Skip to main content

LOCATION AND ELECTRICAL PROPERTIES OF SPRITE-PRODUCING LIGHTNING FROM A SINGLE ELF SITE

  • Conference paper
Sprites, Elves and Intense Lightning Discharges

Part of the book series: NATO Science Series II: Mathematics, Physics and Chemistry ((NAII,volume 225))

Abstract

Recently discovered TLEs (Transient Luminous Events) such as red sprites and elves provided a great opportunity to revisit the electromagnetic waves in the lower ELF (Extremely Low Frequency) region known as the Schumann resonances (SR). The resonance behavior is afforded by the low attenuation experienced by electromagnetic waves in this frequency range. Since TLEs are caused by energetic lightning with abundant energy in this range, these so-called ELF transients can be analyzed on a global basis from single measurement stations. In particular, the geographical location and the vertical charge moment of the lightning flash may be determined remotely. In this chapter, we aim at providing readers with an overview of electromagnetic waves from lightning in the SR frequency band. Then we introduce the technique to determine the location and demonstrate the global mapping of lightning for different thresholds of charge moment change based on the ELF transient observations in Rhode Island, USA. Meteorological interpretations of the global maps are also provided. Furthermore the sprite-producing winter lightning activity is characterized in Hokuriku by using the ELF field site in Moshiri, Japan. The generation condition for winter sprites and their coupling to the tropospheric lightning and to the ionosphere are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  • Bliokh, P. V., Nickolaenko, A. P., and Filippov, Yu. F. (1980). Schumann Resonances in the Earth-ionosphere Cavity. Peter Peregrinus, Oxford.

    Google Scholar 

  • Boccippio, D. J., Williams, E. R., Heckman, S. J., Lyons, W. A., Baker, I. T., and Boldi, R. (1995). Sprites, ELF transients, and positive ground strokes. Science, 269:1088–1091.

    Article  ADS  Google Scholar 

  • Boccippio, D. J., Wong, C., Williams, E. R., Boldi, R., Christian, H. J., and Goodman, S. J. (1998). Global validation of single-station Schumann resonance lightning location. J. Atmos. Sol.-Terr. Phys., 60:701–712.

    Article  ADS  Google Scholar 

  • Brook, M., Nakano, M., Krehbiel, P., and Takeuti, T. (1982). The electrical structure of the Hokuriku winter thunderstorms. J. Geophys. Res., 87:1207–1215.

    Article  ADS  Google Scholar 

  • Burke, C. P. and Jones, D. L. (1995). Global radiolocation in the lower ELF frequency band. J. Geophys. Res., 100:26263–26272.

    Article  ADS  Google Scholar 

  • Burke, C. P. and Jones, D. Llanwyn (1996). On the polarity and continuing currents in unusually large lightning flashes deduced from ELF events. J. Atmos. Terr. Phys., 58:531–540.

    Article  ADS  Google Scholar 

  • Cummer, S. A. and Inan, U. S. (1997). Measurement of charge transfer in sprite-producing lightning using ELF radio atmospherics. Geophys. Res. Lett., 24:1731–1734.

    Article  ADS  Google Scholar 

  • Fukunishi, H., Takahashi, Y., Kubota, M., Sakanoi, K., Inan, U. S., and Lyons, W. A. (1996). Elves: Lightning-induced transient luminous events in the lower ionosphere. Geophys. Res. Lett., 23:2157–2160.

    Article  ADS  Google Scholar 

  • Füllekrug, M. and Constable, S. (2000). Global triangulation of lightning discharges. Geophys. Res. Lett., 27:333–336.

    Article  ADS  Google Scholar 

  • Füllekrug, M., Price, C., Yair, Y., and Williams, E. R. (2002). Intense oceanic lightning. Ann. Geophys., 20:133–137.

    Article  ADS  Google Scholar 

  • Hayakawa, M., Molchanov, O. A., and team, NASDA/UEC (2004a). Summary report of NASDA’s earthquake remote sensing frontier project. Phys. Chem. Earth, 29:617–625.

    Google Scholar 

  • Hayakawa, M., Nakamura, T., Hobara, Y., and Williams, E. (2004b). Observation of sprites over the Sea of Japan and conditions for lightning-induced sprites in winter. J. Geophys. Res., 109(A0):doi:10.1029/2003JA009905.

    Google Scholar 

  • Hayakawa, M., Nakamura, T., Iudin, D., Michimoto, K., Suzuki, T., Harada, T., and Shimura, T. (2005). On the fine structure of thunderstorms leading to the generation of sprites and elves: Fractal analysis. J. Geophys. Res., 110(D6):doi:10.1029/2004JD004545.

    Google Scholar 

  • Hayakawa, M. and Nickolaenko, A. P. (2001). Lightning effects in the mesosphere and associated ELF radio signals. Proc. Indian Nat. Science Academy, 67A(4-5):509–529.

    Google Scholar 

  • Hobara, Y., Hayakawa, M., Ohta, K., and Fukunishi, H. (2003). Lightning discharges in association with mesospheric optical phenomena in Japan and their effect on the lower ionosphere. Adv. Pol. Upp. Atmos. Res., 17:30–47.

    Google Scholar 

  • Hobara, Y., Iwasaki, N., Hayashida, T., Hayakawa, M., Ohta, K., and Fukunishi, H. (2001). Interrelation between ELF transients and ionospheric disturbances in association with sprites and elves. Geophys. Res. Lett., 28:935–938.

    Article  ADS  Google Scholar 

  • Hobara, Y., Iwasaki, N., Hayashida, T., Tsuchiya, N., Williams, E. R., Sera, M., Ikegami, Y., and Hayakawa, M (2000a). New ELF observation site in Moshiri, Hokkaido Japan and the results of preliminary data analysis. J. Atmos. Electr., 20:99–109.

    Google Scholar 

  • Hobara, Y., Watanabe, H., Yamaguchi, T., Akinaga, Y., Koons, H. C., Roeder, J. L., and Hayakawa,M. (2000b). Wide-band ULF/ELF magnetic field measurement in Seikoshi, Izu Japan and some results from preliminary data analysis in relation with seismic activity. J. Atmos. Electr., 20:111–121.

    Google Scholar 

  • Hu, W., Cummer, S. A., Lyons, W. A., and Nelson, T. E. (2002). Lightning charge moment changes for the initiation of sprites. Geophys. Res. Lett., 29(8):doi:10.1029/2001GL014593.

    Google Scholar 

  • Huang, E., Williams, E., Boldi, R., Heckman, S., Lyons, W., Taylor, M., Nelson, T., and Wong, C. (1999). Criteria for sprites and elves based on Schumann resonance observations. J. Geophys. Res., 104:16943–16964.

    Article  ADS  Google Scholar 

  • Inan, U. S., Barrington-Leigh, C., Hansen, S., Glukhov, V. S., Bell, T. F., and Rairden, R. (1997). Rapid lateral expansion of optical luminosity in lightning-induced ionospheric flashes referred to as ‘elves’. Geophys. Res. Lett., 24:583–586.

    Article  ADS  Google Scholar 

  • Inan, U. S., Bell, T. F., and Rodriguez, J. V. (1991). Heating and ionization of the lower ionosphere by lightning. Geophys. Res. Lett., 18:705–708.

    Article  ADS  Google Scholar 

  • Ishaq, M. and Jones, D. L. (1977). Methods of obtaining radiowave propagation parameters for the Earth-ionosphere duct at ELF. Electron. Lett., 13:254–255.

    Article  ADS  Google Scholar 

  • Jones, D. L. (1999). ELF sferics and lightning effects on the middle and upper atmosphere. In Stuchly, M.A., editor, Modern Radio Science. Wiley.

    Google Scholar 

  • Jones, D. L. and Kemp, D. T. (1971). The nature and average magnitude of the sources of transient excitation of the Schumann resonances. J. Atmos. Terr. Phys., 33:557–566.

    Article  ADS  Google Scholar 

  • Kemp, D.T. (1971). The global radiolocation of large lightning discharges from single station observations of ELF disturbances in the Earth-ionosphere waveguide. J. Atmos. Terr. Phys., 33:919–927.

    Article  MathSciNet  ADS  Google Scholar 

  • Kitagawa, N. and Michimoto, K. (1994). Meteorological and electrical aspects of winter thunderclouds. J. Geophys. Res., 99:10713–10722.

    Article  ADS  Google Scholar 

  • Lyons, W. A., Nelson, T. E., Williams, E. R., Cummer, S. A., and Stanley, M. A. (2003). Characteristics of sprite-producing positive cloud-to-ground lightning during the 19 July 2000 STEPS mesoscale convective systems. Mon. Wea. Rev., 131:2417–2427.

    Article  ADS  Google Scholar 

  • Lyons, Walter A. (1996). Sprite observations above the U.S. High Plains in relation to their parent thunderstorm systems. J. Geophys. Res., 101(D23):29641–29652.

    Article  ADS  Google Scholar 

  • MacGorman, D. R. and Rust, W. D. (1998). The Electrical Nature of Storms. Oxford Univ. Press, New York.

    Google Scholar 

  • Madden, T. R. and Thompson, W. (1965). Low frequency electromagnetic oscillations of the earth-ionosphere cavity. Rev. Geophys., 3:211–254.

    Article  ADS  Google Scholar 

  • Michimoto, K. (1993). A study of radar echos and their relation to lightning discharges of thunderclouds in the Hokuriku district. J. Meteor. Soc. Japan, 71:195–204.

    Google Scholar 

  • Mohr, K. I. and Zipser, E. J. (1996). Mesoscale convective systems defined by the 85 GHz ice scattering signature: Size and intensity comparison over tropical oceans and continents. Mon. Wea. Rev., 24:2417–2437.

    Article  ADS  Google Scholar 

  • Mushtak, V. C. and Williams, E. R. (2002). ELF propagation parameters for uniform models of the Earth-ionosphere waveguide. J. Atmos. Sol.-Terr. Phys., 64:1989–2001.

    Article  ADS  Google Scholar 

  • Nickolaenko, A. P. and Hayakawa, M. (2002). Resonances in the Earth- Ionosphere Cavity. Kluwer Acad., Norwell, Mass.

    Google Scholar 

  • Nickolaenko, A. P., Hayakawa, M., and Hobara, Y. (1996). Temporal variations of the global lightning activity deduced from the Schumann resonance data. J. Atmos. Terr. Phys., 58:1699–1709.

    Article  ADS  Google Scholar 

  • Nickolaenko, A. P. and Kudintseva, I. G. (1994). A modified technique to locate the sources of ELF transients. J. Atmos. Terr. Phys., 56:1493–1498.

    Article  ADS  Google Scholar 

  • Pasko, V. P., Inan, U. S., Taranenko, Y. N., and Bell, T. F. (1995). Heating, ionization and upward discharges in the mesosphere due to intense quasielectrostatic thundercloud fields. Geophys. Res. Lett., 22:365–368.

    Article  ADS  Google Scholar 

  • Rakov, V. A. and Uman, M. A. (2003). Lightning: Physics and Effects. Cambridge University Press.

    Google Scholar 

  • Rust, W. D., MacGorman, D. R., and Arnold, R. T. (1981). Positive cloud-toground lightning flashes in severe storms. Geophys. Res. Lett., 8:791–794.

    Article  ADS  Google Scholar 

  • Saito, M., Ishii, M., Hojo, J., Sugita, A., Idogawa, T., and Kotani, K. (2003). Development of lightning discharge observed by VHF radiation. In Joint Technical Meeting on Electrical Discharges, Switching and High Voltage, Okinawa. IEE Japan, HV-03–90. (in Japanese).

    Google Scholar 

  • Sentman, D. D. (1995). Schumann resonances. In Volland, H., editor, Handbook of Atmospheric Electrodynamics, volume 1, pages 267–298. CRC Press Inc.

    Google Scholar 

  • Sentman, D. D. (1996). Schumann resonance spectra in a two-scale-height Earth-ionosphere cavity. J. Geophys. Res., 101:9479–9488.

    Article  ADS  Google Scholar 

  • Sentman, D. D. and Wescott, E. M. (1995). Red sprites and blue jets: Thunderstorm-excited optical emissions in the stratosphere, mesosphere, and ionosphere. Phys. Plasmas, 2:2514–2522.

    Article  ADS  Google Scholar 

  • Takeuti, T. and Nakano, M. (1983). Study on winter lightning activity in Hokuriku. Tenki, 30:13–18. (in Japanese).

    Google Scholar 

  • Toracinta, E. R. and Zipser, E. J. (2001). Ice-scattering mesoscale convective systems in the global tropics. J. Appl. Meteor., 40:983–1002.

    Article  ADS  Google Scholar 

  • Valdivia, J. A., Milikh, G., and Papadopoulos, K. (1997). Red sprites: Lightning as a fractal antenna. Geophys. Res. Lett., 24:3169–3172.

    Article  ADS  Google Scholar 

  • Wait, J. R. (1996). Electromagnetic Waves in Stratified Media. IEEE Press, Piscataway, N.J.

    Google Scholar 

  • Williams, E. R. (1998). The positive charge reservoir for sprite-producing lightning. J. Atmos. Sol.-Terr. Phys., 60:689–692.

    Article  ADS  Google Scholar 

  • Williams, E. R. (2001). Sprites, elves and glow discharge tubes. Phys. Today, 54(11):41–47.

    Article  Google Scholar 

  • Williams, E. R. and Sátori, G. (2004). Lightning, thermodynamic and hydrological comparison of two tropical continental chimneys. J. Atmos. Sol.-Terr. Phys., 66:1213–1231.

    Article  ADS  Google Scholar 

  • Wilson, C. T. R. (1925). The electric field of a thundercloud and some of its effects. Proc. Roy. Soc. Lond., 37(32D).

    Google Scholar 

  • Zipser, E. J. (1982). Use of a conceptual model of the life-cycle of mesoscale convective systems to improve very-short-range forecasts. In Browning, K., editor, Nowcasting, pages 191–204. Academic Press, London and New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this paper

Cite this paper

Hobara, Y., Hayakawa, M., Williams, E., Boldi, R., Downes, E. (2006). LOCATION AND ELECTRICAL PROPERTIES OF SPRITE-PRODUCING LIGHTNING FROM A SINGLE ELF SITE. In: Füllekrug, M., Mareev, E.A., Rycroft, M.J. (eds) Sprites, Elves and Intense Lightning Discharges. NATO Science Series II: Mathematics, Physics and Chemistry, vol 225. Springer, Dordrecht. https://doi.org/10.1007/1-4020-4629-4_10

Download citation

Publish with us

Policies and ethics