Skip to main content

The Plasma Cell Dyscrasias

  • Chapter
Hematopathology in Oncology

Part of the book series: Cancer Treatment and Research ((CTAR,volume 121))

  • 192 Accesses

Conclusion

Recent advances in understanding the pathobiobiology of the plasma cell dyscrasias is allowing for better comprehension of this diverse group of disorders. In the process of understanding some of the basic genetic events that lead to plasma cell oncogenesis, a surprising finding is the similar molecular mechanisms of pathogenesis that unify these disorders. The clinical and biologic implications of these recurrent genomic aberrations are beginning to emerge. This knowledge is being translated into the clinical arena to help determine prognosis and predict responses to therapeutic interventions. While a heterogeneous clinical course is characteristic, particularly of MM, a number of prognostic indicators have been identified that help to determine the appropriate treatment approach. An important conceptual point in the treatment of these patients is that the microenvironment must be targeted in addition to the neoplastic plasma cells. With the increased use of transplantation, thalidomide, anti-osteogenic agents, and some of the newer therapies, survivals are improving along with optimism among clinicians and patients. Successful treatment approaches for the treatment of MM are beginning to translate to the other plasma cell dyscrasias. In addition, the work resulting from the increased allocation of research funding in this dynamic areawill have implications in how all hematopoietic disorders are considered in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Kuehl WM, Bergsagel PL. Multiple myeloma: evolving genetic events and host interactions. Nat Rev Cancer 2002;2:175–187.

    Article  CAS  PubMed  Google Scholar 

  2. Fonseca R, Bailey RJ, Ahmann GJ, Rajkumar SV, Hoyer JD, Lust JA, Kyle RA, Gertz MA, Greipp PR, Dewald GW. Genomic abnormalities in monoclonal gammopathy of undetermined significance. Blood 2002;1000:1417–1424.

    Google Scholar 

  3. Zandecki M, Lai JL, Genevieve F, Bernardi F, Volle-Remy H, Blanchet O, Francois M, Cosson A, Bauters F, Facon T. Several cytogenetics subclones may be identified within plasma cells of patients with monoclonal gammopathy of undetermined significance, both at diagnosis and during the indolent course of this condition. Blood 1997;90:3682–3690.

    CAS  PubMed  Google Scholar 

  4. Avet-Loiseau H, Facon T, Grosbois B, Magrangeas F, Rapp MJ, Harousseau JL, Minvielle S, Bataille R; Intergroupe Francophone du Myelome. Oncogenesis of multiple myeloma: 14q32 and 13q chromosomal abnormalities are not randomly distributed, but correlate with natural history, immunological features, and clinical presentation. Blood 2002;99:2185–2191.

    Article  CAS  PubMed  Google Scholar 

  5. Kyle RA. “Benign” monoclonal gammopathy: after 20 to 35 years of follow-up. Mayo Clinic Proc. 1993;68:26–36.

    CAS  Google Scholar 

  6. Kyle RA, Gertz MA, Witzig TE, Lust JA, Lacy MQ, Dispenzieri A, Fonseca R, Rajkumar SV, Offord JR, Larson DR, Plevak ME, Therneau TM, Greipp PR. Review of 1027 patients with newly diagnosed multiple myeloma. Mayo Clin Proc 2003;78:21–33.

    PubMed  Google Scholar 

  7. Fonseca R, Ahmann GJ, Jalal SM, Dewald GW, Larson DR, Therneau TM, Gertz MA, Kyle RA, Greipp PR. Chromosomal abnormalities in systemic amyloidosis. Br J Haematol 1998;103:704–710.

    Article  CAS  PubMed  Google Scholar 

  8. Greenlee RT, Hill-Harmon MB, Murray T, Thun M. Cancer statistics. CA Cancer J Clin. 2001;51:15–36.

    CAS  PubMed  Google Scholar 

  9. Baris D, Brown LM, Silverman DT, Hayes R, Hoover RN, Swanson GM, Dosemeci M, Schwartz AG, Liff JM, Schoenberg JB, Pottern LM, Lubin J, Greenberg RS, Fraumeni JF Jr. Socioeconomic status and multiple myeloma among US blacks and whites. Am J Public Health 2000;90:1277–1281.

    Article  CAS  PubMed  Google Scholar 

  10. Lynch HT, Sanger WG, Pirruccello S, Quinn-Laquer B, Weisenburger DD. Familial multiple myeloma: a family study and review of the literature. J Nat Cancer Inst 2001; 93:1497–1483.

    Article  Google Scholar 

  11. Speer SA, Semenza JC, Kurosaki T, Anton-Culver H. Risk factors for acute myeloid leukemia and multiple myeloma: combination of GIS and case-control studies. J Environ Health 2002;64:9–16.

    PubMed  Google Scholar 

  12. Khuder SA, Mutgi AB. Meta-analyses of multiple myeloma and farming. Am J Ind Med 1997;32:510–516.

    Article  CAS  PubMed  Google Scholar 

  13. Durie BG. The epidemiology of multiple myeloma. Semin Hematol 2001:38 (2 Suppl 3):1–5.

    Article  CAS  PubMed  Google Scholar 

  14. Rettig MB, Ma HJ, Vescio RA, Pold M, Schiller G, Belson D, Savage A, Nishikubo C, Wu C, Fraser J, Said JW, Berenson JR. Kaposi’s sarcoma-associated herpesvirus infection of bone marrow dendritic cells from multiple myeloma patients. Science 1997;276:1851–1854.

    Article  CAS  PubMed  Google Scholar 

  15. Said JW, Rettig MR, Heppner K, Vescio RA, Schiller G, Ma HJ, Belson D, Savage A, Shintaku IP, Koeffler HP, Asou H, Pinkus G, Pinkus J, Schrage M, Green E, Ber-enson JR. Localization of Kaposi’s sarcoma-associated herpesvirus in bone marrow biopsy samples from patients with multiple myeloma. Blood 1997;90:4278–4282.

    CAS  PubMed  Google Scholar 

  16. Tedeschi R, Kvarnung M, Knekt P, Schulz TF, Szekely L, De Paoli PD, Aromaa A, Teppo L, Dillner J. A prospective seroepidemiological study of human herpesvirus-8 infection and the risk of multiple myeloma. Br J Cancer 2001;84:122–125.

    Article  CAS  PubMed  Google Scholar 

  17. Drabick JJ, Davis BJ, Lichy JH, Flynn J, Byrd JC. Human herpesvirus 8 genome is not found in whole bone marrow core biopsy specimens of patients with plasma cell dyscrasias. Ann Hematol 2002;81:304–307.

    CAS  PubMed  Google Scholar 

  18. Raitakari M, Brown RD, Gibson J, Joshua DE. T cells in myeloma. Hematol Oncol. 2003;21(1):33–42.

    Article  CAS  PubMed  Google Scholar 

  19. Sukpanichnant S, Cousar JB, Oeelasiri A, Graber SE, Greer JP, Collins RD. Diagnostic criteria and histologic grading in multiple myeloma. Histologic and immunohistologic analysis of 176 cases with clinical correlation. Hum Pathol 1994; 25:308–318.

    Article  CAS  PubMed  Google Scholar 

  20. Larson RS, Sukpanichnant S, Greer JP, Cousar JB, Collins RD. The spectrum of multiple myeloma: diagnostic and biological implications. Hum Pathol 1997;28:1336–1347.

    Article  CAS  PubMed  Google Scholar 

  21. Kyle RA. Diagnosis of multiple myeloma. Sem Oncol 2002;29(suppl 17):2–4.

    Google Scholar 

  22. Peterson LC, Brown BA, Crosson JT, Mladenovic J. Application of the immunoperoxidase technic to bone marrow trephine biopsies in the classification of patients with mono-clonal gammopathies. Am J Clin Pathol 1986;85:688–693.

    CAS  PubMed  Google Scholar 

  23. Williams RL, Bailly RC, Howe RB. Studies of “benign” serum M-components. Am J Med Sci 1969;257:275–293.

    PubMed  Google Scholar 

  24. Grogan TM, Van Camp B, Kyle RA, Muller-Hermelink HK, Harris NL. Plasma cell neoplasms, In Tumours of Haematopoietic and Lymphoid Tissues, World Health Organization Classification of Tumors, eds. Jaffe ES, Harris NL, Stein H, Vardiman JW. IARC Press, Lyon France 2001:142–156.

    Google Scholar 

  25. Salmon SE, Cassidy JR. Plasma cell neoplasms. In: Cancer, Principles and Practice of Oncology, DeVita VT, Hellman S, Rosenbers S, eds. J.B. Lippincott: Philadelphi 1988; 1854.

    Google Scholar 

  26. Alexian R. Localized and indolent myeloma. Blood 1980;56:521–525.

    Google Scholar 

  27. Kyle RA, Greipp PR. Smoldering multiple myeloma. N Engl J Med 1980;302:1347–1349.

    CAS  PubMed  Google Scholar 

  28. Dune BGM, Salmon SE. Multiple myeloma, macroglobulinemia and monoclonal gammopathies. In: Hoffbrand AV, Brian MC, Hirsch J eds. Recent advances in hematology. Edinburgh: Churchill Livingston, 1977:243.

    Google Scholar 

  29. Jadvar H, Conti PS. Diagnostic utility of FDG PET in multiple myeloma. Skeletal Radio 2002;31:690–694.

    Google Scholar 

  30. Mahnken AH, Wildberger JE, Gehbauer G, Schmitz-Rode T, Blaum M, Fabry U, Gunther RW. Multidetector CT of the spine in multiple myeloma: comparison with MR imaging and radiography. Am J Roentgenol 2002;178:1429–1436.

    CAS  Google Scholar 

  31. Avva R, Vanhemert RL, Barlogie B, Munshi N, Angtuaco EJ. CT-guided biopsy of focal lesions in patients with multiple myeloma may reveal new and more aggressive cyto-genetic abnormalities. AJNR Am J Neuroradiol 2001;22:781–785.

    CAS  PubMed  Google Scholar 

  32. Witzig, TE, Kimlinger T, Stenson M, Therneau T. Syndecan-1 expression on malignant cells from blood and marrow of patients with plasma cell proliferative disorders and B-cell chronic lymphocytic leukemia. Leuk Lymphoma 1998;31:167–175.

    CAS  PubMed  Google Scholar 

  33. Bayer-Garner IB, Sanderson RD, Dhodapkar MV, Owens RB, Wilson CS. Syndecan-1 (CD138) immunoreactivity in bone marrow biopsies of multiple myeloma: Shed synde-can-1 accumulates in fibrotic regions. Mod Pathol 2001;14:1052–1058.

    CAS  PubMed  Google Scholar 

  34. Costes V, Magen V, Legouffe E, Durand L, Baldet P, Rossi JF, Klein B. The Mi15 monoclonal antibody (anti-syndecan-1) is a reliable marker for quantifying plasma cells in paraffin-embedded bone marrow biopsy specimens. Human Pathology 1999;30:1405–1411.

    Article  CAS  PubMed  Google Scholar 

  35. Chilosi M, Adami F, Lestani M, Montagna L, Cimarosto L, Semenzato G, Pizzolo G Menestrina F. CD138/syndecan-1: a useful immunohistochemical marker of normal and neoplastic plasma cells on routine trephine bone marrow biopsies. Mod Pathol 1999;12:1101–1106.

    CAS  PubMed  Google Scholar 

  36. Jourdan M, Ferlin M, Legouffe E, Horvathova M, Liautard J, Rossi JF, Wijdenes J, Brochier J, Klein B. The myeloma cell antigen syndecan-1 is lost by apoptotic myeloma cells. Br J Haematol 1998;100:637–646.

    Article  CAS  PubMed  Google Scholar 

  37. Harada H, Kawano MM, Huang N, Harada Y, Iwato K, Tanabe O, Tanaka H, Sakai A, Asaoku H, Kuramoto A. Phenotypic difference of normal plasma cells from mature myeloma cells. Blood 1993;81:2658–2663.

    CAS  PubMed  Google Scholar 

  38. Lima M, Teixeira Mdos A, Fonseca S, Goncalves C, Guerra M, Queiros Santos AH, Coutinho A, Pinho L, Marques L, Cunha M, Ribeiro P, Xavier L, Vieira H, Pinto P, Justica B. Immunophenotypic aberrations, DNA content, and cell cycle analysis of plasma cells in patients with myeloma and monoclonal gammopathies. Blood Cells Mol Dis 2000;26:634–645.

    Article  CAS  PubMed  Google Scholar 

  39. Ruiz-Arguelles GJ, San Miguel JF. Cell surface markers in multiple myeloma. Mayo Clin Proc 1994;69:684–690.

    CAS  PubMed  Google Scholar 

  40. Sahara N, Takeshita A, Shigeno K, Fujisawa S, Takeshita K, Naito K, Ihara M, Ono T, Tamashima S, Nara K. Clinicopathological and prognostic characteristics of CD56-negative multiple myeloma. Br J Haematol 2002;117:882–885.

    Article  PubMed  Google Scholar 

  41. San Miguel JF, Almeida J, Mateo G, Blade J, Lopez-Berges C, Caballero D, Hernandez J, Moro MJ, Fernandez-Calvo J, Diaz-Mediavilla J, Palomera L, Orfao A. Immunophenotypic evaluation of the plasma cell compartment in multiple myeloma: a tool for comparing the efficacy of different treatment strategies and predicting outcome. Blood 2002;99:1853–1856.

    Article  PubMed  Google Scholar 

  42. Rawston AC, Davies FE, DasGupta R, Ashcroft AJ, Patmore R, Drayson MT, Owen RG, Jack AS, Child JA, Morgan GJ. Flow cytometric disease monitoring in multiple myeloma: the relationship between normal and neoplastic plasma cells predicts outcome after transplantation. Blood 2002;100:3095–3100.

    Google Scholar 

  43. Petruch UR, Horny H-P, Kaiserling E. Frequent expression of haematopoietic and non-haematopoietic antigens by neoplastic plasma cells: an immunohistochemical study using formalin-fixed paraffin-embedded tissue. Histopathology 1992;20:35–40.

    CAS  PubMed  Google Scholar 

  44. Lin P, Owens R, Tricot G, Wilson CS. Flow cytometry immunophenotypic analysis of 306 cases of multiple myeloma. Am J Clin Pathol 2004:(in press).

    Google Scholar 

  45. Kumar S, Kimlinger TK, Lust JA, Donovan K, Witzig TE. Expression of CD52 on plasma cells in plasma cell proliferative disorders. Blood 2003;102:1075–77.

    Article  CAS  PubMed  Google Scholar 

  46. Barlogie B, Alexanian R, Pershouse M, Smallwood L, Smith L. Cytoplasmic immunoglobulin content in multiple myeloma. J Clin Invest 1985;76:765–769.

    CAS  PubMed  Google Scholar 

  47. Almeida J, Orfao A, Ocquetreau M, Mateo G, Corral M, Caballero MD, Blade J, Moro MJ, Hernandez J, San Miguel JF. High-sensitive immunophenotyping and DNA ploidy studies for the investigation of minimal residual disease in multiple myeloma. Br J Haematol 1999;107:121–131.

    Article  CAS  PubMed  Google Scholar 

  48. Pellat-Deceunynck C, Barille S, Jego G, Puthier D, Robillard N, Pineau D, Rapp MJ, Harousseau JL, Amiot M, Bataille R. The absence of CD56 (NCAM) on malignant plasma cells is a hallmark of plasma cell leukemia and of a special subset of multiple myeloma. Leukemia 1998;12:1977–1982

    Article  CAS  PubMed  Google Scholar 

  49. Durie BGM, Salmon SE. A clinical staging system for multiple myeloma. Correlation of measured myeloma cell mass with presenting clinical features, response to treatment and survival. Cancer 1975;36:842–854.

    CAS  PubMed  Google Scholar 

  50. Jacobson JL, Hussein MA, Barlogie B, Durie BGM, Crowley JJ. Beta 2 microglobulin (B2M) and albumin define a new staging system for multiple myeloma: the Southwest Oncology Group (SWOG) experience (abstract). Blood 2001;98:155–156.

    Google Scholar 

  51. Greipp PR, Lust JA, O’Fallon WM, Katzmann JA, Witzig TE, Kyle RA. Plasma cell labeling index and beta 2-microglobulin predict survival independent of thymidine kinase and C-reactive protein in multiple myeloma. Blood 1993;81:3382–3387.

    CAS  PubMed  Google Scholar 

  52. Desikan R. Barlogie B. Sawyer J, Ayers D, Tricot G, Badros A, Zangari M, Munshi NC, Anaissie E, Spoon D, Siegel D. Results of high dose therapy for 1000 patients with multiple myeloma: durable complete remissions and superior survival in the absence of chromosome 13 abnormalities. Blood 2000;95:4008–4010.

    CAS  PubMed  Google Scholar 

  53. Bartl R, Frisch B, Burkhardt R, Rateh-Moghadam A, Mahl G, Gierster P, Sund M, Kettner G. Bone marrow histology in myeloma: its importance in diagnosis, prog-nosis, classification, and staging. Br J Haematol 1982;51:361–375.

    CAS  PubMed  Google Scholar 

  54. Bartl R, Frisch B, Fateh-Moghadam A, Kettner G, Jaeger K, Sommerfeld W. Histologic classification and staging of multiple myeloma. A retrospective and prospective study of 674 cases. Am J Clin Pathol 1987;87:342–355.

    CAS  PubMed  Google Scholar 

  55. Carter A, Hocherman I, Linn S, Cohen Y, Tatarsky I. Prognostic significance of plasma cell morphology in multiple myeloma. Cancer 1987;60:1060–1065.

    CAS  PubMed  Google Scholar 

  56. Fritz E, Ludwig H, Kundi M. Prognostic relevance of cellular morphology in multiple myeloma. Blood 1984;63:1072–1079.

    CAS  PubMed  Google Scholar 

  57. Sailer M, Vykoupil K-F, Peest D, Coldewey R, Deicher H, Georgii A. Prognostic relevance of a histologic classification system applied in bone marrow biopsies from patients with multiple myeloma: a histopathological evaluation of biopsies from 153 untreated patients. Eur J Haematol 1995;54:137–146.

    CAS  PubMed  Google Scholar 

  58. Bartl R and Frisch B. Bone marrow histology in multiple myeloma: prognostic relevance of histologic characteristics. Hematology Reviews 1989;3:87–108.

    Google Scholar 

  59. Greipp PR, Leong T, Bennett JM, Gaillard JP, Klein B, Stewart JA, Oken MM, Kay NE, Van Ness B, Kyle RA. Plasmablastic morphology — an independent prognostic factor with clinical and laboratory correlates: Eastern Cooperative Oncology Group (ECOG) myeloma trial E9486 report by the ECOG Myeloma Laboratory Group. Blood 1998;91:2501–2507.

    CAS  PubMed  Google Scholar 

  60. Waldron J, Jazieh R, Jagannath S, Desikan KR, Siegel D, Fassas A, Singhal S, Mehta J, Tricot G, Vesole D, Wilson C, Hough A, Nanucke S, Spoon D, Barlogie B. Bone marrow morphology (BMM) adds critical prognostic information to other standard parameters (SP) including cytogenetics among newly diagnosed multiple myeloma (MM) patients (PTS) receiving total therapy (TT). Blood 1997;90(suppl 1):90a.

    Google Scholar 

  61. Wilson CS, Butch AW, Lai R, Medeiros LJ, Sawyer JR, Barlogie B, McCourty A, Kelly K, Brynes RK. Cyclin D1 and E2F-1 immunoreactivity in bone marrow biopsy specimens of multiple myeloma; relationship to proliferative activity, cytogenetic abnormalities and ploidy. Br J Haematol 2001;112:776–782.

    Article  CAS  PubMed  Google Scholar 

  62. Wilson CS, Medeiros LJ, Lai R, Butch AW, McCourty A, Kelly K, Brynes RK. DNA Topoisomerase IIα in multiple myeloma: A marker of proliferation and not drug resistance. Mod Pathol 2001;14:886–891.

    Article  CAS  PubMed  Google Scholar 

  63. Rimsza LM, Campbell K, Dalton WS, Salmon S, Willcox G, Grogan TM. The major vault protein (MVP), a new multidrug resistance associated protein, is frequently expressed in multiple myeloma. Leuk Lymphoma 1999;34:315–324.

    CAS  PubMed  Google Scholar 

  64. Xu JL, Lai R, Kinoshita T, Nakashima N, Nagasaka T. Proliferation, apoptosis, and intratumoral vascularity in multiple myeloma: correlation with the clinical stage and cytological grade. J Clin Pathol 2002;55:530–534.

    Article  CAS  PubMed  Google Scholar 

  65. Shaughnessy J, Barlogie B, Sawyer J, McCoy J, Fassas A, Zhan F, Bumm K, Epstein J, Anaissie E, Jagannath S, Vesole D, Siegel D, Desikan R, Munshi N, Badros A, Tian E, Zangari M, Jacobson J, Crowley J, Tricot G. Continuous absence of metaphase-defined cytogenetic abnormalities especially of chromosome 13 and hypodiploidy assures long term survival in multiple myeloma treated with total therapy I: interpretation in the context of global gene expression. Blood 2003;101:3849–3856.

    Article  CAS  PubMed  Google Scholar 

  66. Debes-Marun CS, Dewald GW, Bryant S, Picken E, Santana-Davila R, Gonzalez-Paz N, Winkler JM, Kyle RA, Gertz MA, Witzig TE, Dispenzieri A, Lacy MQ, Rajkumar SBV, Lust JA, Greipp PR, Fonseca R. Chromosome abnormalities clustering and its implications for pathogenesis and prognosis in myeloma. Leukemia 2003;17:427–436.

    Article  CAS  PubMed  Google Scholar 

  67. Shaughnessy J Jr, Tian E, Sawyer J, McCoy J, Tricot G, Jacobson J, Anaissie E, Zangari M, Fassas A, Muwalla F, Morris C, Barlogie B. Prognostic impact of cytogenetic and interphase fluorescence in situ hybridization-defined chromosome 13 deletion in multiple myeloma: early results of total therapy II. Br J Haematol. 2003;120:44–52.

    Article  PubMed  Google Scholar 

  68. Smadja NM, Bastard C, Brigaudeau C, Leroux D, Fruchart C. Hypodiploidy is a major prognostic factor in multiple myeloma. Blood 2001;98:2229–2238.

    Article  CAS  PubMed  Google Scholar 

  69. Bezieau S, Devilder MC, Avet-Loiseau H, Mellerin MP, Puthier D, Pennarun E, Rapp MJ, Harousseau JL, Moisan JP, Bataille R. High incidence of N and K-Ras activating mutations in multiple myeloma and primary plasma cell leukemia at diagnosis. Hum Mutat 2001;18:212–224.

    Article  CAS  PubMed  Google Scholar 

  70. Avet-Loiseau H, Li JY, Facon T, Brigaudeau C, Morineau N, Maloisel F, Rapp MJ, Talmant P, Trimoreau F, Jaccard A, Harousseau JL, Bataille R. High incidence of translocations t(11;14)(q13;q32) and t(4;14)(p16;q32) in patients with plasma cell malignancies. Cancer Res. 1998;58:5640–5645.

    CAS  PubMed  Google Scholar 

  71. Chesi M, Nardini E, Lim RS, Smith KD, Kuehl WM, Bergsagel PL. The t(4;14) translocation in myeloma dysregulates both FGFR3 and a novel gene, MMSET, resulting in IgH/MMSET hybrid transcripts. Blood 1998;92:3025–3034.

    CAS  PubMed  Google Scholar 

  72. Avet-Loiseau H, Brigaudeau C, Morineau N, Talmant P, Lai JL, Daviet A, Li JY, Praloran V, Rapp MJ, Harousseau JL, Facon T, Bataille R. High incidence of cryptic translocations involving the Ig heavy chain gene in multiple myeloma as shown by fluorescence in situ hybridization. Genes Chromosomes Cancer. 1999;24:9–15.

    Article  CAS  PubMed  Google Scholar 

  73. Sawyer JR, Lukacs JL, Thomas EL, Swanson CM, Goosen LS, Sammartino G, Gilliland JC, Munshi NC, Tricot G, Shaughnessy JD, Jr, Barlogie B. Multicolour spectral karyotyping identifies new translocations and a recurring pathway for chromosome loss in multiple myeloma. Br J Haematol 2000;112:1–9.

    Google Scholar 

  74. Fonseca R, Blood E, Rue M, Harrington D, Oken MM, Kyle RA, Dewald GW, Van Ness B, Van Wier SA, Henderson KJ, Bailey RJ, Greipp PR. Clinical and biologic implications of recurrent genomic aberrations in myeloma. Blood 2003;101:4569–4575.

    Article  CAS  PubMed  Google Scholar 

  75. Fonseca R, Blood EA, Oken MM, Kyle RA, Dewald GW, Bailey RJ, Van Wier SA, Henderson KJ, Hoyer JD, Harrington D, Kay NE, Van Ness B, Greipp PR. Myeloma and the t(11;14)(q13;q32); evidence for a biologically defined unique subset of patients. Blood 2002;99:3735–3741.

    Article  CAS  PubMed  Google Scholar 

  76. Moreau P, Facon T, Leleu X, Morineau N, Huyghe P, Harousseau JL, Bataille R, Av Avet-Loiseau H; Intergroupe Francophone du Myelome. Recurrent 14q32 translocations determine the prognosis of multiple myeloma, especially in patients receiving intensive chemotherapy. Blood 2002;100:1579–1583.

    Article  CAS  PubMed  Google Scholar 

  77. Keats JJ, Reiman T, Maxwell CA, Taylor BJ, Laratt LM, Mant MJ, Belch AR, Pilarski LM. In multiple myeloma, t(4;14)(p16;q32) is an adverse prognostic factor irrespective of FGFR3 expression. Blood 2003;101;1520–1529.

    Article  CAS  PubMed  Google Scholar 

  78. Fonseca R, Oken M, Greipp P. The t(4;14)(p16.3;q32) is strongly associated with chromosome 13 abnormalities (Δ13) in both multiple myeloma (MM) and MGUS. Blood 2001;98:1271–1272.

    Article  CAS  PubMed  Google Scholar 

  79. Fonseca R, Bailey RJ, Ahmann GJ, Rajkumar SV, Hoyer JD, Lust JA, Kyle RA Gertz MA Greipp PR, Dewald GW. Genomic abnormalities in monoclonal gammopathy of undetermined significance. Blood 2002;100:1417–1424.

    CAS  PubMed  Google Scholar 

  80. Shou Y, Martelli ML, Tagrea A. Gabrea A, Ql Y, Brents LA, Roschke A, Dewald G, Kirsch IR, Bergsagel PL, Kuel WM. Diverse karyotypic abnormalities of the c-myc locus associated with c-myc dysregulation and tumor progression in multiple myeloma. Proc Natl Acad Sci USA 2000;97:228–233

    Article  CAS  PubMed  Google Scholar 

  81. Zojer N, Konigsberg R, Ackermann J, Fritz E, Dallinger S, Kromer E, Kaufmann H, Riedl L, Gisslinger H, Schreiber S, Heinz R, Ludwig H, Huber H, Drach J. Deletion of 13q14 remains an independent adverse prognostic variable in multiple myeloma despite its frequent detection by interphase fluorescence in situ hybridization. Blood 2000;95:1925–1930.

    CAS  PubMed  Google Scholar 

  82. Facon T, Avet-Loiseau H, Guillerm G, Moreau P, Genevieve F, Zandecki M, Lai JL, Leleu X, Jouet JP, Bauters F, Harousseau JL, Bataille R, Mary JY. Chromosome 13 abnormalities identified by FISH analysis and serum beta 2-microglobulin produce a powerful myeloma staging system for patients receiving high-dose therapy. Blood 2001;97:1566–1571.

    Article  CAS  PubMed  Google Scholar 

  83. Shaughnessy J, Tian E, Sawyer J, Bumm K, Landes R, Badros A, Morris C, Tricot G, Epstein J, Barlogie B. High incidence of chromosome 13 deletion in multiple myeloma detected by multiprobe interphase FISH. Blood; 2000:96:1505–1511.

    CAS  PubMed  Google Scholar 

  84. Tricot G, Barlogie B, Jagannath S, Bracy D, Mattox S, Vesole DH, Naucke S, Sawyer JR. Poor prognosis in multiple myeloma is associated only with partial or complete deletions of chromosome 13 or abnormalities involving 11q and not with other karyotype abnormalities. Blood 1995:86:4250–4256.

    CAS  PubMed  Google Scholar 

  85. Zhan F, Hardin J, Kordsmeier B, Bumm K, Zheng M, Tian E, Sanderson R, Yang Y, Wilson C, Zangari M, Anaissie E, Morris C, Muwalla F, van Rhee F, Fassas A, Crowley J, Tricot G, Barlogie B, Schaughnessy J Jr. Global gene expression profiling of multiple myeloma, monoclonal gammopathy of undetermined significance, and normal bone marrow plasma cells. Blood 2002;99:1745–1757.

    Article  CAS  PubMed  Google Scholar 

  86. Zhan F, Tian E, Bumm K, Smith R, Barlogie B, Shaughnessy J Jr. Gene expression profiling of human plasma cell differentiation and classification of multiple myeloma based on similarities to distinct stages of late-stage B-cell development. Blood 2003;101:1128–1140.

    Article  CAS  PubMed  Google Scholar 

  87. Seidel C, Sundan A, Hjorth M, Turesson I, Dahl IM, Abildgaard N, Waage A, Borset M. Serum syndecan-1: a new independent prognostic marker in multiple myeloma. Blood 2000;95:388–392.

    CAS  PubMed  Google Scholar 

  88. Yang Y, Yaccoby S, Liu W, Langford JK, Pumphrey Cy, Theus A, Epstein J, Sanderson RD. Soluble syndecan-1 promotes growth of myeloma tumors in vivo. Blood 2002:100:610–617.

    Article  CAS  PubMed  Google Scholar 

  89. Derksen PW, Keehnen RM, Evers LM, van Oers MH, Spaargaren M, Pals ST. Cell surface proteoglycan syndecan-1 mediates hepatocyte growth factor binding and promotes Met signaling in multiple myeloma. Blood 2002;99:1405–1410.

    Article  CAS  PubMed  Google Scholar 

  90. Kato M, Wang H, Kainulainen V, Fitzgerald ML, Ledbetter S, Ornitz DM, Bernfield M. Physiological degradation converts the soluble syndecan-1 ectodomain from an inhibitor to a potent activator of FGF-2. Nat Med. 1998;4:691–697.

    Article  CAS  PubMed  Google Scholar 

  91. Munshi NC, Wilson C. Increased microvessel density in newly diagnosed multiple myeloma carries a poor prognosis. Semin Oncol 2001;28:265–269.

    Article  Google Scholar 

  92. Yaccoby S, Epstein J. The proliferative potential of myeloma plasma cells manifest in the SCID-hu host. Blood 1999;94:3576–3582.

    CAS  PubMed  Google Scholar 

  93. Terpos E, Szydlo R, Apperley JF, Hatjiharissi E, Poplitou M, Meletis J, Viniour N, Yataganas X, Goldman JM, Rahemtulla A. Soluble receptor activator of nuclear factor kappa B ligand-osteoprotegerin ratio predicts survival in multiple myeloma: proposal for a novel prognostic index. Blood 2003; 102:1064–69.

    Article  CAS  PubMed  Google Scholar 

  94. Myeloma Trialists’ Collaborative Group. Combination chemotherapy versus mel-phalan plus prednisone as treatment for multiple myeloma: an overview of 6,633 patients from 27 randomized trials. J Clin Oncol. 1998;16:3832–3842.

    Google Scholar 

  95. Attal M, Harousseau JL, Stoppa AM, Sotto JJ, Fuzibet JG, Rossi JF, Casassus P, Maisonneuve H, Facon T, Ifrah N, Payen C, Bataille R. A prospective randomized trial of autologous bone marrow transplantation and chemotherapy in multiple myeloma. Intergroupe Francais du Myelome. N Engl J Med. 1996;335:91–97.

    Article  CAS  PubMed  Google Scholar 

  96. Barlogie B, Shaughnessy J, Zangari M, Tricot G. High-dose therapy and immunomodulatory drugs in multiple myeloma. Semin Oncol 2002;29:26–33.

    CAS  PubMed  Google Scholar 

  97. Badros A, Barlogie B, Siegel E, Morris C, Desikan R, Zangari M, Fassas A, Anaissie E, Munshi N, Tricot G. Autologous stem cell transplantation in elderly multiple myeloma patients over the age of 70 years. Br J Haematol 2001;114:600–607.

    CAS  PubMed  Google Scholar 

  98. Govindarajan R, Jagannath S, Flick JT, Vesole DY, Sawyer J, Barlogie B, Tricot G. Preceeding standard therapy is the likely cause of MDS after autotransplants for multiple myeloma. Br J Haematol 1996;95:349–353.

    Article  CAS  PubMed  Google Scholar 

  99. Zent CS, Wilson CS, Tricot G, Jagannath S, Siegel D, Desikan KR, Munshi N, Bracy D, Barlogie B, Butch AW. Oligoclonal protein bands and immunoglobulin isotype switching in multiple myeloma patients treated with high dose therapy and hematopoietic cell transplantation. Blood 1998;91:3518–2523.

    CAS  PubMed  Google Scholar 

  100. Singhal S, Mehta J, Desikan R, Ayers D, Roberson P, Eddelmon P, Munshi N, Anaissie E, Wilson C, Dhodapkar M, Zeldis J, Barlogie B. Antitumor activity of thalidomide in refractory multiple myeloma. NEJM 1999;342:1565–1571.

    Google Scholar 

  101. Kumar S, Gertz MA, Dispenzieri A, Lacy MQ, Geyer SM, Iturria NL, Fonseca R, Hayman SR, Lust JA, Kyle RA, Greipp PR, Witzig TE, Rajkumar SV. Response rate, durability of response, and survival after thalidomide therapy for relapsed multiple myeloma. Mayo Clin Proc. 2003;78:34–39.

    PubMed  Google Scholar 

  102. Tosi P, Zamagni E, Cellini C, Ronconi S, Patriarca F, Ballerini F, Musto P, De Raimondo F, Ledda A, Lauria F, Masini L, Gobbi M, Vacca A, Ria R, Cangini D, Tura S, Baccarini M, Cavo M. Salvage therapy with thalidomide in patients with advanced relapsed/refractory multiple myeloma. Haematologica 2002;87:408–414.

    CAS  PubMed  Google Scholar 

  103. Matthews SJ, McCoy C. Thalidomide: a review of approved and investigational uses. Clin Ther 2003;25:342–395.

    Article  CAS  PubMed  Google Scholar 

  104. Zangari M, Anaissie E, Barlogie B, Badros A, Desikan R, Gopal AV, Morris C, Toor A, Siegel E, Fink L, Tricot G. Increased risk of deep vein thrombosis in patients with multiple myeloma receiving thalidomide and chemotherapy. Blood 2001;98:1614–1615.

    Article  CAS  PubMed  Google Scholar 

  105. Zangari M, Saghafifar F, Anaissie E, Badros A, Desikan R, Fassas A, Mehta P, Morris C, Toor A, Whitfield D, Siegel E, Barlogie B, Fink L, Tricot G. Activated protein C resistance in the absence of factor V Leiden mutation is a common finding in multiple myeloma and is associated with an increased risk of thrombotic complications. Blood Coagul Fibrinolysis 2002;13:187–192.

    Article  CAS  PubMed  Google Scholar 

  106. Pozzi C, Locatelli F. Kidney and liver involvement in monoclonal light chain disorder. Semin Nephrol. 2002;22:319–330.

    CAS  PubMed  Google Scholar 

  107. Kyle RA. Clinical aspects of multiple myeloma and related disorders including amyloidosis. Pathol Biol 1999;47:148–157.

    CAS  PubMed  Google Scholar 

  108. Bellotti V, Mangione P, Merlini G. Review: immunoglobulin light chain amyloidosis—the archetype structural and pathogenic variability. J Struct Biol 2000;130:280–289.

    Article  CAS  PubMed  Google Scholar 

  109. Dhodapkar MV, Merlini G, Solomon A. Biology and therapy of immunoglobulin deposition diseases. Hematol Oncol Clin North Am. 1997;11:89–110.

    Article  CAS  PubMed  Google Scholar 

  110. Gu X, Barrios R, Cartwright J, Font RL, Truong L, Herrera GA. Light chain crystal deposition as a manifestation of plasma cell dyscrasias: the role of immunoelectron microscopy. Hum Pathol. 2003;34:270–277.

    Article  CAS  PubMed  Google Scholar 

  111. Rajkumar SV, Gertz MA, Kyle RA. Primary systemic amyloidosis with delayed progression to multiple myeloma. Cancer 1998;82:1501–1505.

    Article  CAS  PubMed  Google Scholar 

  112. Pardanani A, Witzig TE, Schroeder G, McElroy EA, Fonseca R, Dispenzieri A, Lacy MQ, Lust JA, Kyle RA, Greipp PR, Gertz MA, Rajkumar SV. Circulating peripheral blood plasma cells as a prognostic indicator in patients with primary systemic amyloidosis. Blood 2003:101:827–830.

    CAS  PubMed  Google Scholar 

  113. Harrison CJ, Mazzullo H, Ross FM, Cheung KL, Gerrard G, Harewood L, Mehta A, Lachmann HJ, Hawkins PN, Orchard KH. Translocations of 14q32 and deletions of 13q14 are common chromosomal abnormalities in systemic amyloidosis. Br J Haematol. 2002;117:427–435.

    CAS  PubMed  Google Scholar 

  114. Hayman SR, Bailey RJ, Jalal SM, Ahmann GJ, Dispenzieri A, Gertz MA, Greipp PR, Kyle RA, Lacy MQ, Rajkumar SV, Witzig TE, Lust JA, Fonseca R. Translocations involving the immunoglobulin heavy-chain locus are possible early genetic events in patients with primary systemic amyloidosis. Blood 2001;98:2266–2268.

    Article  CAS  PubMed  Google Scholar 

  115. Hayman SR, Fonseca R. Plasma cell leukemia. Current Treatment Options Oncol. 2001;2:205–216.

    CAS  Google Scholar 

  116. Galton DA, Gralnick HR, Sultan C. Proposals for the classification of chronic (mature) B and T lymphoid leukaemias. French-American British (FAB) Cooperative Group. J Clin Pathol 1989;42:567–584.

    PubMed  Google Scholar 

  117. Garcia-Sanz R, Orfao A, Gonzalez M, Tabernero MD, Blade J, Moro MJ, Fernandez-Calvo J, Sanz MA, Perez-Simon JA, Rasillo A, Miquel JF. Primary plasma cell leukemia: clinical, immunophenotypic, DNA ploidy, and cytogenetic characteristics. Blood 1999;93:1032–1037.

    CAS  PubMed  Google Scholar 

  118. Avet-Loiseau H, Daviet A, Brigaudeau C, Callet-Bauchu E, Terre C, Lafage-Pochitaloff M, Desangles F, Ramond S, Talmant P, Bataille R. Cytogenetic, interphase, and multicolor fluorescence in situ hybridization analyses in primary plasma cell leukemia: a study of 40 patients at diagnosis, on behalf of the Intergroupe Francophone du Myélome and the Groupe Français de Cytogénétique Hématologique. Blood 2001;97:822–825.

    Article  CAS  PubMed  Google Scholar 

  119. Rasillo A, Tabernero MD, Sanchez ML, Perez de Andres M, Martin Ayuso M, Hernandez J, Moro MJ, Fernandez-Calvo J, Sayagues JM, Bortoluci A, San Miguel JF, Orfao A. Fluorescence in situ hybridization analysis of aneuploidization patterns in monoclonal gammopathy of undetermined significance versus multiple myeloma and plasma cell leukemia. Cancer 2003;97:601–609.

    PubMed  Google Scholar 

  120. Johnston RE, Abdalla SH. Thalidomide in low doses is effective for the treatment of resistant or relapsed multiple myeloma and for plasma cell leukaemia. Leukemia Lymphoma 2002;43:351–354.

    CAS  PubMed  Google Scholar 

  121. Dimopoulos MA, Kiamouris C, Moulopoulos LA. Solitary plasmacytoma of bone and extramedullary plasmacytoma. Hematol Oncol Clin North Am 1999;13:1249–1257.

    CAS  PubMed  Google Scholar 

  122. Dimopoulos MA, Hamilos G. Solitary bone plasmacytoma and extramedullary plasmacytoma. Curr Treat Options Oncol 2002;3:255–259.

    PubMed  Google Scholar 

  123. Liebross RH, Ha CS, Cox JD, Weber D, Delasalle K, Alexanian R. Clinical course of solitary extramedullary plasmacytoma. Radiother Oncol 1999:52:245–249.

    Article  CAS  PubMed  Google Scholar 

  124. Liebross RH, Ha CS, Cox JD, Weber D, Delasalle K, Alexanian R. Solitary bone plasmacytoma: outcome and prognostic factors following radiotherapy. Int J Radiat Oncol Biol Phys 1998;41:1063–1067.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this chapter

Cite this chapter

Wilson, C.S. (2004). The Plasma Cell Dyscrasias. In: Finn, W.G., Peterson, L.C. (eds) Hematopathology in Oncology. Cancer Treatment and Research, vol 121. Springer, Boston, MA. https://doi.org/10.1007/1-4020-7920-6_5

Download citation

  • DOI: https://doi.org/10.1007/1-4020-7920-6_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4020-7919-1

  • Online ISBN: 978-1-4020-7920-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics