Skip to main content

Environmental Transmission Electron Microscopy in Nanotechnology

  • Chapter
Handbook of Microscopy for Nanotechnology

6. Conclusions

We have shown that ETEM is a valuable technique for understanding the response of nanoparticle systems to a gaseous environment at near atomic-level. The modern ETEM allows the dynamic behavior of the nanoparticles to be studied in real time with atomic-resolution imaging and electron diffraction in up to 50 Torr of gas pressure. On a machine equipped with a field-emission gun, electron energy-loss spectra can be recorded using a sub-nanometer probe so that elemental and electronic structural changes occurring in individual nanoparticles can be followed in situ. This powerful combination of in-situ imaging, diffraction and spectroscopy provides detailed information about gas-solid phase transformation mechanisms in individual nanoparticles. Quantitative measurements can be used to derive reaction rates and activation energies from very small areas and should allow full reaction kinetics to be determined as a function of nanoparticles size. The ETEM can also be used to perform in-situ synthesis of nanophase materials. The simultaneous characterization can be performed during synthesis allowing synthesis conditions to be varied and optimized rapidly. Sub-nanometer electron probes can also permit nano-lithographic structures to be deposited and studied under a wide variety of different conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. Marton, Bull. Acad. R. Belg. Cl. Sci., 21 (1935) 553.

    ADS  Google Scholar 

  2. H. M. Flower, J. Microscopy, 97 (1973) 171.

    Google Scholar 

  3. D. F. Parsons, V. R. Matricardi, R. C. Moretz and J. N. Turner, in Advances in Biological and Medical Physics, Vol. 15, J. H. Lawrence and J. W. Gofman, Eds. (Academic Press, New York), (1974) p. 161.

    Google Scholar 

  4. D. L. Allinson, in Principles and Techniques in Elelctron Microscopy, Biological Applications, Vol. 5, M. A. Hayat, Ed. (Van Nostrand Reinhold, New York), (1975) p. 52.

    Google Scholar 

  5. P. Butler and K. Hale, in Practical Methods in Electron Microscopy, Vol. 9 (North Holland) (1981) pp. 239–308.

    Google Scholar 

  6. P. R. Swann and N. J. Tighe, Proc. 5th Eur. Reg. Cong Electron Microscopy, (1972) 436.

    Google Scholar 

  7. G. M. Parkinson, Catalysis Letters, 2 (1989) 303.

    Article  CAS  Google Scholar 

  8. R. C. Doole, G. M. Parkinson, and J. M. Stead, Inst. Phys. Conf. Ser., 119 (1991) 157–160.

    CAS  Google Scholar 

  9. R. C. Doole, G.M. Parkinson, J. L. Hutchison, M. J. Goringe and P. J. F. Harris JEOL News 30E, (1992) 30.

    Google Scholar 

  10. T. C. Lee, D. K. Dewald, J. A. Eades, I. M. Robertson, and H. K. Birnbaum, Rev. Sci. Instrum. 62 (1991) 1438.

    Article  CAS  ADS  Google Scholar 

  11. Nan Yao, Gerard E. Spinnler, Richard A. Kemp, Don C. Guthrie, R. Dwight Cates and C. Mark Bolinger, Proc. 49th Annual; meeting of Microsc. Soc. Am. San Francisco Press (1991) 1028.

    Google Scholar 

  12. Renu Sharma, K. Weiss, M. McKelvy and W. Glaunsinger, Proc. 52nd Ann. Meet. Microscopy Society of America, (1994) 494–495P.

    Google Scholar 

  13. E. D. Boyes and P. L. Gai, Ultramicroscopy, 67 (1997) 219–232.

    Article  CAS  Google Scholar 

  14. Pratibha L. Gai and Edward D. Boyes, in In Situ Microscopy in Materials Research, Ed. Pratibha L. Gai, Kluwer Academic Publishers, (1997) 123–146.

    Google Scholar 

  15. Renu Sharma and Karl Weiss, Microscopy Research and Techniques, 42 (1998) 270–280.

    Article  CAS  Google Scholar 

  16. L. Hansen and J. B. Wagner, Proc. 12th European Congress on Electron Microscopy, Vol. II, (2000) 537–538.

    Google Scholar 

  17. Thomas W. Hansen, Jacob B. Wagner, Poul L. Hansen, Seren Dahl, Haldor Topsoe, Claus J. H. Jacobson, Science, 294 (2001) 1508–1510.

    Article  PubMed  CAS  ADS  Google Scholar 

  18. Renu Sharma, Peter A. Crozier, Ronald Marx and Karl Weiss, Microsc. & Microanal., (2003) 912 CD.

    Google Scholar 

  19. P. R. Swann and N. J. Tighe, Proc. 5th Eur. Reg. Cong Electron Microscopy, (1972) 360.

    Google Scholar 

  20. M. Pan and P. A. Crozier, Ultramicroscopy, 48 (1993) 332.

    Article  Google Scholar 

  21. M. Pan and P. A. Crozier, Ultramicroscopy, 48 (1993) 487.

    Article  Google Scholar 

  22. R. F. Egerton, Electron Energy-Loss Spectroscopy in the Electron Microscope, Plenum Press, New York (1996) Second Edition.

    Google Scholar 

  23. P. R. Swann, in Electron Microscopy and Structure of Materials, Ed. G. Thomas, R. Fulrath and R. M. Fisher, University of California Press (1972) 878.

    Google Scholar 

  24. R._Sharma P. A. Crozier, Z. C. Kang, and L. Eyring, Phil. Mag. 84 (2004) 2731.

    Article  CAS  Google Scholar 

  25. V. Oleshko, P. A. Crozier, R. Cantrell, A. Westwood, J. of Electron Microscopy, 151(Supplement), (2002), S27.

    Article  Google Scholar 

  26. Kamino and H. Saka, Microsc. Microanal. Microstruct., 4 (1993) 127.

    Article  CAS  Google Scholar 

  27. R. T. K. Baker, M. A. Barber, P. S. Harris, F. S. Feates and R. J. White, J. Catalysis, 26 (1972) 51.

    Article  CAS  Google Scholar 

  28. R. T. K. Baker and J. J. Chludzinski, Journal of Catalysis, 64 (1980) 464.

    Article  CAS  Google Scholar 

  29. R. T. K. Baker, J. J. Chludzinski and C. R. F. Lund, Carbon, 25 (1987) 295–303.

    Article  CAS  Google Scholar 

  30. R. T. K. Baker, J. Of Adhesion, 52 (1995) 13–40 and references therein.

    Article  CAS  Google Scholar 

  31. P. L. Gai, and C. C. Torardi, Mat. Res. Soc. Symp. Proc., 404 (1996) 61.

    CAS  Google Scholar 

  32. Pratibha. L. Gai, Kostantinos Kourtakis, and Stan Zeimecki, Microscopy and Microanalysis (2000) 6.

    Google Scholar 

  33. Pratibha L. Gai, and Edward D. Boyes, Catal. Rev. — Sci. Eng., 34 (1992) 1–54.

    Google Scholar 

  34. P. L. Gai, Phil. Mag., 48 (1983) 359–371.

    Article  CAS  Google Scholar 

  35. Z. Atzmon, R. Sharma, J. W. Mayer, and S. Q. Hong, Materials Research Society Sympos. Proceedings, 317 (1993) 245–250.

    Google Scholar 

  36. Z. Atzmon, R. Sharma, S. W. Russell and J. W. Mayer, Materials Research Society Symp. Proceedings, 337 (1994) 619–624.

    Google Scholar 

  37. C. A. Mims, J. J. Chludzinski, J. K. Pabst and R. T. K. Baker, J. Catalysis, 88 (1984) 97.

    Article  CAS  Google Scholar 

  38. R. T. K. Baker, N. S. Dudash, C. R. F. Lund and J. J. Chludzinski, Fuel, 64 (1985) 1151.

    Article  Google Scholar 

  39. R. T. K. Baker, J. J. Chludzinski and J. A. Dumesic, J. Catalysis, 93 (1985) 312.

    Article  CAS  Google Scholar 

  40. R. T. K. Baker and J. A. Dumesic, J. Phys. Chem., 90 (1986) 4730.

    Article  Google Scholar 

  41. E. G. Derouane, J. J. Chludzinski and R. T. K. Baker, J. Catalysis, 85 (1984) 187.

    Article  CAS  Google Scholar 

  42. J. A. Dumesic, S. A. Stevenson, R. D. Sherwood and R. T. K. Baker, J. Catalysis, 99 (1986) 79.

    Article  CAS  Google Scholar 

  43. A. J. Simoens, R. T. K. Baker, D. J. Dwyer, C. R. F. Lund and R. J. Madon, J. Catalysis, 86 (1984) 359.

    Article  CAS  Google Scholar 

  44. B. H. Upton, C. C. Chen, N. M. Rodriguez and R. T. K. Baker, J. Catalysis, 141 (1993) 171.

    Article  CAS  Google Scholar 

  45. R. T. K. Baker and N. M. Rodriguez, Energy and Fuels, 8 (1994) 330.

    Article  CAS  Google Scholar 

  46. P. L. Hansen, J. B. Wagner, S. Helveg, J. R. Rostrup-Nielsen, B. S. Clausen, H. Topsoe, Science 295 (2002) 2053.

    Article  PubMed  CAS  ADS  Google Scholar 

  47. R. W. McCabe and R. K. Usmen, Studies in Surface Science and Catalysis, 101 (1996) 355.

    Article  CAS  Google Scholar 

  48. T. R. Baldwin and R. Burch. Applied Catalysis, 66 (1990) 359.

    Article  CAS  Google Scholar 

  49. A. K. Datye, D. S. Kalakkad, E. Völkl and L. F. Allard (1995). Electron Holography, 199–208.

    Google Scholar 

  50. P. A. Crozier, R. Sharma and A. K. Datye, Microscopy and Microanalysis, 4 (1998) 278.

    PubMed  CAS  Google Scholar 

  51. P. Crozier and A. K. Datye, Studies in Surface Science and Catalysis, 130 (2000), 3119–3124.

    Article  Google Scholar 

  52. M. Shelef, and R. W. McCabe, Catalysis Today, 62 (2000) 35–57.

    Article  CAS  Google Scholar 

  53. D. J. M. Bevan and J. Kordis, J. Inorg. Chem., 26 (1964) 1509–1523.

    CAS  Google Scholar 

  54. Z. C. Kang, J. Zhang, and L. Eyring, Z. anorg. Allg. Chem., 622 (1996) 465–472.

    Article  CAS  Google Scholar 

  55. P. Fornasiero, J. Kasper, and M. Graziani, J. of Catalysis, 167 (1997) 576.

    Article  CAS  Google Scholar 

  56. T. Manoubi, and C. Colliex, J. of Microscopy and Related Phenomena, 50 1990) 1–18.

    Article  CAS  Google Scholar 

  57. D. H. Pearson, C. C. Ahn, and B. Fultz, Phys. Rev., B47 (1993), 8471.

    ADS  Google Scholar 

  58. P. L. Gai and K. Kourtakis, Science, 267 (1995) 661.

    Article  CAS  ADS  Google Scholar 

  59. E. G. Derouane, J. J. Chludzinski and R. T. K. Baker, J. Catalysis, 85 (1983) 187.

    Article  Google Scholar 

  60. K. Heinemann, T. Osaka, H. Poppa and M. Avalos-Borlja, J. Catalysis 83 (1982) 61.

    Article  Google Scholar 

  61. P. L. Gai, B. C. Smith and G. Owen, Nature 348 (1990) 430.

    Article  CAS  ADS  Google Scholar 

  62. J. Gislason W. Xia, H. Sellers J. Phys. Chem., A 106 (2002):767.

    Google Scholar 

  63. T. B. Lin and T. C. Chou, Ind. Eng. Chem. Res., 34 (1995) 128.

    Article  CAS  Google Scholar 

  64. R. J. Liu et al., Microscopy and Microanalysis, in press.

    Google Scholar 

  65. J. Drucker, R. Sharma, J. Kouvetakis and Karl Weiss, J. Appl. Phys., 77 (1995) 2846–2848.

    Article  CAS  ADS  Google Scholar 

  66. J. Drucker, R. Sharma, J. Kouvetakis and Karl Weiss, Proc. Mat. Res. Soc., 404 (1996) 75–84.

    CAS  Google Scholar 

  67. D. B. Beach, S. E. Blum, and F. K. LeGoues, J. Vac. Sci. Technol., A 7 (1989) 3117.

    ADS  Google Scholar 

  68. M. Hammar, F. K. LeGoues, J. Tersoff, M. C. Reuter and R. M. Tromp, Surface Science, 349 (1995) 129.

    Article  Google Scholar 

  69. F. M. Ross, J. Tersoff and R. M. Tromp, Microsc. Microanal., 4 (1998) 254.

    PubMed  CAS  Google Scholar 

  70. N. Silvis-Cividjian, C. W. Hagen, P. Kruit, M. A. J. v. d. Stam and H. B. Groen, Appl. Phys. Lett., 82 (2003) 3514.

    Article  CAS  ADS  Google Scholar 

  71. N. Silvis-Cividjian, C. W. Hagen, L. H. A. Leunissen, and P. Kruit, Microelectronic Engineering., 61–62 (2002) 693.

    Article  Google Scholar 

  72. K. Mitsuishi, M. Shimojo, M. Han, K. Furuya, Appl. Phys. Lett., 83 (2003) 2064.

    Article  CAS  ADS  Google Scholar 

  73. P. A. Crozier, J. Tolle, J. Kouvetakis & Cole Ritter, Appl. Phys. Lett. 84 (2004) 3441.

    Article  CAS  ADS  Google Scholar 

  74. L. Torrison, J. Tolle, I. S. T. Tsong, J. Kouvetakis, Thin Solid Films, 434 (2003) 106.

    Article  CAS  Google Scholar 

  75. Y. Arakawa, T. Someya and T. Tachibana, Phys. Stat. Sol. (b), 224 (2001) 1.

    Article  CAS  ADS  Google Scholar 

  76. I. D’Amico, E. Biolatti, F. Rossi, S. Derinaldis, R. Rinaldis and R. Cingolani, Superlattices and Microstructures, 31 (2002) 117.

    Article  CAS  ADS  Google Scholar 

  77. K. Kawasaki, D. Yamazaki, A., Kinoshita, H. Hirayama, K. Tsutsui and Y. Aoyagi, Appl. Phys. Lett., 79 (2001) 2243.

    Article  CAS  ADS  Google Scholar 

  78. J. Drucker, M. R. Scheinfein, J. Liu and J. K. Weiss, J. Appl. Phys., 74(12) (1993) 7329.

    Article  CAS  ADS  Google Scholar 

  79. M. R. Scheinfein, J. Drucker and J. K. Weiss, Phys. Rev., B 47(7) (1993) 4068.

    ADS  Google Scholar 

  80. M. Prutton, Introduction to Surface Physics, Clarendon Press (1994).

    Google Scholar 

  81. R. T. K. Baker, R. D. Sherwood and J. A. Dumesic, J. Catalysis, 66 (1980) 56.

    Article  CAS  Google Scholar 

  82. R. T. K. Baker, and M. A. Harris (1978), in ‘Chemistry and Physics of Carbon’, Eds. P. L. Walker, Jr. and P. A. Thrower, Pekker, New York. Vol. 14, 83–164.

    Google Scholar 

  83. S. Iijima, Nature, 354 (1991) 56–58.

    Article  CAS  ADS  Google Scholar 

  84. M. Dresselhaus, G. Dresselhaus, and Ph. Avouris (Editors), in Carbon Nanotubes: Synthesis, Structure, Properties and Applications. Spriner-Verlag, Berln (2001) and references therein.

    Google Scholar 

  85. Jean-Christophe Charlier, Sumio Iijima in Carbon Nanotubes: Synthesis, Structure, Properties and Applications. Spriner-Verlag, Berln (2001) 55–79.

    Book  Google Scholar 

  86. Y. Zhang, Y. Li, W. Kim, D. Wang, and H. Dai, Appl. Phys., A 74, 325 (2002).

    ADS  Google Scholar 

  87. A. Maiti, C. J. Brabec, C. M. Roland, and J. Bernholc, Phys. Rev. Lett., 73 (1994) 2468–2471.

    Article  PubMed  CAS  ADS  Google Scholar 

  88. M. Grujicic, G. Cao, and Bonnie Gersten, Materials Sci. Eng., B94 (2002) 247–259.

    Article  CAS  Google Scholar 

  89. Renu Sharma (2003), Microsc. & Microanal. 302CD.

    Google Scholar 

  90. Renu Sharma and Zafar Iqbal, Appl. Phys. Lett., 84 (2004) 990.

    Article  CAS  ADS  Google Scholar 

  91. Mona B. Mohamed, Zhong L. Wang and Mostafa A. Al-Sayed, J. Phys. Chem. A 103 (1999) 10255.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Kluwer Academic Publishers

About this chapter

Cite this chapter

Sharma, R., Crozier, P.A. (2005). Environmental Transmission Electron Microscopy in Nanotechnology. In: Yao, N., Wang, Z.L. (eds) Handbook of Microscopy for Nanotechnology. Springer, Boston, MA. https://doi.org/10.1007/1-4020-8006-9_17

Download citation

Publish with us

Policies and ethics