Skip to main content

Emerging Biosensor Trends in Organ-on-a-Chip

  • Chapter
  • First Online:
Microfluidics in Biotechnology

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 179))

Abstract

Organ-on-a-chip technology is ideally suited to cultivate and analyze 2D/3D cell cultures, organoids, and other tissue analogues in vitro, because these microphysiological systems have been shown to generate architectures, structural organization, and functions that closely resemble their respective human tissues and organs. Although great efforts have been undertaken to demonstrate organotypic cell behavior, proper cell-to-cell communication, and tissue interactions in recent years, the integration of biosensing strategies into organ-on-a-chip platforms is still in its infancy. While a multitude of micro-, nano-, and biosensors are well established and could be easily adapted for organ-on-a-chip models, to date only a handful of analytical approaches (aside from microscopical techniques) have been combined with organ-on-a-chip technology. This chapter aims to summarize current efforts and survey the progress that has been made in integrating analytical techniques that are being implemented for organ-, multi-organ-, and body-on-a-chip systems based on electrochemical and optical sensors.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Xia Y, Whitesides GM (1998) Soft lithography. Angew Chem Int Ed Engl 37:550–575

    Article  CAS  Google Scholar 

  2. Charwat V et al (2014) Monitoring cellular stress responses using integrated high-frequency impedance spectroscopy and time-resolved ELISA. Analyst 139:5271–5282

    Article  CAS  Google Scholar 

  3. Rothbauer M et al (2019) Monitoring transient cell-to-cell interactions in a multi-layered and multi-functional allergy-on-a-chip system. Lab Chip 19:1916–1921

    Article  CAS  Google Scholar 

  4. Rothbauer M, Rosser JM, Zirath H, Ertl P (2019) Tomorrow today: organ-on-a-chip advances towards clinically relevant pharmaceutical and medical in vitro models. Curr Opin Biotechnol 55:81–86. https://doi.org/10.1016/j.copbio.2018.08.009

    Article  CAS  PubMed  Google Scholar 

  5. Wartmann D et al (2015) Automated, miniaturized, and integrated quality control-on-chip (QC-on-a-chip) for cell-based cancer therapy applications. Front Mater 2:60. https://doi.org/10.3389/fmats.2015.00060

    Article  Google Scholar 

  6. Jeong S et al (2018) A three-dimensional arrayed microfluidic blood-brain barrier model with integrated electrical sensor array. IEEE Trans Biomed Eng 65(2):431–439. https://doi.org/10.1109/TBME.2017.2773463

    Article  PubMed  Google Scholar 

  7. Walter FR et al (2016) A versatile lab-on-a-chip tool for modeling biological barriers. Sensors Actuators B Chem 222:1209–1219. https://doi.org/10.1016/j.snb.2015.07.110

    Article  CAS  Google Scholar 

  8. Ramadan Q, Ting FCW (2016) In vitro micro-physiological immune-competent model of the human skin. Lab Chip 16(10):1899–1908. https://doi.org/10.1039/c6lc00229c

    Article  CAS  PubMed  Google Scholar 

  9. Henry OYF et al (2017) Organs-on-chips with integrated electrodes for trans-epithelial electrical resistance (TEER) measurements of human epithelial barrier function. Lab Chip 17:2264–2271

    Article  CAS  PubMed Central  Google Scholar 

  10. Park TE et al (2019) Hypoxia-enhanced Blood-Brain Barrier Chip recapitulates human barrier function and shuttling of drugs and antibodies. Nat Commun 10(1):1–12. https://doi.org/10.1038/s41467-019-10588-0

    Article  CAS  Google Scholar 

  11. van der Helm MW et al (2016) Direct quantification of transendothelial electrical resistance in organs-on-chips. Biosens Bioelectron 85:924–929. https://doi.org/10.1016/j.bios.2016.06.014

    Article  CAS  PubMed  Google Scholar 

  12. van der Helm MW et al (2017) Fabrication and validation of an organ-on-chip system with integrated electrodes to directly quantify transendothelial electrical resistance. J Vis Exp 127:e56334. https://doi.org/10.3791/56334

    Article  Google Scholar 

  13. Mermoud Y, Felder M, Stucki JD, Stucki AO, Guenat OT (2018) Microimpedance tomography system to monitor cell activity and membrane movements in a breathing lung-on-chip. Sensors Actuators B Chem 255:3647–3653. https://doi.org/10.1016/j.snb.2017.09.192

    Article  CAS  Google Scholar 

  14. Schuller P et al (2020) A lab-on-a-chip system with an embedded porous membrane-based impedance biosensor array for nanoparticle risk assessment on placental Bewo trophoblast cells. Sensors Actuators B Chem 312:127946. https://doi.org/10.1016/j.snb.2020.127946

    Article  CAS  Google Scholar 

  15. Schuller P et al (2019) Optimized plasma-assisted bi-layer photoresist fabrication protocol for high resolution microfabrication of thin-film metal electrodes on porous polymer membranes. MethodsX 6:2606–2613. https://doi.org/10.1016/j.mex.2019.10.038

    Article  PubMed  PubMed Central  Google Scholar 

  16. Oleaga C et al (2018) Investigation of the effect of hepatic metabolism on off-target cardiotoxicity in a multi-organ human-on-a-chip system. Biomaterials 182:176–190

    Article  CAS  PubMed Central  Google Scholar 

  17. Oleaga C et al (2016) Multi-organ toxicity demonstration in a functional human in vitro system composed of four organs. Sci Rep 6:20030

    Article  CAS  PubMed Central  Google Scholar 

  18. Boudou T et al (2011) A microfabricated platform to measure and manipulate the mechanics of engineered cardiac microtissues. Tissue Eng A 18:910–919

    Article  Google Scholar 

  19. Caluori G et al (2019) Non-invasive electromechanical cell-based biosensors for improved investigation of 3D cardiac models. Biosens Bioelectron 124:129–135

    Article  Google Scholar 

  20. Inácio PMC et al (2017) Bioelectrical signal detection using conducting polymer electrodes and the displacement current method. IEEE Sensors J 17:3961–3966

    Article  Google Scholar 

  21. Maoz BM et al (2017) Organs-on-Chips with combined multi-electrode array and transepithelial electrical resistance measurement capabilities. Lab Chip 17:2294–2302

    Article  CAS  Google Scholar 

  22. Gaio N et al (2018) A multiwell plate Organ-on-Chip (OOC) device for in-vitro cell culture stimulation and monitoring. In: 2018 IEEE micro electro mechanical systems (MEMS). IEEE, Belfast, pp 314–317

    Chapter  Google Scholar 

  23. Chan V et al (2015) Fabrication and characterization of optogenetic, multi-strip cardiac muscles. Lab Chip 15:2258–2268

    Article  CAS  Google Scholar 

  24. Zhang X, Wang T, Wang P, Hu N (2016) High-throughput assessment of drug cardiac safety using a high-speed impedance detection technology-based heart-on-a-chip. Micromachines 7:122

    Article  PubMed Central  Google Scholar 

  25. Shin SR et al (2016) Aptamer-based microfluidic electrochemical biosensor for monitoring cell-secreted trace cardiac biomarkers. Anal Chem 88:10019–10027

    Article  CAS  PubMed Central  Google Scholar 

  26. Zhang YS et al (2017) Multisensor-integrated organs-on-chips platform for automated and continual in situ monitoring of organoid behaviors. Proc Natl Acad Sci 114:E2293–E2302

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Skardal A et al (2017) Multi-tissue interactions in an integrated three-tissue organ-on-a-chip platform. Sci Rep 7:8837

    Article  PubMed Central  Google Scholar 

  28. Dauth S et al (2017) Neurons derived from different brain regions are inherently different in vitro: a novel multiregional brain-on-a-chip. J Neurophysiol 117:1320–1341

    Article  CAS  Google Scholar 

  29. Moya A et al (2018) Online oxygen monitoring using integrated inkjet-printed sensors in a liver-on-a-chip system. Lab Chip 18:2023–2035

    Article  CAS  Google Scholar 

  30. Misun PM, Rothe J, Schmid YRF, Hierlemann A, Frey O (2016) Multi-analyte biosensor interface for real-time monitoring of 3D microtissue spheroids in hanging-drop networks. Microsyst Nanoeng 2(1):1–9. https://doi.org/10.1038/micronano.2016.22

    Article  CAS  Google Scholar 

  31. Vollmer AP, Probstein RF, Gilbert R, Thorsen T (2005) Development of an integrated microfluidic platform for dynamic oxygen sensing and delivery in a flowing medium. Lab Chip 5(10):1059–1066. https://doi.org/10.1039/b508097e

    Article  CAS  PubMed  Google Scholar 

  32. Ungerböck B, Mistlberger G, Charwat V, Ertl P, Mayr T (2010) Oxygen imaging in microfluidic devices with optical sensors applying color cameras. Procedia Eng 5:456–459. https://doi.org/10.1016/j.proeng.2010.09.145

    Article  CAS  Google Scholar 

  33. Sticker D et al (2019) Oxygen management at the microscale: a functional biochip material with long-lasting and tunable oxygen scavenging properties for cell culture applications. ACS Appl Mater Interfaces 11:9730–9739

    Article  CAS  Google Scholar 

  34. Zirath H et al (2018) Every breath you take: non-invasive real-time oxygen biosensing in two- and three-dimensional microfluidic cell models. Front Physiol 9:815. https://doi.org/10.3389/fphys.2018.00815

    Article  PubMed  PubMed Central  Google Scholar 

  35. Rothbauer M et al (2020) Monitoring tissue-level remodelling during inflammatory arthritis using a three-dimensional synovium-on-a-chip with non-invasive light scattering biosensing. Lab Chip 20(8):1461–1471. https://doi.org/10.1039/C9LC01097A

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Ertl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rothbauer, M., Ertl, P. (2020). Emerging Biosensor Trends in Organ-on-a-Chip. In: Bahnemann, J., Grünberger, A. (eds) Microfluidics in Biotechnology. Advances in Biochemical Engineering/Biotechnology, vol 179. Springer, Cham. https://doi.org/10.1007/10_2020_129

Download citation

Publish with us

Policies and ethics