based model for the light state transition. Plant Physiol 130(3):1201–1212

    CAS  PubMed  PubMed Central  Google Scholar 

  264. Jajoo A et al (2014) Low pH-induced regulation of excitation energy between the two photosystems. FEBS Lett 588(6):970–974

    CAS  PubMed  Google Scholar 

  265. Karapetyan N et al (2014) Long-wavelength chlorophylls in photosystem I of cyanobacteria: origin, localization, and functions. Biochemistry (Mosc) 79(3):213–220

    CAS  PubMed  Google Scholar 

  266. Shubin VV et al (2008) Quantum yield of P700+ photodestruction in isolated photosystem I complexes of the cyanobacterium Arthrospira platensis. Photochem Photobiol Sci 7(8):956–962

    CAS  PubMed  Google Scholar 

  267. Karapetyan N (2007) Non-photochemical quenching of fluorescence in cyanobacteria. Biochemistry (Mosc) 72(10):1127–1135

    CAS  PubMed  Google Scholar 

  268. Abramavicius D, Mukamel S (2009) Exciton delocalization and transport in photosystem I of cyanobacteria Synechococcus elongates: simulation study of coherent two-dimensional optical signals. J Phys Chem B 113(17):6097–6108

    CAS  PubMed  PubMed Central  Google Scholar 

  269. Tamary E et al (2012) Structural and functional alterations of cyanobacterial phycobilisomes induced by high-light stress. Biochim Biophys Acta (BBA) – Bioenergetics 1817(2):319–327

    CAS  PubMed  Google Scholar 

  270. Kilimtzidi E et al (2019) Enhanced phycocyanin and protein content of Arthrospira by applying neutral density and red light shading filters: a small-scale pilot experiment. J Chem Technol Biotechnol 94(6):2047–2054

    CAS  Google Scholar 

  271. Akimoto S, Yokono M (2017) How light-harvesting and energy-transfer processes are modified under different light conditions: studies by time-resolved fluorescence spectroscopy. In: Photosynthesis: structures, mechanisms, and applications. Springer, pp 169–184

    Google Scholar 

  272. Chaiklahan R et al (2022) Enhanced biomass and phycocyanin production of Arthrospira (Spirulina) platensis by a cultivation management strategy: light intensity and cell concentration. Bioresour Technol 343:126077

    CAS  PubMed  Google Scholar 

  273. Olsson-Francis K et al (2012) The effect of rock composition on cyanobacterial weathering of crystalline basalt and rhyolite. Geobiology 10(5):434–444

    CAS  PubMed  Google Scholar 

  274. Abeynayaka HDL, Asaeda T, Kaneko Y (2017) Buoyancy limitation of filamentous cyanobacteria under prolonged pressure due to the gas vesicles collapse. Environ Manag 60(2):293–303

    Google Scholar 

  275. Billini M, Stamatakis K, Sophianopoulou V (2008) Two members of a network of putative Na+/H+ antiporters are involved in salt and pH tolerance of the freshwater cyanobacterium Synechococcus elongatus. J Bacteriol 190(19):6318–6329

    CAS  PubMed  PubMed Central  Google Scholar 

  276. Rezayian M, Niknam V, Ebrahimzadeh H (2019) Stress response in cyanobacteria. Iran J Plant Physiol 9(3):2773–2787

    Google Scholar 

  277. Brown A (1976) Microbial water stress. Bacteriol Rev 40(4):803–846

    CAS  PubMed  PubMed Central  Google Scholar 

  278. Klähn S, Hagemann M (2011) Compatible solute biosynthesis in cyanobacteria. Environ Microbiol 13(3):551–562

    PubMed  Google Scholar 

  279. Kannaujiya VK, Sundaram S, Sinha RP (2017) Stress response of phycobiliproteins. In: Phycobiliproteins: recent developments and future applications. Springer, pp 71–82

    Google Scholar 

  280. Abd El-Baky HH, El-Baroty GS (2012) Characterization and bioactivity of phycocyanin isolated from Spirulina maxima grown under salt stress. Food Funct 3(4):381–388

    CAS  PubMed  Google Scholar 

  281. Rippka (1988) Isolation and purification of cyanobacteria. Methods Enzymol. 167:3–27

    Google Scholar 

  282. Hinga KR (2002) Effects of pH on coastal marine phytoplankton. Mar Ecol Prog Ser 238:281–300

    Google Scholar 

  283. Pedersen D, Miller SR (2017) Photosynthetic temperature adaptation during niche diversification of the thermophilic cyanobacterium Synechococcus A/B clade. ISME J 11(4):1053–1057

    CAS  PubMed  Google Scholar 

  284. Rajaram H, Chaurasia AK, Apte SK (2014) Cyanobacterial heat-shock response: role and regulation of molecular chaperones. Microbiology 160(4):647–658

    CAS  PubMed  Google Scholar 

  285. Tiwari A, Singh P, Asthana RK (2016) Role of calcium in the mitigation of heat stress in the cyanobacterium Anabaena PCC 7120. J Plant Physiol 199:67–75

    CAS  PubMed  Google Scholar 

  286. Wang B, Lan CQJTCJOCE (2011) Optimising the lipid production of the green alga Neochloris oleoabundans using box–behnken experimental design. 89(4):932–939

    Google Scholar 

  287. Xiao Y et al (2016) Effect of small-scale turbulence on the physiology and morphology of two bloom-forming cyanobacteria. PLoS One 11(12):e0168925

    PubMed  PubMed Central  Google Scholar 

  288. Carr NG, Whitton BA (1982) The biology of cyanobacteria, vol 19. University of California Press

    Google Scholar 

  289. Salim S et al (2011) Harvesting of microalgae by bio-flocculation. J Appl Phycol 23(5):849–855

    PubMed  Google Scholar 

  290. Griffiths MJ, van Hille RP, Harrison ST (2012) Lipid productivity, settling potential and fatty acid profile of 11 microalgal species grown under nitrogen replete and limited conditions. J Appl Phycol 24(5):989–1001

    CAS  Google Scholar 

  291. Granados M et al (2012) Evaluation of flocculants for the recovery of freshwater microalgae. Bioresour Technol 118:102–110

    CAS  PubMed  Google Scholar 

  292. Harith ZT et al (2009) Effect of different flocculants on the flocculation performance of flocculation performance of microalgae, Chaetoceros calcitrans, cells. Afr J Biotechnol 8(21)

    Google Scholar 

  293. Wu Z et al (2012) Evaluation of flocculation induced by pH increase for harvesting microalgae and reuse of flocculated medium. Bioresour Technol 110:496–502

    CAS  PubMed  Google Scholar 

  294. Vandamme D et al (2010) Flocculation of microalgae using cationic starch. J Appl Phycol 22(4):525–530

    Google Scholar 

  295. Uduman N et al (2010) Dewatering of microalgal cultures: a major bottleneck to algae-based fuels. J Renew Sustain Energy 2(1):012701

    Google Scholar 

  296. Sukenik A, Shelef GJB (1984) Algal autoflocculation – verification and proposed mechanism. Biotechnol Bioeng 26(2):142–147

    CAS  PubMed  Google Scholar 

  297. Mata TM, Martins AA, Caetano NS (2010) Microalgae for biodiesel production and other applications: a review. Renew Sustain Energy Rev 14(1):217–232

    CAS  Google Scholar 

  298. Chen P et al (2010) Review of biological and engineering aspects of algae to fuels approach. 2(4):1–30

    Google Scholar 

  299. Lee SY et al (2020) Techniques of lipid extraction from microalgae for biofuel production: a review. Environ Chem Lett:1–21

    Google Scholar 

  300. Landels A et al (2019) Improving electrocoagulation floatation for harvesting microalgae. Algal Res 39:101446

    PubMed  PubMed Central  Google Scholar 

  301. Kwon H et al (2014) Harvesting of microalgae using flocculation combined with dissolved air flotation. Biotechnol Bioprocess Eng 19(1):143–149

    CAS  Google Scholar 

  302. Lokare P (2021) Spirulina farming: to ingrain the entrepreneurship. Priya Lokare

    Google Scholar 

  303. Giménez JB et al (2018) Assessment of cross-flow filtration as microalgae harvesting technique prior to anaerobic digestion: evaluation of biomass integrity and energy demand. Bioresour Technol 269:188–194

    PubMed  Google Scholar 

  304. Safi C et al (2017) Biorefinery of microalgal soluble proteins by sequential processing and membrane filtration. Bioresour Technol 225:151–158

    CAS  PubMed  Google Scholar 

  305. Brennan L, Owende P (2010) Biofuels from microalgae – a review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sustain Energy Rev 14(2):557–577

    CAS  Google Scholar 

  306. Rickman M, Pellegrino J, Davis R (2012) Fouling phenomena during membrane filtration of microalgae. J Membr Sci 423:33–42

    Google Scholar 

  307. Milledge JJ, Heaven S (2011) Disc stack centrifugation separation and cell disruption of microalgae: a technical note. Environ Nat Resour Res 1(1):17–24

    Google Scholar 

  308. Dassey AJ, Theegala CS (2013) Harvesting economics and strategies using centrifugation for cost effective separation of microalgae cells for biodiesel applications. Bioresour Technol 128:241–245

    CAS  PubMed  Google Scholar 

  309. Al Hattab M, Ghaly A, Hammouda A (2015) Microalgae harvesting methods for industrial production of biodiesel: critical review and comparative analysis. J Fundam Renew Energy Appl 5(2):1000154

    Google Scholar 

  310. de Souza Sossella F et al (2020) Effects of harvesting Spirulina platensis biomass using coagulants and electrocoagulation–flotation on enzymatic hydrolysis. Bioresour Technol 311:123526

    PubMed  Google Scholar 

  311. Huang W-C, Kim J-D (2013) Cationic surfactant-based method for simultaneous harvesting and cell disruption of a microalgal biomass. Bioresour Technol 149:579–581

    CAS  PubMed  Google Scholar 

  312. Różyło R (2020) Recent trends in methods used to obtain natural food colorants by freeze-drying. Trends Food Sci Technol

    Google Scholar 

  313. Alavijeh RS et al (2020) Combined bead milling and enzymatic hydrolysis for efficient fractionation of lipids, proteins, and carbohydrates of Chlorella vulgaris microalgae. Bioresour Technol:123321

    Google Scholar 

  314. Carullo D et al (2018) Effect of pulsed electric fields and high pressure homogenization on the aqueous extraction of intracellular compounds from the microalgae Chlorella vulgaris. Algal Res 31:60–69

    Google Scholar 

  315. Zhang R et al (2019) Effect of ultrasonication, high pressure homogenization and their combination on efficiency of extraction of bio-molecules from microalgae Parachlorella kessleri. Algal Res 40:101524

    Google Scholar 

  316. Leonhardt L et al (2020) Bio-refinery of Chlorella sorokiniana with pulsed electric field pre-treatment. Bioresour Technol 301:122743

    CAS  PubMed  Google Scholar 

  317. Luengo E et al (2014) Effect of pulsed electric field treatments on permeabilization and extraction of pigments from Chlorella vulgaris. J Membr Biol 247(12):1269–1277

    CAS  PubMed  Google Scholar 

  318. Parniakov O et al (2015) Pulsed electric field and pH assisted selective extraction of intracellular components from microalgae Nannochloropsis. Algal Res 8:128–134

    Google Scholar 

  319. Kapoore RV et al (2018) Microwave-assisted extraction for microalgae: from biofuels to biorefinery. Biology 7(1):18

    PubMed  PubMed Central  Google Scholar 

  320. Gunerken E et al (2015) Cell disruption for microalgae biorefineries. Biotechnol Adv 33(2):243–260

    CAS  PubMed  Google Scholar 

  321. Lee AK, Lewis DM, Ashman PJ (2012) Disruption of microalgal cells for the extraction of lipids for biofuels: processes and specific energy requirements. Biomass Bioenergy 46:89–101

    CAS  Google Scholar 

  322. D’hondt E et al (2017) Cell disruption technologies. In: Microalgae-based biofuels and bioproducts. Elsevier, pp 133–154

    Google Scholar 

  323. Kermanshahi-pour A et al (2014) Enzymatic and acid hydrolysis of Tetraselmis suecica for polysaccharide characterization. 173:415–421

    Google Scholar 

  324. Beale SI, Cornejo J (1984) Enzymatic heme oxygenase activity in soluble extracts of the unicellular red alga, Cyanidium caldarium. Arch Biochem Biophys 235(2):371–384

    CAS  PubMed  Google Scholar 

  325. Gavalás-Olea A et al (2020) Enzymatic synthesis and characterization of chlorophyllide derivatives as possible internal standards for pigment chromatographic analysis. Algal Res 46:101688

    Google Scholar 

  326. Banerjee M et al (2021) Functional and mechanistic insights into the differential effect of the toxicant ‘Se (IV)’in the cyanobacterium Anabaena PCC 7120. Aquat Toxicol 236:105839

    CAS  PubMed  Google Scholar 

  327. Prabakaran P, Ravindran AD (2011) A comparative study on effective cell disruption methods for lipid extraction from microalgae. Lett Appl Microbiol 53(2):150–154

    CAS  PubMed  Google Scholar 

  328. Lin J-Y, Ng I-S (2021) Production, isolation and characterization of C-phycocyanin from a new halo-tolerant Cyanobacterium aponinum using seawater. Bioresour Technol:125946

    Google Scholar 

  329. Strati IF, Gogou E, Oreopoulou V (2015) Enzyme and high pressure assisted extraction of carotenoids from tomato waste. Food Bioprod Process 94:668–674

    CAS  Google Scholar 

  330. Patrignani F, Lanciotti R (2016) Applications of high and ultra high pressure homogenization for food safety. Front Microbiol 7:1132

    PubMed  PubMed Central  Google Scholar 

  331. Azencott HR, Peter GF, Prausnitz MR (2007) Influence of the cell wall on intracellular delivery to algal cells by electroporation and sonication. Ultrasound Med Biol 33(11):1805–1817

    PubMed  PubMed Central  Google Scholar 

  332. Keris-Sen UD et al (2014) An investigation of ultrasound effect on microalgal cell integrity and lipid extraction efficiency. Bioresour Technol 152:407–413

    CAS  PubMed  Google Scholar 

  333. Lupatini AL et al (2017) Potential application of microalga Spirulina platensis as a protein source. J Sci Food Agric 97(3):724–732

    CAS  PubMed  Google Scholar 

  334. Gerde JA et al (2013) Optimizing protein isolation from defatted and non-defatted Nannochloropsis microalgae biomass. Algal Res 2(2):145–153

    Google Scholar 

  335. de Boer K et al (2012) Extraction and conversion pathways for microalgae to biodiesel: a review focused on energy consumption. J Appl Phycol 24(6):1681–1698

    CAS  Google Scholar 

  336. Jaeschke DP et al (2019) Extraction of valuable compounds from Arthrospira platensis using pulsed electric field treatment. Bioresour Technol 283:207–212

    CAS  PubMed  Google Scholar 

  337. Akaberi S et al (2020) Impact of incubation conditions on protein and C-phycocyanin recovery from Arthrospira platensis post-pulsed electric field treatment. Bioresour Technol 306:123099

    CAS  PubMed  Google Scholar 

  338. Zheng H et al (2011) Disruption of Chlorella vulgaris cells for the release of biodiesel-producing lipids: a comparison of grinding, ultrasonication, bead milling, enzymatic lysis, and microwaves. Appl Biochem Biotechnol 164(7):1215–1224

    CAS  PubMed  Google Scholar 

  339. Laurens L et al (2015) Acid-catalyzed algal biomass pretreatment for integrated lipid and carbohydrate-based biofuels production. Green Chem 17(2):1145–1158

    CAS  Google Scholar 

  340. Kulkarni S, Nikolov Z (2018) Process for selective extraction of pigments and functional proteins from Chlorella vulgaris. Algal Res 35:185–193

    Google Scholar 

  341. Levine SN et al (1997) Phosphorus, nitrogen, and silica as controls on phytoplankton biomass and species composition in Lake Champlain (USA-Canada). J Great Lakes Res 23(2):131–148

    CAS  Google Scholar 

  342. Sierra LS, Dixon CK, Wilken LR (2017) Enzymatic cell disruption of the microalgae Chlamydomonas reinhardtii for lipid and protein extraction. Algal Res 25:149–159

    Google Scholar 

  343. Grima EM, González MJI, Giménez AG (2013) Solvent extraction for microalgae lipids. In: Algae for biofuels and energy. Springer, pp 187–205

    Google Scholar 

  344. Llewellyn CA et al (2019) Deriving economic value from metabolites in cyanobacteria. In: Grand challenges in algae biotechnology. Springer, pp 535–576

    Google Scholar 

  345. Taher H et al (2014) Effective extraction of microalgae lipids from wet biomass for biodiesel production. Biomass Bioenerg 66:159–167

    CAS  Google Scholar 

  346. Michalak I, Chojnacka K (2014) Algal extracts: technology and advances. Eng Life Sci 14(6):581–591

    CAS  Google Scholar 

  347. Rodrigues RDP et al (2018) Ultrasound-assisted extraction of phycobiliproteins from Spirulina (Arthrospira) platensis using protic ionic liquids as solvent. Algal Res 31:454–462

    Google Scholar 

  348. Furuki T et al (2003) Rapid and selective extraction of phycocyanin from Spirulina platensis with ultrasonic cell disruption. J Appl Phycol 15(4):319–324

    CAS  Google Scholar 

  349. Jubeau S et al (2013) High pressure disruption: a two-step treatment for selective extraction of intracellular components from the microalga Porphyridium cruentum. J Appl Phycol 25(4):983–989

    CAS  Google Scholar 

  350. Denery JR et al (2004) Pressurized fluid extraction of carotenoids from Haematococcus pluvialis and Dunaliella salina and kavalactones from Piper methysticum. Anal Chim Acta 501(2):175–181

    CAS  Google Scholar 

  351. Machmudah S et al (2006) Extraction of astaxanthin from Haematococcus pluvialis using supercritical CO2 at high pressure

    Google Scholar 

  352. Marchal L et al (2013) Centrifugal partition extraction of β-carotene from Dunaliella salina for efficient and biocompatible recovery of metabolites. Bioresour Technol 134:396–400

    CAS  PubMed  Google Scholar 

  353. Hosseini SRP, Tavakoli O, Sarrafzadeh MH (2017) Experimental optimization of SC-CO2 extraction of carotenoids from Dunaliella salina. J Supercrit Fluids 121:89–95

    Google Scholar 

  354. Sachindra N, Bhaskar N, Mahendrakar N (2006) Recovery of carotenoids from shrimp waste in organic solvents. Waste Manag 26(10):1092–1098

    CAS  PubMed  Google Scholar 

  355. Kumar P, Ramakritinan C, Kumaraguru A (2010) Solvent extraction and spectrophotometric determination of pigments of some algal species from the shore of Puthumadam, southeast coast of India. Int J Oceans Oceanogr 4(1):29–34

    Google Scholar 

  356. Metivier R, Francis F, Clydesdale F (1980) Solvent extraction of anthocyanins from wine pomace. J Food Sci 45(4):1099–1100

    CAS  Google Scholar 

  357. Henriques M, Silva A, Rocha J (2007) Extraction and quantification of pigments from a marine microalga: a simple and reproducible method. In: Communicating current research and educational topics and trends in applied microbiology, vol 2, pp 586–593

    Google Scholar 

  358. Desai RK et al (2016) Novel astaxanthin extraction from Haematococcus pluvialis using cell permeabilising ionic liquids. Green Chem 18(5):1261–1267

    CAS  Google Scholar 

  359. Hernández D et al (2014) Biofuels from microalgae: lipid extraction and methane production from the residual biomass in a biorefinery approach. Bioresour Technol 170:370–378

    PubMed  Google Scholar 

  360. Chang Y-K et al (2018) Isolation of C-phycocyanin from Spirulina platensis microalga using ionic liquid based aqueous two-phase system. Bioresour Technol 270:320–327

    CAS  PubMed  Google Scholar 

  361. Sanchez-Laso J et al (2021) A successful method for phycocyanin extraction from Arthrospira platensis using [Emim][EtSO4] ionic liquid. Biofuels Bioprod Biorefin 15(6):1638–1649

    CAS  Google Scholar 

  362. Nobre B et al (2006) Supercritical carbon dioxide extraction of astaxanthin and other carotenoids from the microalga Haematococcus pluvialis. Eur Food Res Technol 223(6):787–790

    CAS  Google Scholar 

  363. Macıas-Sánchez M et al (2005) Supercritical fluid extraction of carotenoids and chlorophyll a from Nannochloropsis gaditana. J Food Eng 66(2):245–251

    Google Scholar 

  364. Sun M, Temelli F (2006) Supercritical carbon dioxide extraction of carotenoids from carrot using canola oil as a continuous co-solvent. J Supercrit Fluids 37(3):397–408

    CAS  Google Scholar 

  365. Nobre B et al (2006) Supercritical carbon dioxide extraction of pigments from Bixa orellana seeds (experiments and modeling). Braz J Chem Eng 23(2):251–258

    CAS  Google Scholar 

  366. Jeffrey S (1974) Profiles of photosynthetic pigments in the ocean using thin-layer chromatography. Mar Biol 26(2):101–110

    CAS  Google Scholar 

  367. Cohen Z et al (1993) Production and partial purification of γ-linolenic acid and some pigments fromSpirulina platensis. J Appl Phycol 5(1):109–115

    CAS  Google Scholar 

  368. Reis A et al (1998) Production, extraction and purification of phycobiliproteins from Nostoc sp. Bioresour Technol 66(3):181–187

    CAS  Google Scholar 

  369. Abalde J et al (1998) Purification and characterization of phycocyanin from the marine cyanobacterium Synechococcus sp. IO9201. Plant Sci 136(1):109–120

    CAS  Google Scholar 

  370. Ranjitha K, Kaushik B (2005) Purification of phycobiliproteins from Nostoc muscorum

    Google Scholar 

  371. Jiang Z (2002) Recent research on extration and purification of phycobiliproteins [J]. Food Sci 11

    Google Scholar 

  372. Chaiklahan R et al (2018) Stepwise extraction of high-value chemicals from Arthrospira (Spirulina) and an economic feasibility study. Biotechnol Rep 20:e00280

    Google Scholar 

  373. Sivakaminathan S et al (2020) Light guide systems enhance microalgae production efficiency in outdoor high rate ponds. Algal Res 47:101846

    Google Scholar 

  374. Wolf J et al (2016) Multifactorial comparison of photobioreactor geometries in parallel microalgae cultivations. Algal Res 15:187–201

    Google Scholar 

  375. Huang J, Hankamer B, Yarnold J (2019) Design scenarios of outdoor arrayed cylindrical photobioreactors for microalgae cultivation considering solar radiation and temperature. Algal Res 41:101515

    Google Scholar 

  376. Boussiba S, Richmond AE (1980) C-phycocyanin as a storage protein in the blue-green alga Spirulina platensis. Arch Microbiol 125(1):143–147

    CAS  Google Scholar 

  377. Chaiklahan R, Chirasuwan N, Bunnag B (2012) Stability of phycocyanin extracted from Spirulina sp.: influence of temperature, pH and preservatives. Process Biochem 47(4):659–664

    CAS  Google Scholar 

  378. Torres GF et al (2021) Microalgae strain catalogue: a strain selection guide for microalgae users: cultivation and chemical characteristics for high added-value products

    Google Scholar 

  379. Jacob-Lopes E et al (2019) Bioactive food compounds from microalgae: an innovative framework on industrial biorefineries. Curr Opin Food Sci 25:1–7

    Google Scholar 

  380. Hu I-C (2019) Production of potential coproducts from microalgae. In: Biofuels from Algae. Elsevier, pp 345–358

    Google Scholar 

  381. Kirnev P et al (2020) Technological mapping and trends in photobioreactors for the production of microalgae. World J Microbiol Biotechnol 36(3):1–9

    Google Scholar 

  382. Hoffman J et al (2017) Techno-economic assessment of open microalgae production systems. Algal Res 23:51–57

    Google Scholar 

  383. Thomassen G et al (2016) A techno-economic assessment of an algal-based biorefinery. Clean Techn Environ Policy 18(6):1849–1862

    CAS  Google Scholar 

  384. Silva SC et al (2020) Microalgae-derived pigments: a 10-year bibliometric review and industry and market trend analysis. Molecules 25(15):3406

    CAS  PubMed  PubMed Central  Google Scholar 

  385. Torzillo G et al (1986) Production of Spirulina biomass in closed photobioreactors. Biomass 11(1):61–74

    Google Scholar 

  386. Schenk PM et al (2008) Second generation biofuels: high-efficiency microalgae for biodiesel production. Bioenergy Res 1(1):20–43

    Google Scholar 

  387. Guidi F et al (2021) Long-term cultivation of a native Arthrospira platensis (Spirulina) Strain in Pozo Izquierdo (Gran Canaria, Spain): technical evidence for a viable production of food-grade biomass. PRO 9(8):1333

    CAS  Google Scholar 

  388. Mohan SV et al (2020) Algal biorefinery models with self-sustainable closed loop approach: trends and prospective for blue-bioeconomy. Bioresour Technol 295:122128

    Google Scholar 

  389. Kumar AK et al (2020) Techno-economic analysis of microalgae production with simultaneous dairy effluent treatment using a pilot-scale high volume V-shape pond system. Renew Energy 145:1620–1632

    Google Scholar 

  390. Roles J et al (2021) Techno-economic evaluation of microalgae high-density liquid fuel production at 12 international locations. Biotechnol Biofuels 14(1):1–19

    Google Scholar 

  391. Barbosa MJ, Hoogakker J, Wijffels RH (2003) Optimisation of cultivation parameters in photobioreactors for microalgae cultivation using the A-stat technique. Biomol Eng 20(4-6):115–123

    CAS  PubMed  Google Scholar 

  392. Milledge JJ (2010) The challenge of algal fuel: economic processing of the entire algal biomass. Condensed Matter Mater Eng Newslett:4–6

    Google Scholar 

  393. Skjånes K, Rebours C, Lindblad P (2013) Potential for green microalgae to produce hydrogen, pharmaceuticals and other high value products in a combined process. Crit Rev Biotechnol 33(2):172–215

    PubMed  Google Scholar 

  394. Nations U (2020) World economic situation and prospects 2020. [Cited 2020 28/12/20]; Available from: https://unctad.org/system/files/official-document/wesp2020_en.pdf

  395. Kim JYH et al (2016) Microfluidic high-throughput selection of microalgal strains with superior photosynthetic productivity using competitive phototaxis. Sci Rep 6(1):1–11

    CAS  Google Scholar 

  396. Guillard RR (2005) Purification methods for microalgae. Algal Culturing Tech:117

    Google Scholar 

  397. Day JG (2007) Cryopreservation of microalgae and cyanobacteria. In: Cryopreservation and freeze-drying protocols. Springer, pp 141–151

    Google Scholar 

  398. Bui TV et al (2013) Impact of procedural steps and cryopreservation agents in the cryopreservation of chlorophyte microalgae. PLoS One 8(11):e78668

    CAS  PubMed  PubMed Central  Google Scholar 

  399. Sun A et al (2011) Comparative cost analysis of algal oil production for biofuels. Energy 36(8):5169–5179

    Google Scholar 

  400. WHO (2013) Global action plan for the prevention and control of noncommunicable diseases 2013-2020. World Health Organization

    Google Scholar 

  401. Mourelle ML, Gómez CP, Legido JL (2017) The potential use of marine microalgae and cyanobacteria in cosmetics and thalassotherapy. Cosmetics 4(4):46

    Google Scholar 

  402. Morone J et al (2019) Revealing the potential of cyanobacteria in cosmetics and cosmeceuticals – a new bioactive approach. Algal Res 41:101541

    Google Scholar 

  403. BCCResearch (2018) The global market for carotenoids. [Cited 2021 21/04/2021]; Available from: https://www.bccresearch.com/market-research/food-and-beverage/the-global-market-for-carotenoids.html

  404. AstaReal (2021) AstaReal – natural astaxanthin. [Cited 2021 14/01/2021]; Available from: http://www.astareal.se/?informationmodal=true

  405. Markets MA (2020) Carotenoids market by type (astaxanthin, beta-carotene, lutein, lycopene, canthaxanthin, and zeaxanthin), application (feed, food & beverages, dietary supplements, cosmetics, and pharmaceuticals), source, formulation, and region – global forecast to 2026. [Cited 2021 04/01/2021]; Available from: https://www.marketsandmarkets.com/Market-Reports/carotenoid-market-158421566.html

  406. D’Alessandro EB, Antoniosi Filho NR (2016) Concepts and studies on lipid and pigments of microalgae: a review. Renew Sustain Energy Rev 58:832–841

    Google Scholar 

  407. Priyadarshani I, Rath B (2012) Commercial and industrial applications of micro algae–a review. J Algal Biomass Util 3(4):89–100

    Google Scholar 

Download references

Acknowledgements

CD, JW, IR, JR and BH thank the Australian Research Council LP180100269 and The University of Queensland, Australia (International Research Scholarship) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ben Hankamer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Deepika, C., Wolf, J., Roles, J., Ross, I., Hankamer, B. (2022). Sustainable Production of Pigments from Cyanobacteria. In: Bühler, K., Lindberg, P. (eds) Cyanobacteria in Biotechnology. Advances in Biochemical Engineering/Biotechnology, vol 183. Springer, Cham. https://doi.org/10.1007/10_2022_211

Download citation

Publish with us

Policies and ethics