Skip to main content

Dynamic Single-Use Bioreactors Used in Modern Liter- and m3- Scale Biotechnological Processes: Engineering Characteristics and Scaling Up

  • Chapter
  • First Online:
Book cover Disposable Bioreactors II

Abstract

During the past 10 years, single-use bioreactors have been well accepted in modern biopharmaceutical production processes targeting high-value products. Up to now, such processes have mainly been small- or medium-scale mammalian cell culture-based seed inoculum, vaccine or antibody productions. However, recently first attempts have been made to modify existing single-use bioreactors for the cultivation of plant cells and tissue cultures, and microorganisms. This has even led to the development of new single-use bioreactor types. Moreover, due to safety issues it has become clear that single-use bioreactors are the “must have” for expanding human stem cells delivering cell therapeutics, the biopharmaceuticals of the next generation. So it comes as no surprise that numerous different dynamic single-use bioreactor types, which are suitable for a wide range of applications, already dominate the market today. Bioreactor working principles, main applications, and bioengineering data are presented in this review, based on a current overview of greater than milliliter-scale, commercially available, dynamic single-use bioreactors. The focus is on stirred versions, which are omnipresent in R&D and manufacturing, and in particular Sartorius Stedim’s BIOSTAT family. Finally, we examine development trends for single-use bioreactors, after discussing proven approaches for fast scaling-up processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

1-D:

1-dimensional

2-D:

2-dimensional

3-D:

3-dimensional

Ao,G :

Interfacial area of gas bubbles

a :

Specific interfacial area

B :

Width of the bag

Bo:

Bond number

c m :

Dimensionless mixing number

c o2 :

Actual concentration of the oxygen in the liquid

c *o2 :

Saturation concentration of the oxygen in the liquid

c s :

Distance between stirrers

c s /d s :

Ratio of stirrer distance to stirrer diameter

cv:

Culture volume

C :

Correlation factor

CFD:

Computational fluid dynamics

CHO:

Chinese hamster ovary cells

d 0 :

Shaking diameter

d 32 :

Sauter diameter

d B :

Bubble diameter

d m,SF :

Maximal shake flask diameter

d s :

Stirrer diameter

d s /D :

Ratio of the stirrer and bioreactor diameter

d SF :

Diameter shake flask

d x :

Cell diameter

D :

Vessel diameter

D I :

Inner diameter of the container

DO:

Dissolved oxygen

Do2 :

Diffusion coefficient of oxygen

FDA:

Food and Drug Administration

Fr :

Froude number

FVM:

Finite volume method

hMSC:

Human mesenchymal stem cells

h :

Stirrer height

h/D :

Ratio of stirrer height and bioreactor diameter

h/H :

Ratio of stirrer and liquid height

H :

Height of the liquid

Ha :

Hatta number

HCD:

High cell density

H/D :

Ratio of liquid height and bioreactor diameter

HTS:

High-throughput screening

k :

Rocking rate

k H :

Henry coefficient

k L :

Mass transfer coefficient

k a L :

Volumetric mass transfer coefficient

k n :

Reaction coefficient

L :

Length of the bag

LBM:

Lattice–Boltzmann method

LDA:

Laser–Doppler anemometry

m :

Slope in (26)

M :

Torque

M d :

Dead weight torque (measured without liquid, representing only the bearing torque)

n :

Reaction order

Ne :

Newton number

N S :

Rotation frequency

OD:

Optical density

OTR:

Oxygen transfer rate

OUR:

Oxygen uptake rate

P :

Power input

P/V :

Specific power input

PIV:

Particle image velocimetry

PMP:

Plant-made protein

p O2 :

Oxygen partial pressure

PTV:

Particle tracking velocimetry

q 02 :

Specific oxygen uptake rate

Re :

Reynolds number

Recrit :

Critical Reynolds number

RT:

Rushton turbine

S.U.B.:

Single-use bioreactor from ThermoFisher scientific

SBI:

Segment blade impeller

Sc:

Schmidt number

t :

Time

u G :

Superficial gas velocity

u max :

Maximum velocity

u Tip :

Tip speed

V :

Working volume

WIM:

Wave-induced motion

X :

Living cell density

x :

Radial coordinate

x 1 and x 2 :

Empirical constants

XD:

Extreme density

α:

Volume fraction

β:

Coefficient

γNT :

Local shear gradients

γNT, m :

Mean local shear gradients

εT :

Local energy dissipation rate

η:

Viscosity

θm :

Mixing time

λ:

Kolmogorov length scale

ρ:

Density

References

  1. Vanhamel S, Masy C (2011) Production of disposable bags: a manufacturer’s report. In: Eibl R, Eibl D (eds) Single-use technology in biopharmaceutical manufacture. Wiley, Hoboken

    Google Scholar 

  2. Dechema (2011) Statuspapier des temporären Arbeitskreises: Single-Use-Technologie in der biopharmazeutischen Produktion.http://www.dechema.de/biotech_media/Downloads/StatPap_SingleUse_2011.pdf. Accessed 18 Nov 2012

  3. Eibl D, Peuker T, Eibl R (2010) Single-use equipment in biopharmaceutical manufacture: a brief introduction. In: Eibl R, Eibl D (eds) Single-use technology in biopharmaceutical manufacture. Wiley, Hoboken

    Google Scholar 

  4. Brod H, Vester A, Kauling J (2012) Opportunities and limitations of disposable technologies in biopharmaceutical processes. Chem Ing Tech. doi:10.1002/cite.201100229

    Google Scholar 

  5. Maigetter RZ, Piombino T, Wood C et al (2010) Single-use (SU) systems. Encyclopedia of industrial biotechnology: bioprocess, bioseparation, and cell technology. doi:10.1002/9780470054581.eib116

  6. Pietrzykowski M, Flanagan W, Pizzi V et al (2011) An environmental life cycle assessment comparing single-use and conventional process technology. BioPharm Int 24(S11):30–38

    Google Scholar 

  7. Merseburger T (2010) An introduction to the validation and qualification of disposables used in biomanufacture—a user’s perspective. In: Eibl R, Eibl D (eds) Single-use technology in biopharmaceutical manufacture. Wiley, Hoboken

    Google Scholar 

  8. Bioplan Associates I (2012) 9th annual report and survey of biopharmaceutical manufacturing capacity and production: a study of biotherapeutic developers and contract manufacturing organizations. BioPlan Associates, Inc., Rockville

    Google Scholar 

  9. De Jesus M, Wurm FM (2011) Manufacturing recombinant proteins in kg-ton quantities using animal cells in bioreactors. Eur J Pharm Biopharm. doi:10.1016/j.ejpb.2011.01.005

    Google Scholar 

  10. Whitford WG (2012) Single-use Systems in animal cell-based bioproduction. In: Pathak Y, Benita S (eds) Animal cell-based bioproduction, in antibody-mediated drug delivery systems: concepts, technology, and applications. Wiley, Hoboken

    Google Scholar 

  11. Ratcliffe E, Glen KE, Workman VL et al (2012) A novel automated bioreactor for scalable process optimisation of haematopoietic stem cell culture. J Biotechnol. doi:10.1016/j.jbiotec.2012.06.025

    Google Scholar 

  12. Wen Y, Zang R, Zhang X et al (2012) A 24-microwell plate with improved mixing and scalable performance for high throughput cell cultures. Process Biochem. doi:10.1016/j.procbio.2011.12.023

    Google Scholar 

  13. Wenk P, Hemmerich J, Müller C et al (2012) Hochparallele Bioprozessentwicklung in geschüttelten Mikrobioreaktoren. Chem Ing Tech doi:10.1002/cite.201100206

  14. Roberts I, Baila S, Rice RB et al (2012) Scale-up of human embryonic stem cell culture using a hollow fibre bioreactor. Biotechnol Lett. doi:10.1007/s10529-012-1033-1

    Google Scholar 

  15. Vaes B, Craeye D, Pinxteren J (2012) Quality control during manufacture of a stem cell therapeutic. BioProcess Int 10(S3):50–55

    Google Scholar 

  16. Furey J, Clark K, Card C (2011) Adoption of single-use sensors for bioprocess operations. BioProcess Int 9(S2):36–42

    Google Scholar 

  17. Lindner P, Endres C, Bluma A et al (2010) Disposable sensor systems. In: Eibl R, Eibl D (eds) Single-use systems in animal cell-based bioproduction. Wiley, Hoboken

    Google Scholar 

  18. Codner P, Cinat M (2005) Massive transfusion for trauma is appropriate. ITACCS. http://www.itaccs.com/traumacare/archive/05_03_Summer_2005/appropriate.pdf. Accessed 18 Nov 2012

  19. Knazek RA, Gullino PM, Kohler PO et al (1972) Cell culture on artificial capillaries: an approach to tissue growth in vitro. Science 178(4056):65–66

    CAS  Google Scholar 

  20. Schwander E, Rasmusen H (2005) Scalable, controlled growth of adherent cells in a disposable, multilayer format. Genet Eng News 25(8):29

    Google Scholar 

  21. Eibl R, Kaiser S, Lombriser R et al (2010) Disposable bioreactors: the current state-of-the-art and recommended applications in biotechnology. Appl Microbiol Biotechnol. doi:10.1007/s00253-009-2422-9

    Google Scholar 

  22. Singh V (1999) Disposable bioreactor for cell culture using wave-induced agitation. Cytotechnology. doi:10.1023/a:1008025016272

    Google Scholar 

  23. Eibl D, Eibl R (2009) Bioreactors for mammalian cells: general overview. In: Eibl R, Eibl D, Pörtner R, Catapano G, Czermak P (eds) Cell and tissue reaction engineering. Springer, Berlin

    Google Scholar 

  24. Eibl R, Löffelholz C, Eibl D (2010) Single-use bioreactors: an overview. In: Eibl R, Eibl D (eds) Single-use systems in animal cell-based bioproduction. Wiley, Hoboken

    Google Scholar 

  25. Glazyrina J, Materne EM, Dreher T et al (2010) High cell density cultivation and recombinant protein production with Escherichia coli in a rocking-motion-type bioreactor. Microb Cell Fact. doi:10.1186/1475-2859-9-42

    Google Scholar 

  26. Lehmann N, Rischer H, Eibl D et al (2013) Wave-mixed and orbitally shaken single-use photobioreactors for diatom algae propagation. Chem Ing Tech. doi:10.1002/cite.201200137

  27. Werner S, Eibl R, Lettenbauer C et al (2010) Innovative, non-stirred bioreactors in scales from milliliters up to 1000 liters for suspension cultures of cells using disposable bags and containers—a Swiss contribution. Chimia (Aarau) 64(11):819–823

    CAS  Google Scholar 

  28. Bögli NC, Ries C, Bauer I et al (2011) Bag-based rapid and safe seed-train expansion method for Trichoplusia ni suspension cells. BMC Proc. doi:10.1186/1753-6561-5-S8-P124

    Google Scholar 

  29. Eibl R, Werner S, Eibl D (2010) Bag bioreactor based on wave-induced motion: characteristics and applications. Adv Biochem Eng Biotechnol. doi:10.1007/10_2008_15

    Google Scholar 

  30. Rausch M, Pörtner R, Knäblein J (2013) Increase of the protein yield in high-five cells in a single-use perfusion bioreactor by a medium replacement. Chem Ing Tech. doi:10.1002/cite.201200121

  31. Hami L, Chana H, Yuan V et al (2003) Comparison of a static process and a bioreactor-based process for the GMP manufacture of autologous ccellerated T-Cells for clinical trials. Bioprocess J 2(3):1–10

    Google Scholar 

  32. Hami LS, Green C, Leshinsky N et al (2004) GMP production and testing of Xcellerated T-Cells for the treatment of patients with CLL. Cytotherapy. doi:10.1080/14653240410005348

    Google Scholar 

  33. Hewitt CJ, Lee K, Nienow AW et al (2011) Expansion of human mesenchymal stem cells on microcarriers. Biotechnol Lett. doi:10.1007/s10529-011-0695-4

    Google Scholar 

  34. Kehoe D, Schnitzler A, Simler J et al (2012) Scale-up of human mesenchymal stem cells on microcarriers in suspension in a single-use bioreactor. BioPharm Int 25(3):28–38

    CAS  Google Scholar 

  35. Kauling J, Brod H, Jenne M et al (2012) Entwicklung der single-use BaySHAKE-Bioreaktortechnologie für die Kultivierung tierischer Zellen in Proceedings of the 14. In: Sperling R, Heiser M (eds) Köthener Rührer-Kolloquium 2011. Köthen/Anhalt, Hochschule Anhalt, Köthen

    Google Scholar 

  36. Klöckner W, Büchs J (2012) Advances in shaking technologies. Trends Biotechnol. doi:10.1016/j.tibtech.2012.03.001

    Google Scholar 

  37. Palomares LA, Ramirez OT (2010) Bioreactor scale-up. Encyclopedia of cell technology. doi:10.1002/0471250570.spi023

  38. Xing Z, Kenty BM, Li ZJ et al (2009) Scale-up analysis for a CHO cell culture process in large-scale bioreactors. Biotechnol Bioeng. doi:10.1002/bit.22287

    Google Scholar 

  39. Eibl R, Brändli J, Eibl D (2012) Plant cell bioreactors. In: Doelle HW, Rokem S, Berovic M (eds) Encyclopedia of life support systems (EOLSS), Developed under the auspices of the UNESCO. Eolss Publishers, Oxford

    Google Scholar 

  40. Schultz JB, Giroux D (2011) 3-L to 2,500-L single-use bioreactors. BioProcess Int 9(7):120

    Google Scholar 

  41. Auton K, Bick J, Taylor I (2007) Application note: strategies for the culture of CHO-S cells. Genet Eng News 27(16). http://www.genengnews.com/gen-articles/application-note-strategies-for-the-culture-of-cho-s-cells/2208/. Accessed 18 Nov 2012

  42. Auton KA (2006) Single use bioreactors: making the transmission. Innovations. http://www.iptonline.com/articles/public/page54555655859loresnonprint.pdf. Accessed 18 Nov 2012

  43. Auton KA (2010) Single use bioreactors: expressing protein in mammalian cell suspension. In: Noll T (ed) Cells and culture. doi:10.1007/978-90-481-3419-9

  44. Clincke MF, Molleryd C, Zhang Y et al (2011) Study of a recombinant CHO cell line producing a monoclonal antibody by ATF or TFF external filter perfusion in a WAVE bioreactor. BMC Proc. doi:10.1186/1753-6561-5-s8-p105

  45. Haldankar R, Li D, Saremi Z et al (2006) Serum-free suspensin large-scale transient transfection of CHO cells in WAVE bioreactors. Mol Biotechnol. doi:10.1385/mb:34:2:191

    Google Scholar 

  46. Sadeghi A, Pauler L, Annerén C et al (2011) Large-scale bioreactor expansion of tumor-infiltrating lymphocytes. J Immunol Methods. doi:10.1016/j.jim.2010.11.007

    Google Scholar 

  47. Sellhorn G, Caldwell Z, Mineart C et al (2009) Improving the expression of recombinant soluble HIV envelope glycoproteins using pseudo-stable transient transfection. Vaccine. doi:10.1016/j.vaccine.2009.10.028

    Google Scholar 

  48. Tao Y, Yusuf-Makagiansar H, Shih J et al (2012) Novel cholesterol feeding strategy enables a high-density cultivation of cholesterol-dependent NS0 cells in linear low-density polyethylene-based disposable bioreactors. Biotechnol Lett. doi:10.1007/s10529-012-0915-6

  49. Wang L, Hu H, Yang J et al (2012) High yield of human monoclonal antibody produced by stably transfected Drosophila Schneider 2 cells in perfusion culture using WAVE bioreactor. Mol Biotechnol. doi:10.1007/s12033-011-9484-5

    Google Scholar 

  50. Adams T, Noack U, Frick T et al (2011) Increasing efficiency in protein and cell production by combining single-use bioreactor technology and perfusion. BioPharm Int 24(5):4–11

    Google Scholar 

  51. Bentebibel S, Moyano E, Palazón J et al (2005) Effects of immobilization by entrapment in alginate and scale-up on paclitaxel and baccatin III production in cell suspension cultures of Taxus baccata. Biotechnol Bioeng. doi:10.1002/bit.20321

    Google Scholar 

  52. Eibl R, Eibl D (2006) Design and use of the Wave bioreactor for plant cell culture. In: Dutta Gupta S, Ibaraki Y (ed) Plant tissue culture engineering. Springer, Dordrecht

    Google Scholar 

  53. Hundt B, Best C, Schlawin N et al (2007) Establishment of a mink enteritis vaccine production process in stirred-tank reactor and Wave bioreactor microcarrier culture in 1–10L scale. Vaccine. doi:10.1016/j.vaccine.2007.02.061

    Google Scholar 

  54. Raven N, Schillberg S, Kirchhoff J et al (2010) Growth of BY-2 suspension cells and plantibody production in single-use bioreactors. In: Eibl R, Eibl D (eds) Single-use technology in biopharmaceutical manufacture. Wiley, Hoboken

    Google Scholar 

  55. Ries C, Wasem V, Karrer D et al (2012) A new approach for rapid development of Spodoptera frugiperda/BEVS-based processes. In: Jenkins N, Barron N, Alves P (ed) Proceedings of the 21st annual meeting of the European Society for Animal Cell Technology (ESACT). doi:10.1007/978-94-007-0884-6

  56. Thomassen YE, Van Der Welle JE, Van Eikenhorst G et al (2012) Transfer of an adherent Vero cell culture method between two different rocking motion type bioreactors with respect to cell growth and metabolic rates. Process Biochem. doi:10.1016/j.procbio.2011.11.006

  57. Ullah M, Burns T, Bhalla A et al (2008) Disposable bioreactors for cells and microbes: productivities similar to those achieved with stirred tanks can be achieved with disposable bioreactors. BioPharm Int. http://www.biopharminternational.com/biopharm/Disposables/Disposable-Bioreactors-for-Cells-and-Microbes/ArticleStandard/Article/detail/566012. Accessed 19 Nov 2012

  58. Weber W, Weber E, Geisse S et al (2002) Optimisation of protein expression and establishment of the Wave bioreactor for baculovirus/insect cell culture. Cytotechnology. doi:10.1023/a:1021102015070

    Google Scholar 

  59. Finesse-Wave, Finesse Solution, LLC, San Jose. http://www.finesse.com/pr-3-15-11. Accessed 09 July 2012

  60. Brändli J, Müller M, Imseng N et al (2012) Antikörperproduktion in Pflanzenzellen: Prozessentwicklung und -übertragung vom 50 mL auf den 10L Massstab. Biospektrum 2:2–3

    Google Scholar 

  61. Müller M (2010) Realisierung eines zweistufigen Prozesses zur Plantibody-Produktion mit BY-2-Suspensionszellen im AppliFlex®-Bioreaktor. Bachelor thesis, Anhalt University of Applied Sciences, Köthen/Anhalt

    Google Scholar 

  62. Bout B (2012) High level protein production by CHOBC cells in CELL-tainer single-use bioreactors. Single-use technologie: part of bioprocessing & stem cells, London, England

    Google Scholar 

  63. Oosterhuis NMG, Van Der Heiden P (2010) Mass Transfer in the CELL-tainer® Disposable Bioreactor. In: Noll T (ed) Cells and Culture, vol 4. Springer, Netherlands, pp 371–373

    Google Scholar 

  64. Zijlstra GM, Oosterhuis N (2010) Cultivation of PER.C6 cells in the novel CELL-Tainer™ high-performance disposable bioreactor. In: Noll T (ed) Cells and culture. doi: 10.1007/978-90-481-3419-9

  65. XRS Bioreactor System, PALL Life Sciences, Port Washington, NY. http://www.pall.com/main/Biopharmaceuticals/Biopharm-Whats-Next.page?. Accessed 03 July 2012

  66. Kauling J, Brod H, Jenne M et al (2013) Novel, rotary sscillated, scalable single-use bioreactor technology for the cultivation of animal cells. Chem Ing Tech. doi:10.1002/cite.201200155

  67. Jia Q, Li H, Hui M et al (2008) A bioreactor system based on a novel oxygen transfer method. BioProcess Int 6(6):2–5

    Google Scholar 

  68. Li L, Shi M, Song Y et al (2009) A single-use, scalable perfusion bioreactor system. BioProcess Int 7(6):46–54

    CAS  Google Scholar 

  69. Sun B, Yu X, Kong W et al (2012) Production of influenza H1N1 vaccine from MDCK cells using a novel disposable packed-bed bioreactor. Appl Microbiol Biotechnol. doi:10.1007/s00253-012-4375-7

    Google Scholar 

  70. Anderlei T, Cesana C, De Jesus M et al (2009) Shaken bioreactors provide culture alternative. Genet Eng News 29(19). http://www.genengnews.com/gen-articles/shaken-bioreactors-provide-culture-alternative/3092/. Accessed 18 Nov 2012

  71. Potera C (2011) Orbital shake bioreactors take on scale-up—excellgene’s platform includes no moving parts, low shear force, and high gas transfer. Gen Eng News 31. http://www.genengnews.com/gen-articles/orbital-shake-b-bioreactors-b-take-on-scale-up/3643/. Accessed 18 Nov 2012

  72. Tissot S (2011) OrbShake bioreactors for mammalian cell cultures: engineering and scale-up. Ph D thesis, EPFL, Lausanne

    Google Scholar 

  73. Tissot S, Farhat M, Hacker DL et al (2010) Determination of a scale-up factor from mixing time studies in orbitally shaken bioreactors. Biochem Eng J. doi:10.1016/j.bej.2010.08.005

  74. Galliher P (2008) Achieving high-efficiency production with microbial technology in a single-use bioreactor platform. BioPharm Int 6(11):60–65

    CAS  Google Scholar 

  75. Galliher PM, Hodge G, Guertin P et al (2010) Single-use bioreactor platform for microbial fermentation. In: Eibl R, Eibl D (eds) Single-use technology in biopharmaceutical manufacture. Wiley, Hoboken

    Google Scholar 

  76. Luitjens A, Pralong A (2010) Going fully disposable—current possibilities: a case study from Crucell. In: Eibl R, Eibl D (eds) Single-use technology in biopharmaceutical manufacture. Wiley, Hoboken

    Google Scholar 

  77. Mardirosian D, Guertin P, Corwell J et al (2009) Scaling up a CHO-produced hormone–protein fusion product. BioPharm Int 7(S4):30–35

    Google Scholar 

  78. Minow B, Rogge P, Thompson K (2012) Implementing a fully disposable mAb manufacturing facility. BioProcess Int 10(6):48–57

    CAS  Google Scholar 

  79. Cierpa K, Eisberg C, Niss K et al (2013) hMSC production in disposable bioreactors with regards to GMP and PAT. Chem Ing Tech. doi:10.1002/cite.201200151

  80. Kittredge A, Gowda S, Ring J et al (2011) Characterization and performance of the Mobius® CellReady 200 L bioreactor system: the next generation of single-use bioreactors. http://www.millipore.com/publications.nsf/a73664f9f981af8c852569b9005b4eee/eb6d1e15cb3aa21b852578b900479440/$FILE/PS32330000_EMD.pdf. Accessed 18 Nov 2012

    Google Scholar 

  81. Madrid LV, Lahille AP (2013) A comparison of single-use bioreactors for the pharmaceutical industry. Chem Ing Tech (in press)

    Google Scholar 

  82. Dreher T, Husemann U, Zahnow C et al (2012) High Cell Density Escherichia coli cultivation in different single-use bioreactor Systems. Chem Ing Tech. doi:10.1002/cite.201200122

  83. Hähnel A, Pütz B, Iding K et al (2011) Evaluation of a disposable stirred tank bioreactor for cultivation of mammalian cells. BMC Proc 5(8):54

    Google Scholar 

  84. Hundt B, Mölle N, Stefaniak S et al (2011) Large pilot scale cultivation process study of adherent MDBK cells for porcine influenza: a virus propagation using a novel disposable stirred-tank bioreactor. BMC Proc 5(8):128

    Google Scholar 

  85. Noack U (2010) Scale-up. Göttingen, Germany

    Google Scholar 

  86. Noack U, Wilde DD, Verhoeye F et al (2011) Single-use stirred tank reactor BIOSTAT CultiBag STR: characterisation and applications. In: Eibl R, Eibl D (eds) Single-use technology in biopharmaceutical manufacture. Wiley, Hoboken

    Google Scholar 

  87. Hummel A (2012) Zellkulturbasierte Proteinexpressionen mit partiellem und vollständigem Medienaustausch. Bachelor thesis, Anhalt University of Applied Sciences, Köthen/Anhalt

    Google Scholar 

  88. Kaiser SC, Löffelholz C, Werner S et al (2011) CFD for characterizing standard and single-use stirred cell culture bioreactors. In: Minin IV, Minin OV (eds) Computational fluid dynamics technologies and applications. doi:10.5772/23496

  89. Dekarski J (2010) Mobius® Cell Ready single-use 3-L bioreactor. BioProcess Int 8(7):124–126

    Google Scholar 

  90. Kaiser SC, Eibl R, Eibl D (2011) Engineering characteristics of a single-use stirred bioreactor at bench-scale: the Mobius CellReady 3L bioreactor as a case study. Eng Life Sci. doi:10.1002/elsc.201000171

  91. Gossain V, Mirro R (2012) Linear scale-up of cell cultures. BioProcess Int 8(11):56–62

    Google Scholar 

  92. George M, Farooq M, Dang T et al (2010) Production of cell culture (MDCK) derived live attenuated influenza vaccine (LAIV) in a fully disposable platform process. Biotechnol Bioeng. doi:10.1002/bit.22753

    Google Scholar 

  93. Goedde A, Reiser S, Russ K et al (2009) Characterisation of two single-use bioreactors for mammalian cell culture processes. http://rentschler.de/en/information/lectures-and-posters/page.pdf. Accessed 18 Nov 2012

  94. Valasek C, Coke J, Hensel F et al (2011) Production and purificationof a PER.C6-expressed IgM antibody therapeutic. BioPharm Int 9(11):28–37

    CAS  Google Scholar 

  95. Calvosa E (2009) Large scale disposable bioreactor for vaccines manufacturing—applications to anchorage dependent cell line. In: IBC’s 6th international single use applications for biopharmaceutical manufacturing, San-Diego

    Google Scholar 

  96. Rodriguez R, Castillo J, Giraud S (2010) Demonstrated performance of a disposable bioreactor with an anchorage-dependent cell line. BioProcess Int 8(8):74–78

    Google Scholar 

  97. Lee B, Fang D, Croughan M et al (2011) Characterization of novel pneumatic mixing for single-use bioreactor application. BMC Proc. doi:10.1186/1753-6561-5-s8-o12

  98. Drugmand JC, Dubois S, Dohogne Y et al (2010) Viral entities production at manufacturing scale using the Integrity™ iCELLis™ disposable fixed-bed reactor. http://www.atmi.com/ls-assets/pdfs/bioreactors/icellis/Integrity_iCELLis_Poster_ESACT_Digital_A4.pdf. Accessed 18 Nov 2012

  99. Drugmand JC, Havelange N, Collignon F et al (2012) 4 g/L.day: monoclonal antibody volumetric productivity in the iCELLisTM disposable fixed-bed bioreactor. In: Jenkins N, Barron N, Alves P (eds) Proceedings of the 21st annual meeting of the Europe and society for animal cell technology (ESACT), Dublin, Ireland, vol 5. Springer, Netherlands, pp 375–378, June 7–10 2009

    Google Scholar 

  100. Hambor JE (2012) Bioreactor design and bioprocess controls for industrialized cell processing. BioProcess Int 10(6):22–33

    CAS  Google Scholar 

  101. Prieels JP, Stragier P, Lesage F et al (2012) Mastering industrialization of cell therapy products. BioProcess Int 10(S3):12–15

    Google Scholar 

  102. Eibl R, Eibl D (2009) Application of disposable bag bioreactors in tissue engineering and for the production of therapeutic agents. In: Kasper C, Griensven M, Pörtner R (eds) Bioreactor systems for tissue engineering. Springer, Berlin

    Google Scholar 

  103. Agrawal V, Bal M (2012) Strategies for rapid production of therapeutic proteins in mammalian cells. BioPharm Int 10(4):32–48

    CAS  Google Scholar 

  104. Schirmer EB, Kuczewski M, Golden K et al (2010) Primary clarification of very high-density cell culture harvests by enhanced cell settling. BioProcess Int 8(1):32–39

    CAS  Google Scholar 

  105. Schmid D, Schürch C, Blum P et al (2008) Plant stem cell extract for longevity of skin and hair. SöFW 5:29–35

    Google Scholar 

  106. Sederma http://www.sederma.fr/home.aspx?s=111&r=127&p=3346. Accessed 16 Nov 2012

  107. Hitchcook T (2009) Production of recombinant protein whole-cell vaccines with disposable manufacturing systems. BioProcess Int 5:36–46

    Google Scholar 

  108. Löffelholz C, Kaiser SC, Werner S et al (2012) Beitrag zur Charakterisierung und zum Einsatz des 50 L Single-Use Bioreactor (S.U.B.) in der biopharmazeutischen Industrie. In: Sperling R, Heiser M (eds) Proceedings of the 14. Köthener Rührer-Kolloquium 2011. Köthen/Anhalt, Hochschule Anhalt, Köthen

    Google Scholar 

  109. Löffelholz C, Kaiser SC, Werner S et al (2011) CFD as a tool to characterize single-use bioreactors. In: Eibl R, Eibl D (eds) Single-use technology in biopharmaceutical manufacture. Wiley, Hoboken

    Google Scholar 

  110. Liepe F, Sperling R, Jembere S (1998) Rührwerke—Theoretische Grundlagen, Auslegung und Bewertung, Eigenverlag FH Anhalt Köthen, Germany

    Google Scholar 

  111. Büchs J, Maier U, Milbradt C et al (2000) Power consumption in shaking flasks on rotary shaking machines: II. Nondimensional description of specific power consumption and flow regimes in unbaffled flasks at elevated liquid viscosity. Biotechnol Bioeng. doi:10.1002/(SICI)1097-0290(20000620)68:6<594:AID-BIT2>3.0.CO;2-U

    Google Scholar 

  112. Tan R-K, Eberhard W, Büchs J (2011) Measurement and characterization of mixing time in shake flasks. Chem Eng Sci. doi:10.1016/j.ces.2010.11.001

    Google Scholar 

  113. Stoots CM, Calabrese RV (1995) Mean velocity field relative to a Rushton turbine blade. AIChE J. doi:10.1002/aic.690410102

    Google Scholar 

  114. Wollny S (2010) Experimentelle und numerische Untersuchungen zur Partikelbeanspruchung in gerührten (Bio-)Reaktoren. Dissertation, Technische Universität, Berlin

    Google Scholar 

  115. Kaiser SC, Löffelholz C, Werner S et al (2011) CFD for characterizing standard and single-use stirred cell culture bioreactors. In: Minin IV, Minin OV (eds) Computational fluid dynamics technologies and applications. doi:10.5772/23496

  116. Löffelholz C, Husemann U, Greller G et al (2013) Bioengineering parameters for single-use bioreactors: an overview and evaluation of suitable methods. Chem Ing Tech. doi:10.1002/cite.201200125

  117. Büchs J, Maier U, Milbradt C et al (2000) Power consumption in shaking flasks on rotary shaking machines: I. Power consumption measurement in unbaffled flasks at low liquid viscosity. Biotechnol Bioeng. doi:10.1002/(sici)1097-0290(20000620)68:6<589:aid-bit1>3.0.co;2-j

    Google Scholar 

  118. Kato Y, Peter CP, Akgün A et al (2004) Power consumption and heat transfer resistance in large rotary shaking vessels. Biochem Eng J. doi:10.1016/j.bej.2004.04.011

    Google Scholar 

  119. Raval K, Kato Y, Buechs J (2007) Comparison of torque method and temperature method for determination of power consumption in disposable shaken bioreactors. Biochem Eng J. doi:10.1016/j.bej.2006.12.017

    Google Scholar 

  120. Nienow AW (2006) Reactor engineering in large scale animal cell culture. Cytotechnology. doi:10.1023/A:1008008021481

    Google Scholar 

  121. Chisti MY (1989) Airlift bioreactors. Elsevier, London

    Google Scholar 

  122. Meyer J (2011) Untersuchungen zum Einfluss von Blasenbegasung auf Stofftransport, Partikelbeanspruchung und Mischverhalten im oszillierenden BaySHAKE Einwegbioreaktorsystem. Diploma thesis, Hochschule für Technik und Wirtschaft, Berlin

    Google Scholar 

  123. Poles-Lahille A, Richard C, Fisch S et al (2011) Disposable bioreactors: from process development to production. BMC Proc 5(S8):2

    Google Scholar 

  124. Raval K (2008) Characterization and application of large disposable shaking bioreactors. Rheinisch-Westfälische Technische Hochschule Aachen, Germany

    Google Scholar 

  125. Ries C (2008) Untersuchungen zum Einsatz von Einwegbioreaktoren für die auf Insektenzellen basierte Produktion von internen und externen Proteinen. Diploma thesis, Zurich University of Applied Sciences (ZHAW), Wädenswil

    Google Scholar 

  126. Sadeli AR (2011) Detection of circulating tumor cells in peripheral blood and mixing time quantification in Millipore disposable bioreactors. Master thesis, Ohio State University, Columbus

    Google Scholar 

  127. Nienow AW (2010) Impeller selection for animal cell culture. Encyclopedia of industrial biotechnology: bioprocess, bioseparation, and cell technology. doi:10.1002/9780470054581.eib636

  128. Zhang H, Williams-Dalson W, Keshavarz-Moore E et al (2005) Computational-fluid-dynamics (CFD) analysis of mixing and gas-liquid mass transfer in shake flasks. Biotechnol Appl Biochem. doi:10.1042/ba20040082

    Google Scholar 

  129. Zhang X, Bürki C-A, Stettler M et al (2009) Efficient oxygen transfer by surface aeration in shaken cylindrical containers for mammalian cell cultivation at volumetric scales up to 1000 L. Biochem Eng J. doi:10.1016/j.bej.2009.02.003

    Google Scholar 

  130. Doig SD, Pickering SCR, Lye GJ et al (2005) Modelling surface aeration rates in shaken microtitre plates using dimensionless groups. Chem Eng Sci. doi:10.1016/j.ces.2004.12.025

    Google Scholar 

  131. Hermann R, Lehmann M, Büchs J (2003) Characterization of gas–liquid mass transfer phenomena in microtiter plates. Biotechnol Bioeng. doi:10.1002/bit.10456

    Google Scholar 

  132. Zhang Q, Yong Y, Mao Z-S et al (2009) Experimental determination and numerical simulation of mixing time in a gas–liquid stirred tank. Chem Eng Sci. doi:10.1016/j.ces.2009.03.030

    Google Scholar 

  133. Garcia-Ochoa F, Gomez E (2009) Bioreactor scale-up and oxygen transfer rate in microbial processes: an overview. Biotechnol Adv. doi:10.1016/j.biotechadv.2008.10.006

    Google Scholar 

  134. Kittredge Wood A, Gowda S, Dinn L et al (2011) Use of small-scale, single-use bioreactors for streamlining upstream process development. Bioprocess J 10(1):34–39

    Google Scholar 

  135. Linek V, Vacek V, Benes P (1987) A critical review and experimental verification of the correct use of the dynamic method for the determination of oxygen transfer in aerated agitated vessels to water, electrolyte solutions and viscous liquids. Biochem Eng J. doi:10.1016/0300-9467(87)85003-7

    Google Scholar 

  136. Fietz F (2012) Messungen des Sauerstofftransfers und -verbrauchs von Zellkulturen in Einwegbioreaktoren. Master thesis, Anhalt University of Applied Sciences, Köthen/Anhalt

    Google Scholar 

  137. Mikola M, Seto J, Amanullah A (2007) Evaluation of a novel Wave bioreactor cellbag for aerobic yeast cultivation. Bioprocess Biosyst Eng. doi:10.1007/s00449-007-0119-y

    Google Scholar 

  138. Hermann R, Walther N, Maier U et al (2001) Optical method for the determination of the oxygen-transfer capacity of small bioreactors based on sulfite oxidation. Biotechnol Bioeng. doi:10.1002/bit.1126

    Google Scholar 

  139. Linek V, Sinkule J, Bener P (1991) Critical assessment of gassing-in methods for measuring kLa in fermentors. Biotechnol Bioeng. doi:10.1002/bit.260380402

    Google Scholar 

  140. Reith T, Beek WJ (1973) The oxidation of aqueous sodium sulphite solutions. Chem Eng Sci. doi:10.1016/0009-2509(73)80084-3

    Google Scholar 

  141. Backoff T, Malig J, Werner S et al (2012) Where does the oxygen go? kLa measurement in bioreactors. G.I.T. Lab J 9(10):21–22

    Google Scholar 

  142. Maier U, Büchs J (2001) Characterisation of the gas–liquid mass transfer in shaking bioreactors. Biochem Eng J. doi:10.1016/s1369-703x(00)00107-8

    Google Scholar 

  143. Funke M (2010) Microfluidic bioprocess control in baffled microtiter plates. Ph D thesis, RWTH Aachen, Germany

    Google Scholar 

  144. Maier U, Losen M, Büchs J (2004) Advances in understanding and modeling the gas–liquid mass transfer in shake flasks. Biochem Eng J. doi:10.1016/s1369-703x(03)00174-8

  145. Rodrigues ME, Costa AR, Henriques M et al (2012) Wave characterization for mammalian cell culture: residence time distribution. N Biotechnol. doi:10.1016/j.nbt.2011.10.006

    Google Scholar 

  146. Hummel A (2012) Verfahrenstechnische Charakterisierung eines neuartigen single-use Bioreaktors. Semester thesis, Anhalt University of Applied Sciences, Köthen/Anhalt, Germany.

    Google Scholar 

  147. Galliher PM (2007) Review of single use technologies in biomanufacturing. http://www.wpi.edu/Images/CMS/BEI/parrishgalliher.pdf. Accessed 18 Nov 2012

  148. Pneumatic Bioreactor System, PBSBiotech, Inc., Camarillo, CA. http://pbsbiotech.com/products-technology/. Accessed 27 June 2012

  149. Höfken M, Schäfer M, Durst F (1996) Detaillierte Untersuchung des Strömungsfeldes innerhalb eines Sechs-Blatt-Scheibenrührers. Chem Ing Tech. doi:10.1002/cite.330680707

    Google Scholar 

  150. Venkat RV, Stock LR, Chalmers JJ (1996) Study of hydrodynamics in microcarrier culture spinner vessels: a particle tracking velocimetry approach. Biotechnol Bioeng. doi:10.1002/(sici)1097-0290(19960220)49:4<456:aid-bit13>3.0.co;2-8

    Google Scholar 

  151. Öncül AA, Lalmbach A, Genzel Y et al (2010) Characterisation of flow conditions in 2 L and 20 L wave bioreactor using computational fluid dynamics. Biotechnol Prog. doi:10.1002/btpr.312

    Google Scholar 

  152. Hutmacher DW, Singh H (2008) Computational fluid dynamics for improved bioreactor design and 3D culture. Trends Biotechnol. doi:10.1016/j.tibtech.2007.11.012

    Google Scholar 

  153. Batchelor GK (2000) An introduction to fluid dynamics. Cambridge University Press, Cambridge

    Google Scholar 

  154. Blazek J (2001) Computational fluid dynamics: principles and applications. Elsevier, Amsterdam

    Google Scholar 

  155. Lomax H, Pulliam T, Zingg D (2001) Fundamentals of computational fluid dynamics. Springer, Berlin

    Google Scholar 

  156. Paschedag AR (2004) CFD in der Verfahrenstechnik—Allgemeine Grundlagen und mehrphasige Anwendungen. Wiley-VCH, Weinheim

    Google Scholar 

  157. Wesseling P (2001) Principles of computational fluid dynamics. Springer, Berlin

    Google Scholar 

  158. Löffelholz C, Werner S, Ay P et al (2010) Untersuchungen zum Strömungsverhalten des Einweg-Vibromix-Bioreaktors. In: Egbers C, Ruck B, Leder A, Dopheide D (eds) Proceedings of the 18. GALA-Fachtagung “Lasermethoden in der Strömungsmesstechnik”, Cottbus, Germany

    Google Scholar 

  159. Zhang H, Lamping SR, Pickering SCR et al (2008) Engineering characterisation of a single well from 24-well and 96-well microtitre plates. Biochem Eng J. doi:10.1016/j.bej.2007.12.005

    Google Scholar 

  160. Chisti Y (2001) Hydrodynamic damage to animal cells. Crit Rev Biotechnol. doi:10.1080/20013891081692

    Google Scholar 

  161. Croughan MS, Sayre ES, Wang DIC (1989) Viscous reduction of turbulent damage in animal cell culture. Biotechnol Bioeng. doi:10.1002/bit.260330710

    Google Scholar 

  162. Kunas KT, Papoutsakis ET (2009) Damage mechanisms of suspended animal cells in agitated bioreactors with and without bubble entrainment. Biotechnol Bioeng 102(4):977–987. doi:10.1002/bit.22263

    Google Scholar 

  163. Dhanasekharan KM, Sanyal J, Jain A et al (2005) A generalized approach to model oxygen transfer in bioreactors using population balances and computational fluid dynamics. Chem Eng Sci. doi:10.1016/j.ces.2004.07.118

  164. Kerdouss F, Bannari A, Proulx P et al (2008) Two-phase mass transfer coefficient prediction in stirred vessel with a CFD model. Comput Chem Eng. doi:10.1016/j.compchemeng.2007.10.010

    Google Scholar 

  165. Bujalski JM, Yang W, Nikolov J et al (2006) Measurement and CFD simulation of single-phase flow in solvent extraction pulsed column. Chem Eng Sci. doi:10.1016/j.ces.2005.10.057

    Google Scholar 

  166. Nakiboğlu G, Gorlé C, Horváth I et al (2009) Stack gas dispersion measurements with large scale-PIV, aspiration probes and light scattering techniques and comparison with CFD. Atmos Environ. doi:10.1016/j.atmosenv.2009.03.047

    Google Scholar 

  167. Torré J-P, Fletcher DF, Lasuye T et al (2007) Single and multiphase CFD approaches for modelling partially baffled stirred vessels: comparison of experimental data with numerical predictions. Chem Eng Sci. doi:10.1016/j.ces.2007.06.044

    Google Scholar 

  168. Alcamo R, Micale G, Grisafi F et al (2005) Large-eddy simulation of turbulent flow in an unbaffled stirred tank driven by a Rushton turbine. Chem Eng Sci. doi:10.1016/j.ces.2004.11.017

  169. Montante G, Lee KC, Brucato A et al (2001) Numerical simulations of the dependency of flow pattern on impeller clearance in stirred vessels. Chem Eng Sci. doi:10.1016/s0009-2509(01)00089-6

    Google Scholar 

  170. Yianneskis M, Popiolek Z, Whitelaw JH (1987) An experimental study of the steady and unsteady flow characteristics of stirred reactors. J Fluid Mech. doi:10.1017/S002211208700051X

    Google Scholar 

  171. Zlokarnik M (2006) Scale-up in chemical engineering. Wiley-VCH, Weinheim

    Google Scholar 

  172. Kraume M (2003) Mischen und Rühren: Grundlagen und moderne Verfahren. Wiley-VCH, Weinheim

    Google Scholar 

  173. Zlokarnik M (1999) Rührtechnik—Theorie und Praxis. Springer, Berlin

    Google Scholar 

  174. Henzler HJ (2000) Particle stress in bioreactors. Adv Biochem Eng Biotechnol. doi:10.1007/3-540-47865-5_2

    Google Scholar 

  175. Garcia-Ochoa F, Gomez E, Santos V et al (2010) Oxygen uptake rate in microbial processes: an overview. Biochem Eng J. doi:10.1016/j.bej.2010.01.011

  176. Jahoda M, Moštĕk M, Kukuková A et al (2007) CFD modelling of liquid homogenization in stirred tanks with one and two impellers using large eddy simulation. Chem Eng Res Des. doi:10.1205/cherd06183

    Google Scholar 

  177. Min J, Gao Z (2006) Large eddy simulations of mixing time in a stirred tank. Chin J Chem Eng 14(1):1–7. doi:10.1016/s1004-9541(06)60030-x

    CAS  Google Scholar 

  178. Storhas W (1994) Bioreaktoren und periphere Einrichtungen ein Leitfaden für die Hochschulausbildung, für Hersteller und Anwender. Vieweg, Braunschweig

    Google Scholar 

  179. Jaworski Z, Nienow AW, Koutsakos E et al (1991) An LDA study of turbulent flow in a baffled vessel agitated by a pitched blade turbine. Elsevier, Amsterdam, PAYS-BAS

    Google Scholar 

  180. Ranade VV, Joshi JB (1989) Flow generated by pitched blade turbines I: measurements using laser Doppler anemometer. Chem Eng Commun. doi:10.1080/00986448908940539

    Google Scholar 

  181. Langer G, Deppe A (2000) Zum Verständnis der hydrodynamischen Beanspruchung von Partikeln in turbulenten Rührerströmungen. Chem Ing Tech. doi:10.1002/1522-2640(200001)72:1/2<31:AID-CITE31>3.0.CO;2-O

    Google Scholar 

  182. Yim S, Shamlou P (2000) The engineering effects of fluids flow on freely suspended biological macro-materials and macromolecules. In: Schügerl K, Kretzmer G, Henzler H, Kieran P, Macloughlin P, Malone D, Schumann W, Shamlou P, Yim S (eds) Influence of stress on cell growth and product formation. Springer, Berlin

    Google Scholar 

  183. Czermak P, Pörtner R, Brix A (2009) Special engineering aspects. In: Eibl R, Eibl D, Pörtner R, Catapano G, Czermak P (eds) Cell and tissue reaction engineering. Springer, Berlin

    Google Scholar 

  184. Ducommun P, Ruffieux P-A, Furter M-P et al (2000) A new method for on-line measurement of the volumetric oxygen uptake rate in membrane aerated animal cell cultures. J Biotechnol. doi:10.1016/s0168-1656(99)00237-0

    Google Scholar 

  185. Godoy-Silva R, Berdugo C, Chalmers JJ (2010) Aeration, mixing, and hydrodynamics, animal cell bioreactors. Encyclopedia of industrial biotechnology: bioprocess, bioseparation, and cell technology. doi:10.1002/9780470054581.eib010

  186. Ruffieux P-A, Von Stockar U, Marison IW (1998) Measurement of volumetric (OUR) and determination of specific (qO2) oxygen uptake rates in animal cell cultures. J Biotechnol. doi:10.1016/s0168-1656(98)00046-7

    Google Scholar 

  187. Zijlstra G, Noack U, Weisshaar S et al (2011) High cell density XD cultivation of CHO cells in BIOSTAT CultibBag STR 50 L single-use bioreactor with novel microsparger and single-use exhaust cooler. http://microsite.sartorius.com/fileadmin/Image_Archive/microsite/biostat_cultibag_str/pdf/11-06-21/DSM_ESCAT_Sartorius.pdf. Acessed 04.03.2013

  188. Zhu H, Nienow AW, Bujalski W et al (2009) Mixing studies in a model aerated bioreactor equipped with an up- or a down-pumping elephant ear agitator: power, hold-up and aerated flow field measurements. Chem Eng Res Des. doi:10.1016/j.cherd.2008.08.013

    Google Scholar 

  189. Löffelholz C, Werner S, Kaiser SC et al (2012) Comparative studies of single-use stirred bioreactors by means of traditional methods, CFD and cultivation experiments Frankfurt, Germany

    Google Scholar 

  190. Gimbun J, Nagy Z, Rielly C (2008) CFD and population balance modelling of gas-liquid flow via QMOM with moment correction function. In: Proceedings of the sixth international symposium on mixing in industrial process industries—ISMIP VI, Niagara on the Lake, Niagara Falls, Ontario, Canada

    Google Scholar 

  191. Vorlop J, Lehmann J (1988) Scale-up of bioreactors for fermentation of mammalian cell cultures, with special reference to oxygen supply and microcarrier mixing. Chem Eng Technol. doi:10.1002/ceat.270110123

    Google Scholar 

  192. Varley J, Birch J (1999) Reactor design for large scale suspension animal cell culture. Cytotechnology. doi:10.1023/a:1008008021481

  193. Venkat RV, Chalmers JJ (1996) Characterization of agitation environments in 250 ml spinner vessel, 3 L, and 20 L reactor vessels used for animal cell microcarrier culture. Cytotechnology. doi:10.1007/bf00353928

    Google Scholar 

  194. Kaiser SC, Jossen V, Schirmaier C et al (2013) Fluid Flow and Cell Proliferation of Mesenchymal Adipose-Derived Stem Cells in Small-Scale, Stirred, Single-Use Bioreactors. Chem Ing Tech. doi:10.1002/cite.201200180

  195. Nienow AW (1997) On impeller circulation and mixing effectiveness in the turbulent flow regime. Chem Eng Sci. doi:10.1016/s0009-2509(97)00072-9

    Google Scholar 

  196. Langheinrich C, Nienow AW (1999) Control of pH in large-scale, free suspension animal cell bioreactors: alkali addition and pH excursions. Biotechnol Bioeng. doi:10.1002/(sici)1097-0290(1999)66:3<171:aid-bit5>3.0.co;2-t

    Google Scholar 

  197. Osman JJ, Birch J, Varley J (2001) The response of GS-NS0 myeloma cells to pH shifts and pH perturbations. Biotechnol Bioeng. doi:10.1002/bit.1165

  198. Osman JJ, Birch J, Varley J (2002) The response of GS-NS0 myeloma cells to single and multiple pH perturbations. Biotechnol Bioeng. doi:10.1002/bit.10198

    Google Scholar 

  199. Junker BH (2004) Scale-up methodologies for Escherichia coli and yeast fermentation processes. J Biosci Bioeng. doi:10.1016/s1389-1723(04)70218-2

    Google Scholar 

  200. Ozturk SS (1996) Engineering challenges in high density cell culture systems. Cytotechnology. doi:10.1007/bf00353919

  201. Handa A, Emery AN, Spier RE (1987) On the evaluation of gas-liquid interfacial effects on hybridoma viability in bubble column bioreactors. Dev Biol Stand 66:241–253

    CAS  Google Scholar 

  202. Jöbses I, Martens D, Tramper J (1991) Lethal events during gas sparging in animal cell culture. Biotechnol Bioeng. doi:10.1002/bit.260370510

  203. Oh SKW, Nienow AW, Al-Rubeai M et al (1992) Further studies of the culture of mouse hybridomas in an agitated bioreactor with and without continuous sparging. J Biotechnol. doi:10.1016/0168-1656(92)90144-x

    Google Scholar 

  204. Letellier B, Xuereb C, Swaels P et al (2002) Scale-up in laminar and transient regimes of a multi-stage stirrer, a CFD approach. Chem Eng Sci. doi:10.1016/s0009-2509(02)00371-8

    Google Scholar 

  205. Ma N, Chalmers JJ, Mollet M (2006) Aeration, mixing and hydrodynamics in bioreactors. In: Ozturk SS, Hu W-S (eds) Cell culture technology for pharmaceutical and cell-based therapies. CRC Press, New York

    Google Scholar 

  206. Catapano G, Czermak P, Eibl R et al (2009) Bioreactor design and scale-up. In: Eibl R, Eibl D, Pörtner R, Catapano G, Czermak P (eds) Cell and tissue reaction engineering. Springer, Berlin

    Google Scholar 

  207. Jossen V (2012) Bestimmung der Blasengrössenverteilung in einem modernen Zellkulturbioreaktor mittels PIV/Shadowgraphy. Semester thesis, Zurich University of Applied Sciences, Wädenswil

    Google Scholar 

Download references

Acknowledgments

The results presented are part of a PhD thesis. The authors are grateful to Dipl.-Ing. Ute Husemann, Dr. Gerhard Greller, Dipl.-Ing. Jacqueline Herrman and Dr. Alexander Tappe, from Sartorius Stedim Biotech for providing geometric details for the bioreactors under investigation and experimental results for the BIOSTAT CultiBag STR, as well as for their participation in many helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Löffelholz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Löffelholz, C., Kaiser, S.C., Kraume, M., Eibl, R., Eibl, D. (2013). Dynamic Single-Use Bioreactors Used in Modern Liter- and m3- Scale Biotechnological Processes: Engineering Characteristics and Scaling Up. In: Eibl, D., Eibl, R. (eds) Disposable Bioreactors II. Advances in Biochemical Engineering/Biotechnology, vol 138. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10_2013_187

Download citation

Publish with us

Policies and ethics