Skip to main content

Ionic Liquid Pretreatment of Lignocellulosic Biomass for Enhanced Enzymatic Delignification

  • Chapter
  • First Online:
Application of Ionic Liquids in Biotechnology

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 168))

Abstract

Ionic liquids (ILs), a potentially attractive “green,” recyclable alternative to environmentally harmful volatile organic compounds, have been increasingly exploited as solvents and/or cosolvents and/or reagents in a wide range of applications, including pretreatment of lignocellulosic biomass for further processing. The enzymatic delignification of biomass to degrade lignin, a complex aromatic polymer, has received much attention as an environmentally friendly process for clean separation of biopolymers including cellulose and lignin. For this purpose, enzymes are generally isolated from naturally occurring fungi or genetically engineered fungi and used in an aqueous medium. However, enzymatic delignification has been found to be very slow in these conditions, sometimes taking several months for completion. In this chapter, we highlight an environmentally friendly and efficient approach for enzymatic delignification of lignocellulosic biomass using room temperature ionic liquids (ILs) as (co)solvents or/and pretreatment agents. The method comprises pretreatment of lignocellulosic biomass in IL-aqueous systems before enzymatic delignification, with the aim of overcoming the low delignification efficiency associated with low enzyme accessibility to the solid substrate and low substrate and product solubilities in aqueous systems. We believe the processes described here can play an important role in the conversion of lignocellulosic biomass—the most abundant renewable biomaterial in the world—to biomaterials, biopolymers, biofuels, bioplastics, and hydrocarbons.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mosier N, Wyman C, Dale B et al (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96:673–686

    Article  CAS  Google Scholar 

  2. Zhang M, Ju X, Song X et al (2015) Effects of cutting orientation in poplar wood biomass size reduction on enzymatic hydrolysis sugar yield. Bioresour Technol 194:407–410

    Article  CAS  Google Scholar 

  3. Gabriele G, Cerchiara T, Salern G et al (2010) A new physical–chemical process for the effi cient production of cellulose fibers from Spanish broom (Spartium junceum L.). Bioresour Technol 101:724–729

    Article  CAS  Google Scholar 

  4. Xu H, Yu X, Mu X et al (2015) Effect and characterization of sodium lignosulfonate on alkali pretreatment for enhancing enzymatic saccharification of corn Stover. Ind Crop Prod 76:638–646

    Article  CAS  Google Scholar 

  5. Morais AR, Pinto JV, Nunes D et al (2016) Imidazole: prospect solvent for lignocellulosic biomass fractionation and delignification. ACS Sustain Chem Eng 4:1643–1652

    Article  CAS  Google Scholar 

  6. Zhao Y, Wang Y, Zhu JY et al (2008) Enhanced enzymatic hydrolysis of spruce by alkaline pretreatment at low temperature. Biotechnol Bioeng 99:1320–1328

    Article  CAS  Google Scholar 

  7. Chen WH, Lin BJ, Huang MY et al (2015) Thermochemical conversion of microalgal biomass into biofuels: a review. Bioresour Technol 184:314–327

    Article  CAS  Google Scholar 

  8. Bak JS, Ko JK, Choi IG et al (2009) Fungal pretreatment of lignocellulose by Phanerochaete chrysosporium to produce ethanol from rice straw. Biotechnol Bioeng 104:471–482

    Article  CAS  Google Scholar 

  9. Balan V, da Costa Sousa L, Chundawat SP, Dale BE et al (2008) Mushroom spent straw: a potential substrate for an ethanol-based biorefinery. J Ind Microbiol Biotechnol 35:293–301

    Article  CAS  Google Scholar 

  10. Castoldi R, Bracht A, Morais GRD et al (2014) Biological pretreatment of eucalyptus grandis sawdust with white-rot fungi: study of degradation patterns and saccharification kinetics. Chem Eng J 258:240–246

    Article  CAS  Google Scholar 

  11. Mohanram S, Rajan K, Carrier DJ et al (2015) Insights into biological delignification of rice straw by trametes hirsuta and myrothecium roridum and comparison of saccharification yields with dilute acid pretreatment. Biomass Bioenergy 76:54–60

    Article  CAS  Google Scholar 

  12. Sousa LD, Chundawat SPS, Balan V et al (2009) Cradle-to-grave assessment of existing lignocellulose pretreatment technologies. Curr Opin Biotechnol 20:339–347

    Article  CAS  Google Scholar 

  13. Elgharbawy AA, Alam MM, Goto M et al (2016) Ionic liquid pretreatment as emerging approaches for enhanced enzymatic hydrolysis of lignocellulosic biomass. Biochem Eng J 109:252–267

    Article  CAS  Google Scholar 

  14. Mora-Pale M, Meli L, Dordick JS (2011) Room temperature ionic liquids as emerging solvents for the pretreatment of lignocellulosic biomass. Biotechnol Bioeng 108:1405–1422

    Article  Google Scholar 

  15. Sun N, Rodriguez H, Rogers RD et al (2011) Where are ionic liquid strategies most suited in the pursuit of chemicals and energy from lignocellulosic biomass? Chem Commun 47:1405–1421

    Article  CAS  Google Scholar 

  16. Kilpelainen I, Xie H, Argyropoulos DS et al (2007) Dissolution of wood in ionic liquids. J Agric Food Chem 55:9142–9148

    Article  Google Scholar 

  17. Mahmood H, Moniruzzaman M, Welton T (2017) Ionic liquids assisted processing of renewable resources for the fabrication of biodegradable composite materials. Green Chem 19:2051–2075

    Article  CAS  Google Scholar 

  18. Lee SH, Doherty TV, Dordick JS (2009) Ionic liquid-mediated selective extraction of lignin from wood leading to enhanced enzymatic cellulose hydrolysis. Biotechnol Bioeng 102:1368–1376

    Article  CAS  Google Scholar 

  19. Sun N, Rahman M, Rogers RD (2009) Complete dissolution and partial delignification of wood in the ionic liquid 1-ethyl-3-methylimidazolium acetate. Green Chem 11:646–655

    Article  CAS  Google Scholar 

  20. Blanchette R (1991) Delignification by wood decay fungi. Annu Rev Phytopathol 29:381–403

    Article  CAS  Google Scholar 

  21. Shipovskove S, Gunaratne HQN, Seddon KR et al (2008) Catalytic activity of laccases in aqueous solutions of ionic liquids. Green Chem 10:806–810

    Article  Google Scholar 

  22. Sivapragasam M, Moniruzzaman M, Goto M (2016) Recent advances in exploiting ionic liquids for biomolecules: solubility, stability, and applications. Biotechnol J 11:1000–1013

    Article  CAS  Google Scholar 

  23. Moniruzzaman M, Nakashima K, Goto M et al (2010) Recent advances of enzymes in ionic liquids. Biochem Eng J 48:295–314

    Article  CAS  Google Scholar 

  24. Qiu Z, Aita GM, Walker MS (2012) Effect of ionic liquid pretreatment on the chemical composition, structure and enzymatic hydrolysis of energy cane bagasse. Bioresour Technol 117:251–256

    Article  CAS  Google Scholar 

  25. Moniruzzaman M, Ono T (2012) Ionic liquid assisted enzymatic delignification of wood biomass: a new ‘green’ and efficient approach for isolating of cellulose fibers. Biochem Eng J 60:156–160

    Article  CAS  Google Scholar 

  26. Labbe N, Kline LM, Moens L et al (2012) Activation of lignocellulosic biomass by ionic liquid for biorefinery fractionation. Bioresour Technol 104:701–707

    Article  CAS  Google Scholar 

  27. Weerachanchai W, Leong SSJ, Chang MW et al (2012) Improvement of biomass properties by pretreatment with ionic liquids for bioconversion process. Bioresour Technol 111:453–459

    Article  CAS  Google Scholar 

  28. Moniruzzaman M, Ono T, Uemura Y (2013) Improved biological delignification of wood biomass via ionic liquids pretreatment: a one step process. J Energy Technol Policy 3:144–152

    Google Scholar 

  29. Moon YH, Lee SM, Koo YM et al (2006) Enzyme-catalyzed reactions in ionic liquids. Korean J Chem Eng 23:247–263

    Article  CAS  Google Scholar 

  30. Singh S, Simmons BA, Vogel KP (2009) Visualization of biomass solubilization and cellulose regeneration during ionic liquid pretreatment of switch grass. Biotechnol Bioeng 104:68–75

    Article  CAS  Google Scholar 

  31. Fu D, Mazza G, Tamaki Y (2010) Lignin extraction from straw by ionic liquids and enzymatic hydrolysis of the cellulosic residues. J Agric Food Chem 58:2915–2922

    Article  CAS  Google Scholar 

  32. Li C, Cheng G, Balan V et al (2011) Influence of physico-chemical changes on enzymatic digestibility of ionic liquid and AFEX pretreated corn Stover. Bioresour Technol 102:6928–6936

    Article  CAS  Google Scholar 

  33. Financie R, Moniruzzamana M, Uemura Y et al (2016) Enhanced enzymatic delignification of oil palm biomass with ionic liquid pretreatment. Biochem Eng J 110:1–7

    Article  CAS  Google Scholar 

  34. Moniruzzaman M, Ono T (2013) Separation and characterization of cellulose fibers from cypress wood tretaed with ionic liquid prior to laccase treatment. Bioresour Technol 127:132–137

    Article  CAS  Google Scholar 

  35. Doherty TV, Mora-Pale M, Dordick JS et al (2010) Ionic liquid solvent properties as predictors of lignocelluloses pretreatment efficacy. Green Chem 12:1967–1975

    Article  CAS  Google Scholar 

  36. Pu Y (2007) Ionic liquids as a green solvent for lignin. J Wood Chem Technol 27:23–35

    Article  CAS  Google Scholar 

  37. Chen W, Yu H, Liu Y et al (2011) Individualization of cellulose nanofibers from wood using high-intensity ultrasonification combined with chemical pretreatments. Carbohydr Polym 83:1804–1811

    Article  CAS  Google Scholar 

  38. Labbe N, Rials TG, Kelley SS et al (2005) FT-IR imaging and pyrolysis-molecular beam mass spectrometry: new tools to investigate wood tissues. Wood Sci Technol 39:61–77

    Article  CAS  Google Scholar 

  39. Lucas M, Wagner GL, Nishiyama Y et al (2011) Reversible swelling of the cell wall of poplar biomass by ionic liquid at room temperature. Bioresour Technol 102:4518–4523

    Article  CAS  Google Scholar 

  40. Abe M, Fukaya Y, Ohno H (2010) Extraction of polysaccharides from bran with phosphonate or phosphinate-derived ionic liquids under short mixing time and low temperature. Green Chem 12:1274–1280

    Article  CAS  Google Scholar 

  41. Zhao D, Li H, Zhang J et al (2012) Dissolution of cellulose in phosphate-based ionic liquids. Carbohydr Polym 87:1490–1494

    Article  CAS  Google Scholar 

Download references

Acknowledgment

We thank Edanz Group (www.edanzediting.com/ac) for editing a draft of this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masahiro Goto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Moniruzzaman, M., Goto, M. (2018). Ionic Liquid Pretreatment of Lignocellulosic Biomass for Enhanced Enzymatic Delignification. In: Itoh, T., Koo, YM. (eds) Application of Ionic Liquids in Biotechnology. Advances in Biochemical Engineering/Biotechnology, vol 168. Springer, Cham. https://doi.org/10.1007/10_2018_64

Download citation

Publish with us

Policies and ethics